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ABSTRACT

We present an end-to-end (live) demonstration system called
DeepDive that performs knowledge-base construction (KBC)
from hundreds of millions of web pages. DeepDive employs
statistical learning and inference to combine diverse data
resources and best-of-breed algorithms. A key challenge of
this approach is scalability, i.e., how to deal with terabytes
of imperfect data efficiently. We describe how we address
the scalability challenges to achieve web-scale KBC and the
lessons we have learned from building DeepDive.

1. INTRODUCTION

Knowledge-base construction (KBC) is the process of pop-
ulating a knowledge base (KB) with facts (or assertions)
extracted from text. It has recently received tremendous
interest from academia, e.g., CMU’s NELL [2] and MPI’s
YAGO [7,9], and from industry, e.g., IBM’s DeepQA [5] and
Microsoft’s EntityCube [16]. To achieve high quality, these
systems leverage a wide variety of data resources and KBC
techniques. A crucial challenge that these systems face is
coping with imperfect or conflicting information from mul-
tiple sources [3, 13]. To address this challenge, we present
an end-to-end KBC system called DeepDive.1 DeepDive

went live in January 2012 after processing the 500M English
web pages in the ClueWeb09 corpus2, and since then has
been adding several million newly-crawled webpages every
day. Figure 1 shows several screenshots of DeepDive.

Similar to YAGO [7,9] and EntityCube [16], DeepDive is
based on the classic Entity-Relationship (ER) model [1] and
employs popular techniques such as distant supervision [15]
and the Markov logic language [11] to combine a variety of
signals. However, DeepDive goes deeper in two ways: (1)
Unlike prior large-scale KBC systems, DeepDive performs
deep natural language processing (NLP) to extract useful

1http://research.cs.wisc.edu/hazy/deepdive
2http://lemurproject.org/clueweb09.php/
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linguistic features such as named-entity mentions and de-
pendency paths3 from terabytes of text; and (2) DeepDive

performs web-scale statistical learning and inference using
classic data-management and optimization techniques.

Figure 2 depicts the current architecture of DeepDive.
To populate a knowledge base, DeepDive first converts di-
verse input data (e.g., raw corpora and ontologies) into rela-
tional features using standard NLP tools and custom code.
These features are then used to train statistical models rep-
resenting the correlations between linguistic patterns and
target relations. Finally, DeepDive combines the trained
statistical models with additional knowledge (e.g., domain
knowledge) into a Markov logic program that is then used
to transform the relational features (e.g., candidate entity
mentions and linguistic patterns) into a knowledge base with
entities, relationships, and their provenance.

Given the amount of data and depth of processing, a key
challenge is scaling feature extraction (see Figure 2). For
example, while deep linguistic features such as dependency
paths are useful for relationship extraction, it takes about
100K CPU hours for our NLP pipeline to finish process-
ing ClueWeb09. Although we have access to a 100-node
Hadoop cluster, we found that the throughput of Hadoop
is often limited by pathological data chunks that take very
long to process or even crash (due to Hadoop’s no-task-left-
behind failure model). Fortunately, thanks to the Condor
infrastructure4, we were able to finish feature extraction
on ClueWeb09 within a week by opportunistically assigning
jobs on hundreds of workstations and shared cluster ma-
chines using a best-effort failure model.

A second scalability challenge is statistical learning and
inference. There are two aspects of scalability with statis-
tical learning: scale of training examples and scale of per-
formance. To scale up the amount of training examples for
KBC, we employ the distant supervision technique [8,14,15]
that automatically generates what are called silver-standard
examples by heuristically aligning raw text with an existing
knowledge base such as Freebase.5 To scale up the per-
formance of machine learning, we leverage the Bismarck

system [4] that executes a wide variety of machine learn-
ing techniques inside an RDBMS. For statistical inference,
DeepDive employs a popular statistical-inference frame-
work called Markov logic. In Markov logic, one can write
first-order logic rules with weights (that intuitively model

3http://nlp.stanford.edu/software/
4http://research.cs.wisc.edu/condor/
5http://freebase.com



Figure 1: Screenshots of DeepDive showing facts about Barack Obama and provenance. (Left) Facts about
Obama in DeepDive; (Top Right) Sentences mentioning the fact that Obama went to Harvard Law School;
(Bottom Right) Text from a web page annotated with entity mentions.

our confidence in a rule); this allows one to capture rules
that are likely, but not certain, to be correct. A Markov logic
program (aka Markov logic network, or simply MLN) speci-
fies what (evidence) data are available, what predictions to
make, and what constraints and correlations there are [10].
However, when trying to apply Markov logic to KBC, we
found that existing MLN systems such as Alchemy

6 do not
scale to our datasets. To cope, we designed and implemented
two novel approaches to MLN inference by leveraging data-
management and optimization techniques.

In addition to statistical learning and inference, we have
found debugging and tuning based on the output of a KBC
system to be an effective method to improve KBC quality.
To support systematic debugging and tuning, it is important
that the underlying statistical models are well-calibrated,
i.e., predictions with probability around p should have an
actual accuracy around p as well. Such calibration is an
integral part of the development process of DeepDive.

We describe the DeepDive architecture in Section 2 and
some implementation details in Section 3. We summarize
the lessons we have learned from DeepDive as follows:

Inference and Learning. Statistical inference and learn-
ing were bottlenecks when we first started DeepDive,
but we can now scale them with data-management and
optimization techniques.

Feature Extraction. Good features are a key bottleneck
for KBC; with a scalable inference and learning infras-
tructure in place, we can now focus on gathering and
tuning features for DeepDive.

Debugging and Tuning. Developing KBC systems is an
iterative process; systematic debugging and tuning re-
quires well-calibrated statistical models.

2. DEEPDIVE ARCHITECTURE

We first describe a simple KBC model that we use in
DeepDive, and then briefly discuss the infrastructure that

6http://alchemy.cs.washington.edu

enables web-scale KBC in DeepDive, namely how we scale
up web-scale feature extration, machine learning for KBC,
and statistical inference in Markov logic, respectively.

A Conceptual KBC Model. DeepDive adopts the clas-
sic Entity-Relationship (ER) model [1]: the schema of the
target knowledge base (KB) is specified by an ER graph
G = (Ē, R̄) where Ē is one or more sets of entities (e.g.,
people and organizations), and R̄ is a set of relationships.
Define E(G) = ∪E∈ĒE, i.e., the set of known entities. To
specify a KBC task to DeepDive, one provides the schema
G and a corpusD. Each document di ∈ D consists of a set of
(possibly overlapping) text spans (e.g., tokens or sentences)
T (di). Text spans referring to entities or relationships are
called mentions (see Figure 4). Define T (D) = ∪di∈DT (di).
Our goal is to accurately populate the following tables:

• Entity-mention table M(E(G), T (D)).7

• Relationship-mention tables MRi
⊆ T (D)k+1 for each

Ri ∈ R̄; k is Ri’s arity, and the first k attributes (resp.
last attribute) are entity (resp. relationship) mentions.

• Relationship tables Ri ∈ R̄.

Note that Ri can be derived from ME and MRi
. By the

same token, ME and MRi
provide provenance that connects

the KB back to the documents supporting each fact. The
process of populatingME is called entity linking ; the process
of populating MRi

is called relation extraction. Intuitively,
the goal is to produce an instance J of these tables that is as
large as possible (high recall) and as correct as possible (high
precision). As shown in Figure 4, DeepDive populates the
target KB based on signals from mention-level features (over
text spans, e.g., positions, contained words, and matched
regular expressions) and entity-level features (over the target
KB, e.g., age, gender, and alias).

7For simplicity, we assume that all entities are known, but
DeepDive supports generating novel entities for the KB as
well (e.g., by clustering “dangling” mentions).
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Figure 2: Architecture of DeepDive. DeepDive takes as input diverse data resources, converts them into
relational features, and then performs machine learning and statistical inference to construct a KB.

Scaling Feature Extraction at Web Scale. To scaleDeep-

Dive to web-scale KBC tasks, we employ high-throughput
parallel computing frameworks such as Hadoop8 and Con-
dor for feature extraction. We use the Hadoop File System
for storage, but found a 100-node MapReduce cluster to be
insufficient for ClueWeb: (1) Hadoop’s all-or-nothing ap-
proach to failure handling hinders throughput, and (2) the
number of cluster machines for Hadoop is limited. Fortu-
nately, the Condor infrastructure supports a best-effort fail-
ure model, i.e., a job may finish successfully even when Con-
dor fails to process a small portion of the input data. More-
over, Condor allows us to simultaneously leverage thousands
of machines from across a department, an entire campus, or
even the nation-wide Open Science Grid.9

Scaling Machine Learning for KBC. Traditional KBC
systems rely on manual annotations or domain-specific rules
provided by experts, both of which are scarce resources.
To remedy these problems, recent years have seen inter-
est in the distant supervision approach for relation extrac-
tion [8, 14, 15]. The input to distant supervision is a set
of seed facts for the target relation together with an (un-
labeled) text corpus, and the output is a set of (noisy) an-
notations that can be used by any machine learning tech-
nique to train a statistical relation-extraction model. For ex-
ample, given the target relation BirthPlace(person, place)
and a known fact BirthPlace(John, Springfield), the sen-
tence “John was born in Springfield in 1946” would qualify
as a positive training example. Despite the noise in such
examples, Zhang et al. [15] show that the quality of the
TAC-KBP10 relation-extraction benchmark improves signif-
icantly as we increase the training corpus size (Figure 3).
DeepDive learns its relation-extraction models (as logistic
regression classifiers) on about 1M examples (see Section 3)
using the RDBMS-based Bismarck system [4].

Scaling Statistical Inference in Markov Logic. To scale
up statistical inference in Markov logic, DeepDive employs
the Tuffy [10] and Felix

11 systems. Tuffy is based on
the observation that MLN inference consists of a ground-

8http://hadoop.apache.org/
9http://www.opensciencegrid.org

10http://nlp.cs.qc.cuny.edu/kbp/2010/
11http://research.cs.wisc.edu/hazy/felix
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Figure 3: The TAC-KBP quality improves as we in-
crease the number of ClueWeb documents used for
distant supervision [15]. Note that F1 and Recall
continue to improve as DeepDive processes increas-
ingly large corpora (we do not yet have an explana-
tion for the dip in precision).

ing step that essentially performs relational operations, and
a search (or sampling) step that often comprises multiple
independent subproblems. Thus, Tuffy achieves orders of
magnitude speed-up in grounding (compared to Alchemy)
by translating grounding into SQL statements that are exe-
cuted by an RDBMS. Moreover, Tuffy performs graph par-
titioning at the search step to achieve scalability in inference
and (serendipitously) improved quality. Felix is based on
the observation that an MLN program (especially those for
KBC) often contains routine subtasks such as classification
and coreference resolution; these subtasks have specialized
algorithms with high efficiency and quality. Thus, instead
of solving a whole MLN with generic inference algorithms,
Felix splits the program into multiple parts and solves sub-
tasks with corresponding specialized algorithms. To resolve
possible conflicts between predictions from different tasks,
Felix employs the classic dual decomposition technique.

3. IMPLEMENTATION DETAILS

A key tenet of DeepDive is that statistical learning and
inference enables one to build high-quality KBC systems
(see Figure 1) by combining diverse resources. We briefly
describe more technical details of DeepDive to conceretely
demonstrate the advantage of this approach.

Entity Linking. Recall that entity linking is the task of
mapping a textual mention to a real-world entity. We run
the state-of-the-art StanfordNER (Named Entity Recogni-
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Figure 4: An illustration of the KBC model in DeepDive.

tion)12 to extract textual mentions and corresponding en-
tity types. DeepDive then tries to map each mention to a
Wikipedia entry using the following signals: string match-
ing, Wikipedia redirects and inter-page anchor text, Google
and Bing search results that link to Wikipedia pages, en-
tity type compatibility between StanfordNER and Freebase,
person-name coreference based on heuristics and proximity,
etc. We write a couple dozen MLN rules for these data
resources and then train the rule weights using the entity-
linking training data from TAC-KBP. Our entity-linking
component achieves an F1 score of 0.80 on the TAC-KBP
benchmark (human performance is around 0.90). As shown
in Figure 1, DeepDive also solicits user feedback on the
entity types; we plan to integrate such feedback into the
statistical inference process.

Relation Extraction. The relation-extraction models inDeep-

Dive are trained using the methods described in Zhang
et al. [15]. Specifically, during feature extraction, we per-
form dependency parsing using MaltParser13 and Ensem-
ble.14 We use Freebase and about 2M high-quality news
and blog articles provided by TAC-KBP to perform distant
supervision, generating about 1M training examples over 20
target relations (including those shown in Figure 1). We
use sparse logistic regression (ℓ1 regularized) classifiers [12]
to train statistical relation-extraction models using both lex-
ical (e.g., word sequences) and syntactic (e.g., dependency
paths) features. We achieved an F1 score of 0.31 on the
TAC-KBP relation extraction benchmark (lower than only
the top participant in TAC-KBP 2010 [6]).

4. CONCLUDING REMARKS

We presented DeepDive, an end-to-end demonstration
system that performs knowledge-base construction from the
web. DeepDive demonstrates that a promising approach to
KBC is to integrate diverse data resources and best-of-breed
algorithms via statistical learning and inference. We dis-
cussed the key lessons we have learned from building Deep-

Dive – including feature extraction, statistical learning and
inference, and systematic debugging – and hope that they
are of value to other researchers.

12http://nlp.stanford.edu/ner/index.shtml
13http://www.maltparser.org/
14http://www.surdeanu.name/mihai/ensemble/
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