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ABSTRACT

Microphones are remarkably powerful sensors of human be-
havior and context. However, audio sensing is highly sus-
ceptible to wild fluctuations in accuracy when used in di-
verse acoustic environments (such as, bedrooms, vehicles, or
cafes), that users encounter on a daily basis. Towards ad-
dressing this challenge, we turn to the field of deep learn-
ing; an area of machine learning that has radically changed
related audio modeling domains like speech recognition. In
this paper, we present DeepEar – the first mobile audio sens-
ing framework built from coupled Deep Neural Networks
(DNNs) that simultaneously perform common audio sens-
ing tasks. We train DeepEar with a large-scale dataset in-
cluding unlabeled data from 168 place visits. The resulting
learned model, involving 2.3M parameters, enables DeepEar
to significantly increase inference robustness to background
noise beyond conventional approaches present in mobile de-
vices. Finally, we show DeepEar is feasible for smartphones
by building a cloud-free DSP-based prototype that runs con-
tinuously, using only 6% of the smartphone’s battery daily.
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INTRODUCTION

Advances in audio-based computational models of behav-
ior and context continue to broaden the range of inferences
available to mobile users [26]. Through the microphone it
is possible to infer, for example: daily activities (e.g., eat-
ing [9], coughing [49], driving [58]), internal user states (e.g.,
stress [55], emotion [64]) and ambient conditions (e.g., num-
ber of nearby people [78]). Audio sensing has evolved into a
key building block for various novel mobile applications that
enable users to monitor and improve their health and wellbe-
ing [63], productivity [73, 50] and environment [61, 19].

However, despite its progress, audio sensing is plagued by the
challenge of diverse acoustic environments. Mobile applica-
tions deployed in the real world must make accurate infer-
ences regardless of where they are used. But this is problem-
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atic because each environment (such as, the gym, office or a
train station) contains its own mixture of background noises
that often confuse the audio sensing classifiers in use today.
Places are filled with noises that can overlap the sound tar-
geted for classification, or may contain confounding noises
that sound similar – but are not tied to the same target event
or activity of interest. Locations can even alter the acoustic
characteristics of sounds (e.g., a user’s voice) due to the ma-
terials used for furniture or decoration. For such reasons, the
accuracy of audio sensing often falls, and otherwise is unpre-
dictable, when performed in a range of different places.

In recent years, a new direction in the modeling of data has
emerged known as deep learning [25]. Through a series of
new learning architectures and algorithms, domains such as
object recognition [46] and machine translation [20, 11] have
been transformed; deep learning methods are now the state-
of-the-art in many of these areas. In particular, deep learning
has been the driving force behind large leaps in accuracy and
model robustness in audio related domains like speech recog-
nition [40]. One of the key ideas behind this progress is rep-
resentational learning through the use of large-scale datasets.
This allows models to stop relying on hand-crafted (often sen-
sor specific) or generic features; and instead, robust repre-
sentations of targeted inference categories are automatically
learned from both labeled and unlabeled data. These repre-
sentations are captured in a dense interconnected network of
units, in which each unit contributes with a relatively simple
function parameterized by the data. Deep learning has the
potential to broadly impact the fields of activity recognition
and the modeling of user behavior and context; early explo-
rations of this potential are already underway [47, 35]. In
this work, we examine a specific aspect of this larger puzzle,
namely: Can deep learning assist audio sensing in coping
with unconstrained acoustic environments?

The outcome of our investigation is DeepEar – an audio sens-
ing framework for mobile devices that is designed using deep
learning principals and algorithms. The heart of DeepEar
are four coupled 5-layer 1024-unit Deep Neural Networks
(DNNs), each responsible for separate types of audio infer-
ences (viz. ambient audio scene analysis, speaker identifi-
cation, emotion recognition, stress detection). Every DNN
is parameterized using a large-scale audio dataset (12 hours)
composed of both conventional labeled data along with un-
labeled data gathered from 168 place visits. By applying a
mixed condition approach to data pre-processing, we further
synthesize additional labeled data by combining examples of
audio categories with background noise of varying intensity.
To utilize this dataset, we adopt state-of-the-art deep learn-
ing algorithms during pre-training and fine-tuning phases. As



a result, unlike most existing mobile audio sensing frame-
works DeepEar is able to exploit even unlabeled audio seg-
ments. Collectively, the stages of this framework represents
a rethinking of how mobile audio sensing is performed. To
achieve its primary goal of robustness to different acoustic
environments it rejects manually-selected features designed
for specific audio inferences. Only simple frequency domain
information is presented to DeepEar at training time. Instead,
representations of the audio data for each inference category
are learned within the 3,300 units used in the framework.

We experimentally validate the design of DeepEar in two
ways. First, we compare the model accuracy and robustness
of DeepEar, under unconstrained environments, against exist-
ing audio sensing systems designed for mobile devices [54,
64, 55, 72]; each system is selected as it is purpose-designed
to provide one or more of the inferences supported by our
framework. Second, we measure the energy and latency of a
prototype DeepEar system designed for modern phone hard-
ware (i.e., a programmable DSP1). Our findings show Deep-
Ear can cope with significant acoustic diversity while also is
feasible for use on standard phones.

In summary, this paper makes the following contributions:

• Deep Learning for Audio-based Sensing of Behavior and
Context. Our design of DeepEar represents the first time
computational models with a deep architecture have been
developed to infer a broad set of human behavior and con-
text from audio streams. By integrating techniques includ-
ing unsupervised pre-training, our model is able to utilize
the large amounts of unlabeled data that is readily collected
by mobile systems. DeepEar is an important step towards
understanding how deep approaches to modeling sensor
data can benefit activity and context recognition.

• Large-scale Study of Acoustic Environment Diversity. We
quantify the challenge of performing audio sensing in di-
verse environments using real-world audio datasets span-
ning four common audio sensing tasks, along with audio
captured from 168 place visits. There are two key find-
ings. First, conventional modeling approaches for mo-
bile devices suffer dramatic fluctuations in accuracy when
used in a set of common everyday places. Second, Deep-
Ear when compared to these state-of-the-art mobile audio
sensing techniques not only offers higher average accuracy
across all four tested tasks – but also has a much tighter
range of accuracy as the acoustic environment changes.

• Low-energy Smartphone Prototype. To show DeepEar is
suitable for mobile devices, we implement the framework
using off-the-shelf smartphone hardware. By directly uti-
lizing the DSP, present in most smartphone sold today, we
demonstrate DeepEar can perform continuous sensing with
acceptable levels of energy and latency. For example, with
modest reductions in model complexity, DeepEar uses only
6% of the battery of the phone per day of continuous use,
this comes at the expense of only a 3% drop in accuracy
(on average) when ignoring mobile resources concerns.
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Figure 1: Current Practice in Mobile Audio Sensing

STATE-OF-THE-ART IN MOBILE AUDIO SENSING

Mobile audio sensing has been an intensely active area of in-
terest, with many techniques and end-to-end systems devel-
oped [49, 9, 78, 50, 61, 31, 56, 65]. Although all would
acknowledge the difficulty of coping with diverse acoustic
conditions, most study other challenges – for example, de-
veloping methods to recognize new inference categories. As
a result, they often do not explicitly measure the variability
of accuracy across many background conditions. We assume,
however, they will struggle due to the lack of compensating
techniques coupled with the fundamental nature of the prob-
lem – evidenced, for example, by decades of speech recogni-
tion research towards noise resistance [51, 22, 41, 68, 59].

Coping with Diverse Acoustic Environments. Due to the
severity of the problem, a number of approaches for coping
with unconstrained acoustic environments have been devel-
oped specifically within the mobile sensing community. One
popular technique is to adapt the underlying model to accom-
modate the changes in distributions and characteristics of au-
dio categories under new surroundings [57, 55]. For example,
[55] proposes a method using Maximum a Posteriori (MAP)
to adjust model parameters to new conditions. [57] in con-
trast, uses a semi-supervised procedure to recruit new labeled
data compatible with the new environment, enabling model
retraining. In a related approach, [12, 62, 74] all propose
mechanisms to crowdsource labels, a side-effect of which
is the ability to model a variety of environments. However,
these methods are general and do not specifically consider the
nuances of modeling audio. Similarly, semi-supervised learn-
ing and automated model adaptation are difficult to control as
the model can degenerate when exposed to uncontrolled data,
and there can be few opportunities to tune performance.

In the broader speech and signal processing community, a
much wider diversity of techniques exist, for example: a vari-
ety of model adaptation techniques (e.g., [29, 22, 59]); ap-
proaches built upon projections into low-dimensional sub-
spaces robust to noise [68, 41]; and even some based on
source separation [32]. Because of the maturity of this com-
munity (in comparison to mobile sensing) and the fact they
are less bound by mobile resource limitations, these tech-
niques for handling background noise are typically even more
robust than those used within mobile systems. In fact, most of
these approaches are yet to appear in mobile prototypes. But
as we discuss in the next section, for many audio tasks the
start-of-the-art is migrating towards the use of deep learning.
Consequently, in this work we do not compare deep learning
techniques to the latest offline server-side shallow learning
audio algorithms (i.e., those outside of deep learning). In-
stead, we focus on the core question of if deep approaches to
audio modeling are beneficial and feasible to mobile systems.
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Figure 2: Deep Neural Network Training and Inference Stages

Current Practice in Mobile Audio Sensing. Largely due
to limitations in current mobile solutions to the problem of
unconstrained acoustic environments, they are rarely used in
practice. Figure 1 sketches the de facto standard stages of
audio processing found in the majority of mobile sensing ap-
plications today. As highlighted in the next section, current
practice in audio sensing is radically different to the design
of DeepEar. In the figure the process begins with the seg-
mentation of raw audio in preparation for feature extraction.
Representation of the data, even for very different types of au-
dio inferences is often surprisingly similar. Generally banks
of either Perceptual Linear Prediction (PLP) [38] or Mel Fre-
quency Cepstral Coefficient (MFCC) [28] features are used as
they are fairly effective across many audio modeling scenar-
ios. Features are tuned (e.g., number of co-efficients, length
of the audio frames) depending on the type of sensing task.
Additional task specific features can also be added; for exam-
ple, [55] incorporates features like TEO-CB-AutoEnv2. The
modeling of these features is sometimes performed by De-
cision Trees (especially in early systems) or Support Vector
Machines (SVMs) (both detailed in [14]) – but by far the most
popular technique is a Gaussian Mixture Model (GMM) [30].
This is inline with their decades of dominance in the speech
recognition domain, only until recently were they replaced
by deep learning methods. Similar to features, model tuning
also takes place, for instance, the number of mixture com-
ponents is selected. Finally, a secondary model (e.g., a Hid-
den Markov Model [14]) is sometimes used, though largely
to smooth the transitions of classes towards more likely se-
quences of real-life events rather than truly modeling the data.

AUDIO APPLICATIONS OF DEEP LEARNING

As already discussed it is in the domain of audio, and more
specifically speech recognition, that deep learning has had
some of its largest impact. For example, in 2012 by adopting
deep learning methods Google decreased error speech recog-
nition error in Android devices by 30% [24]. Such success
has spawned a rich set of audio-focused deep learning tech-
niques and algorithms [23, 33, 10]. However, many are not
directly applicable to mobile audio sensing due to their focus
on speech tasks; thus they leverage speech-specific elements,
for instance words and phonemes, which do not cleanly trans-
late into the inference categories targeted by audio sensing.

Deep Neural Networks for Audio Modeling. Figure 2,
shows the core phases of audio modeling under a Deep Neu-
ral Network (see [25] for more). In describing these phases,
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we intend to contrast their fundamental differences with con-
ventional audio sensing methods (see Figure 1), as well as to
provide a brief primer to core concepts. While there are a
variety of deep learning algorithms for audio, DNNs and the
related techniques we now describe (and are also adopted in
DeepEar) are some of the most widely used.

The architecture of a DNN is comprised by a series of fully-
connected layers, each layer in turn contains a number of
units that assume a scalar state based primarily on the state of
all units in the immediately prior layer. The state of the first
layer (the input layer) is initialized by raw data (e.g., audio
frames). The last layer (the output layer) contains units that
correspond to inference classes; for example, a category of
sound like music. All layers in between these two are hidden
layers; these play the critical role of collectively transforming
the state of the input layer (raw data) into an inference.

Inference is performed with a DNN using a feed-forward al-
gorithm that operates on each audio frame separately. Ini-
tially, the state of each input layer unit is set by a representa-
tion (e.g., frequency banks or even raw values) of the audio
samples in the frame. Next, the algorithm updates the state
of all subsequent layers on a unit-by-unit basis. Each unit has
an activation function and additional parameters that specify
how it’s state is calculated based on the units in the prior layer
(see next section for more). This process terminates once all
units in the output layer are updated. The inferred class cor-
responds to the output layer unit with the largest state.

To train a DNN (i.e., tune the activation function and parame-
ters of each unit) two techniques are applied. The first of these
stages is unsupervised with the aim of enabling the network
to produce synthetic output with the same characteristics and
distributions of real input data (i.e., generative). This pro-
cess, referred to as “pre-training”, allows unlabeled data to
be leveraged during model training. The next stage of train-
ing is called “fine-tuning” and is based on backpropagation
algorithms that adjust the activation functions initialized by
pre-training. This supervised process optimizes parameters
globally throughout the network by minimizing a loss func-
tion defined by the disagreement of ground-truth labels (that
set the output layer) and the network inferences assuming the
existing activation functions. In most cases large-scale unla-
beled data is crucial because of the difficulty in globally opti-
mizing all network parameters using backpropagation alone.
For decades building deep networks with many units and
hidden layers was impractical, it was not until the discov-
ery that greedily layer-by-layer pre-training vastly simplifies
backpropagation did deep learning become possible [42].

Deep versus Shallow Learning. Understanding why deep
learning models are able to outperform alternatives has been
an area of considerable study [13, 27, 45, 40]. Within
such analysis, shallow learning is defined to include SVMs,
GMMs, Decision Trees, single-layer Neural Networks and
other commonly used models; the essential characteristic be-
ing they incorporate nonlinear feature transformations of one
or at most two layers – in contrast to models like a DNN.
Considerable emphasis is assigned to the benefits of repre-
sentational learning as well as the way deep learning moves
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Figure 3: DeepEar Model Training Process

towards the closer integration of features and classifiers [45,
27]. It is the ability to learn features from the data and a rejec-
tion of manual feature engineering that is seen as a foundation
to the advantage of deep learning. Through studies of deep
learning applied to images [25] (e.g., face recognition) this
behavior can be observed directly through individual layers.
Findings show deep models learn hierarchies of increasingly
more complex “concepts” (e.g., detectors of eyes or ears), be-
ginning first with simple low-level “features” (e.g., recogniz-
ers of round head-like shapes). Studies also find highly pre-
processed raw data (through manual feature engineering) ac-
tually leads to large amounts of information being discarded,
that instead under deep learning is utilized [40]. More theo-
retical work [13] has found shallow architectures like GMMs
are inefficient in representing important aspects of audio, and
this causes them to require much more training data than
DNNs before these aspects are captured. Other results [40]
similarly identify manifolds on which key audio discrimina-
tors exist but that are resistant to being learned within GMMs,
a problem that is not present in deep models.

Emerging Low Complexity and Hybrid DNNs. Extend-
ing from the success in speech, work is underway on broader
set of audio tasks that utilize deep methods. [36], for exam-
ple, infers emotion from speech using deep learning but only
to assist in feature selection – it remains uninvolved in clas-
sification. Complete end-to-end deep learning solutions for
many audio tasks relevant to mobile sensing are still unex-
plored. DeepEar contributes by pushing forward in this direc-
tion, especially by using more fully the range of deep learning
methods available. Interest in purpose-built deep models for
mobile devices is also increasing. Designs to date have fo-
cused on maintaining a small-footprint and are often coupled
with a GMM (or similar) model. [18, 75] are two examples
that provide speaker identification and continuous keyword
recognition respectively. However, they have much more se-
vere limitations than DeepEar, for instance speaker identifica-
tion is only possible if the subject uses one of a few phrases.

DEEPEAR: DESIGN AND ALGORITHMS

We now detail the modeling techniques and algorithms that
comprise DeepEar. While this section focuses on the learn-
ing algorithms specifically, it is complemented with a later
section that describes a practical preliminary DeepEar proto-
type implementation designed for smartphones.

Overview

DeepEar supports a variety of audio-based inferences that are
commonly required by a range of mobile sensing applica-
tions. Table 1 lists the initial audio sensing tasks currently

supported; however it is possible to customize this set of in-
ferences depending on application needs. The heart of Deep-
Ear are four coupled Deep Neural Networks of stacked Re-
stricted Boltzmann Machines (described in detailed below)
that collectively perform each sensing task. Through the use
of modeling techniques with deep architectures, DeepEar is
designed to increase the level of inference robustness to the
diversity of acoustic environments encountered in the wild.

Audio Sensing Task Inference Categories

Ambient Scene Analysis Voicing, Music, Water, Traffic
Stress Detection Non-Stress, Stress
Emotion Recognition Anger, Fear, Neutral, Sadness, Happiness
Speaker Identification 23 Distinct Speakers

Table 1: Audio Sensing Tasks supported by DeepEar

Figure 4 presents the architecture of DeepEar. This frame-
work is designed to operate on a continuous stream of audio.
As shown audio is initially pre-processed into a normalized
form suitable for forward propagation throughout the DNNs.
Because silence is so easily detected, and is wasteful to per-
form inference over, we implement a standard silence filter
based on spectral entropy and RMS values (virtually iden-
tical to design used in [56, 31]). When silence is detected
none of the DNNs are exercised. Otherwise, audio frames
are provided to the shared first input layer of the DNNs. For-
ward propagation is performed on the Ambient Scene Anal-
ysis DNN first, not only does this provide the first series of
inferences it also informs DeepEar if voicing frames (i.e.,
human speech) are detected. Only when this occurs are the
remaining DNNs exercised, as each of them is designed to
classify voicing. Although intended for use on mobile de-
vices this framework can also be utilized in an offline fashion
to process captured audio. For some applications this might
be sufficient (e.g, if near real-time feedback is not required)
and a more energy efficient solution is needed.

Before DeepEar can be used, it must be trained. Figure 3 il-
lustrates the key stages in the DeepEar training process. The
overarching emphasis in the design of this process is to per-
form representational learning within the layers of the DNNs.
The objective is to learn a diverse set of representations for
the targeted inference classes, that in turn will be able to
withstand the variety of environments in which DeepEar will
operate. To facilitate this outcome, we synthesize labeled
data under a number of background acoustic environments.
By doing this DeepEar networks are exposed to a rich range
of examples from which to learn. To leverage both this ex-
tended labeled dataset and the raw unlabeled data captured in
these environments, we perform the standard deep learning



approaches of pre-training and fine-tuning (discussed further
in the remainder of this section).

Data Pre-Processing

Construction of DeepEar begins with training data. As il-
lustrated in Figure 3 two varieties are utilized. First, labeled
audio data provides curated examples of the audio categories
to be inferred (listed in Table 1); critically, included in this
data is an other class of everyday sounds to represent sound
categories not targeted by any of the classifiers. Second, an
unlabeled pool of audio data captured from a variety of typi-
cal operating locations, such as cafes, offices, stores.

This second dataset acts in an additional role, namely to al-
low additional labeled training data to be synthesized that has
background noise. To do this, we adopt the mixed condition
approach that has been used for a similar purpose in speech
recognition models [70, 44] that also aim to be resistant to
dynamic environments. The process is simple; labeled train-
ing data is mixed with background noise taken from a loca-
tion with the intensity of the noise scaled to different levels
(for example, to 10% of the original recording volume). Each
combination of: training segment, location specific noise and
the intensity setting – form a new synthetic training segment.

The pre-processing phase concludes with all audio data being
broken into frames from which features are extracted. Deep-
Ear uses 30ms. frames with a 20ms. overlap. PLP features
are used because they have been proven successful in prior
classifiers (e.g., [64]) that target the same inferences as Deep-
Ear. We extract 16 PLP co-efficients and their deltas. Lastly,
because of the sensitivity of later deep learning stages to fea-
ture scaling [39] we normalize all values to have zero mean
and unit standard deviation. After all raw audio data has been
processed it is ready for use during model training. Unla-
beled data is fed directly to the pre-training stage applied to
each DeepEar internal model. Similarly, labeled training data
and the additional synthetic segments are provided to the fine-
tuning stage. Both phases are detailed later in this section.

Model Architecture

The four internal DNN models of DeepEar share the same
underlying network architecture because fundamentally each
one must process the same class of data – audio. However,
these models learn distinct representations of the data at each
layer depending on the different audio tasks (e.g., identifying
different speakers as opposed to coarse categories of sound).
These differences manifest, for example, in the activation
function parameters of each unit and how units collectively
process data propagating through the network.

Pre-Processing
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Audio Stream
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Figure 4: DeepEar Design
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Figure 5 illustrates the model architecture for DeepEar
DNNs. Restricted Boltzmann Machines (RBMs) act as the
basic building block for the entire network. RBMs are a
type of Markov Random Field that include visible and hid-
den units. Layers of the network are formed using multiple
RBMs stacked together where the hidden units from one set
of RBMs act as the visible layer for the next. A hidden unit
(k) computes it’s own state (yk) – that is passed on to subse-
quent layers – in two stages. First, it computes an intermedi-
ate state (xk) using bk+

∑
i
yiwik, where bk is a unit-specific

bias term, yi is the state of each unit in the prior layer, and
wik is the weight between unit k and again each prior layer
unit. Second, it applies an activation function to xk – Deep-
Ear largely uses rectified linear functions [60] in which case
yk = max(0, xk). We construct the input layer using Gaus-
sian visible units [77] able to cope with the real-valued data
(PLP features) used to represent the raw audio frames – as
is standard practice when modeling audio. Throughout the
remaining stacked RBMs in the network we use ReLU units
(i.e., those with ReLU activation functions). The exception
to this occurs with the output layer where softmax activation
functions are used. Recall each unit corresponds to an audio
inference class, so in this way unit states can be interpreted as
posterior probabilities (i.e., collectively Σ to 1 and individu-
ally range [0, 1]).

Total Hidden Units per Total

Layers Layers Hidden Layer Parameters

5 3 1024 2.3M

Table 2: DeepEar Internal DNN Architecture

Table 2 provides the raw network architecture values for each
DNN in DeepEar. Across 5-layers a total of 3,300 units are
used, resulting in over 2.3M parameters to be determined dur-
ing training. All DNNs share a common input layer. We ar-
rive at this architecture by first adopting similar structures al-
ready successful for audio tasks in the literature (such as [21]
that uses 6 hidden layers of 1024 units). Subsequently, we
further verify the appropriate parameters for the number of
units and layers within this hidden layer block for each Deep-
Ear audio task. Results, based on training data, show that in-
creasing layers and unit size beyond those detailed in Table 2
does not cause significantly improved model performance;
although we note, especially for some tasks (e.g., Ambient



Scene Analysis), gains in accuracy over simpler hidden ar-
chitectures (such as, 3 layers of 256 units) is not large (an
observation leveraged for our phone prototype).

Unsupervised Pre-Training

A critical benefit of the pre-training stage to DeepEar is that
it enables it to effectively leverage unlabeled audio data dur-
ing model training. In contrast, conventional mobile audio
pipelines very rarely use data that has not been labeled with
ground truth. The underlying concept of this process is to ini-
tialize the parameters of the network so that it is able to model
the structure of the data (i.e., the characteristics and patterns
found in commonly seen in the raw data) – rather than the
training focusing on class discrimination from the outset. For
this reason, this stage is often referred to as generative be-
cause once complete the network is able to synthesize data
with similar characteristics of the training set. In addition, to
allowing the integration of unlabeled data into the network,
pre-training also significantly simplifies the subsequent su-
pervised fine-tuning stage. Without pre-training, fine-tuning
using limited amounts of labeled data is intractable due to the
shear volume of DNN parameters. Pre-training also has been
demonstrated to assist in reducing model over-fitting [48].

Each model within DeepEar are subject to identical pre-
training procedures. We adopt existing practice in DNN mod-
eling, and parameters of the activation function of each net-
work unit are determined in a greedy layer-wise fashion [42].
Once a layer has been completed it will then act as input
to learn the next layer of the network. This process starts
with the initialization of the first layer (a Gaussian RBM) to
the feature representation of the raw audio data. The con-
nected adjacent layer (a ReLU RBM) has its activation func-
tions determined based on the data captured in this first layer.
We train these parameters using a Gibbs sampler applying
the contrastive divergence approximation [69] of the gradient
during activation function parameter search. This procedure
continues until the final layer of the model is reached.

Note, if there is a single pool of unlabeled audio data shared
by each DNN, then the model produced by pre-training is
identical. Only later during fine-tuning, using labeled data,
will differences emerge. Therefore in such cases pre-training
is performed once and the resulting model used by all DNNs.
But, when warranted by large differences between audio
tasks, task-specific unlabeled audio data may be used; in such
cases independent per-DNN pre-training is performed.

Supervised Fine-Tuning

Complementing pre-training is a final learning phase that
makes use of the available supervised audio data. This pro-
cedure is applied to each DNN within DeepEar separately to
train each for the specific classification role required. Fine-
tuning is based on backpropagation of the classification er-
rors when labeled data is applied to the network. Essentially,
first labeled data is applied to the input layer and propagated
forward within the network which sets the activation func-
tion values for all DNN units. Next, this is compared to the
same activation function values for all DNN units when in-
stead the ground truth of the data is used to set the output

layer, and the unit values are propagated backwards. A neg-
ative log-likelihood cost function is used to define the global
difference of the two activation function values, and penal-
ize the disagreement with the output layer of the labeled data.
The objective of fine-tuning is to optimize this cost function
by adjustments to the activation functions throughout the net-
work. We perform this process with stochastic gradient de-
scent (SGD). Not only is SGD simple to implement, it is also
can cope with the noise that occurs when only approxima-
tions of the optimization gradient are available [15]. Because
fine-tuning considers all activation functions in the network
only approximations of the gradient are tractable to use.

We adopt two techniques to improve DNN fine-tuning. The
first is our selection of the ReLU activation function (de-
scribed earlier), a recent technique that has proven particu-
larly effective in audio-related applications [60]. Perhaps the
most important benefit is ReLUs will converge must faster
than the more often used alternatives (e.g., sigmoid functions)
to the same level of accuracy. As a result, it becomes feasible
to use much larger network architectures and datasets. The
second technique we adopt is a regularization method called
Dropout [21]. Essentially, this approach introduces noise dur-
ing the training process by randomly ignoring a percentage of
activation values at each layer. Dropout has been shown to ad-
dress over-fitting that can occur particularly with ReLUs, and
therefore is essential for DeepEar to utilize during training.

MODEL ROBUSTNESS AND COMPARISONS

To evaluate the efficacy of the learning architecture and al-
gorithms incorporated in DeepEar, we perform the following
set of experiments using a variety of real-world datasets that
span multiple common audio sensing tasks. In each experi-
ment, DeepEar competes against purpose-built mobile audio
classifiers designed specifically for each tested sensing task.

The two most prominent results from our experiments are:

• Increased Classification Accuracy. The accuracy of Deep-
Ear exceeds all tested benchmark systems, across all tested
audio sensing tasks (viz. ambient scene, stress detection,
emotion recognition, speaker identification), with accuracy
gains of 7.7%, 28.3%, 16.2% and 82.5% respectively.

• Improved Robustness to Environment Diversity. DeepEar
not only outperforms the accuracy of benchmark systems,
it also maintains high absolute levels of accuracy, even in
the presence of noise. Under all tested environment con-
ditions and noise intensity levels, DeepEar maintains an
average accuracy above 80% for three of the four audio
sensing tasks. None of the benchmarks are able to match
this level, and only in 2 of 24 condition configurations did
a benchmark system exceed 80%.

Comparison Baselines

To provide highly competitive baselines, we implement a spe-
cialist audio sensing system for each task DeepEar is able to
perform. In each case, the configuration of DeepEar never
varies and remains unchanged between audio tasks. However,
we configure each baseline system with inference-specific
features and model configurations, as far as the details are



publicly available. Note, because each system is GMM-
based, in figures and experiment descriptions we refer to each
system by the generic term GMM or baseline GMM. We now
sketch key elements of each system.

EmotionSense. As detailed in [64]: The feature set spans 32
PLP descriptors (16 static and 16 deltas) and 128-component
universal (i.e., one model for all conditions) GMMs provide
classification. Note, [64] describes a speaker identification
classifier but we only adopt the emotion recognition pipeline.

StressSense. [55] specifies 19 MFCCs along with 7 other
hand-picked features (such as the earlier discussed TEO-CB-
AutoEnv and descriptors of speaking rate and pitch). To repli-
cate the universal model proposed in [55], we implement all
26 features and provide them to 16-component GMMs. How-
ever, we do not test the adaptive version of the system.

SpeakerSense. [54] also uses 19 MFCCs. 32-component
GMMs provide classification, and are trained with a variance
limiting technique [66] that lowers the impact of noisy data.
A 5s. smoothing window is applied to classifier results.

JigSaw. The audio pipeline of [72] uses a 13-dimension
MFCC vector accompanied by 4 additional spectral features.
Inference occurs with 32-component GMMs and a 384 ms.
sliding window to smooth results. Note, we do not implement
the similarity detector optimization detailed in [72], as it only
saves computation at the expense of accuracy.

As already highlighted, these systems do not span the bleed-
ing edge of server-powered audio classification; rather, they
represent the audio pipelines possible using existing mobile
sensing research. Thus, they act as a strong baseline from
which to judge if deep learning can assist the mobile domain.

Datasets

All experiments use the following real-world datasets.

Local Business Ambiance. Provided by the authors of [76],
this dataset contains audio from 168 places visits (including
50 unique locations). Sampling occurs over a 3-month period
and spans multiple place types including: restaurants, bars,
coffee and ice-cream shops. Although some places are vis-
ited multiple times each visit occurs on multiple days, and at
different locations within the establishment. Dataset places
range from tiny single rooms to large businesses with multi-
ple rooms, some even have outdoor areas.

Emotions and Stress. We follow the methodology adopted
by EmotionSense [64] and train and test with data from the
Emotional Prosody Speech and Transcripts library [53]. The
dataset consists of voiced recordings from professional actors
delivering a set of 14 narrow emotions that are either grouped
into 5 broad categories (happiness, sadness, fear, anger and
neutral) or 2 categories of stress, and non-stressed.

Speaker Identification. We use a series of 10-min. speech
samples that in total capture 23 speakers from the Computer
Science department of the University of Cambridge.

Ambient Sounds. The dataset consists of 40 minutes of
various sounds equally split into 4 categories: music, traffic,

voicing and other. The music clips are a subset of the GTZAN
genre collection [52]; the traffic samples are downloaded
from an online provider of sound effects [2]; the water sam-
ples were obtained from the British Library of Sounds [1]; the
rest of the sounds are crawled from the SFX dataset [17].

Experimental Setup

With the exception of the local business ambiance dataset, the
audio samples for the rest of the contextual inferences (de-
scribed above) are recorded in clean environments without
background noise. We therefore generate a set of identically
sized noisy datasets that mix the clean audio recordings with
randomly selected ambient backgrounds from the local busi-
ness ambiance data. When the background noise is added
using [4], we vary the intensity of the sound from 0.25 to
2 times the original volume of the noise and obtain 6 noisy
datasets per audio task (listed, for example, as “background
noise level” in Figure 6). We ensure that the noisy datasets
for a given application such as Stress Detection have an iden-
tical selection of background noises (i.e., source locations)
and differ only in the intensity of the added noise (for a fair
assessment of the effect of noise intensity). The training and
testing is performed with 5-fold cross validation.

All training procedures described in the prior section are im-
plemented in python and rely heavily on the Theano deep
learning library [8]. During experiments we set the learning
rate to 0.13, training epochs to 1000, and experimentally vary
batch size for each audio sensing task. Specifically, batch size
is set by a simple grid search that seeks to maximize training
set accuracy. We note final model performance is especially
sensitive to batch size and input normalization.

Accuracy Robustness Results

In Figure 7, we provide the overall per audio task accuracy of
DeepEar across the various noise-injected datasets and com-
pare the results against the best performing GMMs that are
also trained on noisy data. Gains in accuracy range from 7.7%
for the Ambient Scene Analysis to 82.5% for Speaker Iden-
tification, a considerable improvement. Thanks to the deep
learning methodology, the audio sensing framework proves
to be able to maintain reasonably good accuracy levels of
above 80% even in the presence of background noise for the
majority of the application scenarios. In the next analysis that
follows we focus on a detailed comparison of the DNN- and
GMM-based performance on the different noise datasets.

In Figure 6, we present the accuracy of DeepEar trained on
noisy data compared against the baseline GMMs for all vol-
umes of the background noise. A first observation is that
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Figure 7: Overall accuracy of models trained and tested on noisy data. Re-
sults are averaged across noise levels; error bars show the standard deviation.
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Figure 6: Accuracy of the baseline and deep learning models tested against data with background noise. The noise levels are varied, simulating both relatively
quiet and noisy conditions (i.e., background noise ranging between 0.25 and 2.00 times the original recorded volume). The baseline GMMs are trained against
either clean or noisy data. DeepEar (labeled DNN) outperforms the GMMs even when the latter are specifically trained for the diverse acoustic backgrounds.

the original model versions of the audio pipelines (GMMs
trained on clean data) perform poorly against acoustic envi-
ronments with background noise, especially when the noise
is loud relative to the sound that is being recognized. The
accuracy of the Stress Detection GMM-based pipeline, for
instance, drops to as low as 51% with the highest volume
of background noise, effectively performing no better than a
random classifier given that the pipeline is trained to recog-
nize two classes only (i.e., stressed vs. non-stressed speech).
The Speaker Identification task, on the other hand, suffers
in a similar manner: the accuracy rapidly drops from 60%
to barely 15%, as the background noise level increases from
0.25 times to 2 times the original volume. An explanation
for the poor performance is the difficulty of the identification
task: first, with 23 speakers there is a large number of classes
to be recognized; and second, in many cases the background
noise includes the chatter of nearby people which further con-
fuses the classifier as to whom the acoustic signature belongs.

The second important observation is that training the original
GMMs with noisy data to be able to cope with diverse acous-
tic environments can improve performance significantly, as is
the case with the Emotion Recognition and Ambient Scene
application scenarios. The absolute gains in accuracy can be
as high as up to 30% and 50% for the two applications respec-
tively, demonstrating that incorporating noisy samples in the
training is an absolute must to generalize the classifiers to
be able to handle diverse audio conditions. However, there
is more to be desired from the accuracy of the Stress Detec-
tion and Speaker Identification pipelines which, even when
trained with noisy data, may not perform so well. DeepEar,
on the other hand, can exceed the accuracy of the improved
GMMs even further with absolute gains of 5%, 20%, 10%
and 15% on average across the noise levels for the Ambient
Scene, Stress Detection, Emotion Recognition and Speaker
Identification scenarios respectively. This confirms the highly
discriminative power of the deep learning models that are
able to better capture the core inference and cope with noise.

In our final experiment, we conduct an experiment that tests
whether training the models with noisy data performs well
on noise-free audio recordings (i.e., clean test data). This
provides further insights as to how well noisy-trained mod-
els generalize to a different type of data they have not been
exposed. In Figure 8, we plot the average accuracy for the
various audio task pipelines when using the GMM- or DNN-
based models. A notable finding is that although there is a
natural drop in accuracy for all models, DeepEar is much
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Figure 8: Comparison of model accuracy when both DeepEar and GMM-
baselines are first trained on noisy data, and then tested on clean data.

more robust when faced with unseen conditions compared to
the baseline GMMs, as exemplified with the Emotion Recog-
nition and Speaker Identification scenarios. In those two
cases the GMMs perform so poorly that they approach the ac-
curacy of a random classifier (around 20% for the emotions
and 5% for the speakers). The experiment confirms that sim-
ply using noisy data in the training process is not sufficient
for the GMM to perform well in clean acoustic environments,
and the DNN classifier, in this case, is much more reliable.

DEEPEAR: PROTOTYPE AND IMPLEMENTATION

We implement a prototype of DeepEar on an Android smart-
phone with a Jelly Bean 4.3 OS. Since monitoring user be-
havior and ambient context through the microphone sensor
requires fairly continuous processing of audio, we target pro-
grammable low-power DSPs becoming widely available in
recent mobile platforms. In particular, we use the Qualcomm
Hexagon DSP [5] present in the Snapdragon 8xx SoC3 and
open to programmability on select development platforms
such as the Snapdragon 800/810 MDP/S (Mobile Develop-
ment Platform for Smartphones, shown in Figure 9) [7]. The
algorithms for this SoC, including the feature extraction and

3
System on a Chip

Figure 9: Snapdragon 800 Mobile Development Platform for Smartphones
used for the DeepEar prototype development.



Audio Sensing Task
DNN Size DNN Size

Period
(Original) (Downscaled)

Ambient Scene Analysis 3× 1024 3× 256 1.28s

Emotion Recognition 3× 1024 3× 512 5.00s

Speaker Identification 3× 1024 3× 512 5.00s

Table 3: Model and application parameters of prototype pipelines: ambient
scene analysis, emotion recognition and speaker identification. DNN Size
summarizes the number of hidden layers times the number of units per layer.
Period indicates the frequency of pipeline stage (feature extraction and clas-
sification) execution, assuming the requisite audio context is triggered: noise
for the ambient sound and speech for the voice-related audio tasks.

DNN feed forward classification stages, are implemented in
C through the Hexagon SDK and deployed primarily on the
DSP where sensor sampling is cheap energy-wise.

Adopting this design offers a key benefit: while the co-
processor operates on the sensor data, the CPU may remain
in a low-power sleep mode. Quantitatively, performing the
audio processing on the Hexagon DSP results in energy con-
sumption that is an order of magnitude lower than what could
be naı̈vely achieved with the CPU only. Our system is thus
similar in spirit to others that have recognized the benefits of
low-power co-processors for computational offloading in the
domains of machine learning [71], speaker recognition [54]
as well as general-purpose audio sensing [31, 47].

The advantages of this DSP-centric solution also bring several
limitations, the most notable of which is the small program
and memory space which restricts the size and complexity of
the deployed deep learning models. To keep within the DSP
runtime memory limit of just 8MB, we deploy 3 DNNs in to-
tal for our prototype as shown in Table 3: two networks with 3
hidden layers and 512 units per layer are reserved to the Emo-
tion Recognition and Speaker Identification pipelines, and a
smaller network with 3 hidden layers and 256 units per layer
is set aside for the Ambient Scene Analysis.

We reached this set of DNN implementation choices largely
by hand as our goal is a demonstration of prototype feasibil-
ity. Many other DNN configurations are possible depending
on application needs. We started by coarsely estimating the
maximum number of units (and layers) that could be fit within
the DSP memory limit through exploratory implementations.
By evaluating the accuracy of all 4 DNNs described earlier
and systematically testing various combinations of model ar-
chitectures, we find supporting all 4 DNNs would require
non-negligible reductions in model accuracy (as each DNN
would be forced to have much fewer layers/units). In fact, to
support the full 1024-unit DNNs evaluated earlier we would
need around 30MB of runtime memory (more than 3 times
the memory available). Thus, we include only 3 DNNs to al-
low the adoption of architectures closer to the original design.

When training the DNNs in this prototype, we again use the
Theano deep learning library; all training steps and parame-
ters detailed in the earlier sections remain unchanged.

PROTOTYPE SYSTEM PERFORMANCE

We now describe a series of system experiments that demon-
strate the feasibility and efficiency of our DeepEar smart-
phone implementation.
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Figure 10: Daily DeepEar energy budget when running either on a DSP or
CPU. Energy consumption is displayed as a function of the amount of hours
the user spends in conversations throughout the day. The assumed audio
sensing workload is: 8 hours of silence and 16 hours of voicing and ambient
sounds. The system performs Ambient Scene Analysis for 16 hours and also
triggers Emotion Recognition and Speaker Identification on demand based.
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Figure 11: Per-inference runtime (a) and energy (b) of a single execution of
each audio task pipeline (feature extraction and full pipeline) on the DSP.

Feasibility. We begin by presenting the energy and run-
time profile of DeepEar when running on the Snapdragon 800
SoC found in popular smartphones such as Google Nexus 5
or Samsung Galaxy S5. The energy budget needed by the
system to process audio data throughout the day depends on
the type of detected sounds which trigger the correspond-
ing pipelines: ambient context classification when the envi-
ronment is not silent and speaker/emotion recognition when
voicing is detected. In Figure 10, we compare the percentage
of the battery capacity needed by DeepEar in a day as a func-
tion of the amount of speech throughout the day, when the
system runs on either the DSP or CPU. Assuming an average
of 5 hours of speech throughout the day, as found by Lee et al.
[50], and 8 hours of silence, the DeepEar energy expenditure
amounts to 6% of the battery capacity of a standard 2300mAh
battery. This low energy profile is maintained by the DSP-
only implementation that runs independently of the CPU and
continuously in the background. In contrast, if we were to
perform the same tasks on the CPU and keep it awake while
the microphone is being sampled, the system would consume
as much as 114% of the same battery assuming the same input
audio workload (i.e., 5 hours of speech, 8 hours of silence).
This means that at least one battery recharge is needed for the
CPU to keep up with the processing overhead.

In Figure 11 we plot the runtime and energy characteristics
for each audio sensing task. Overall, all of the pipelines can
be run in real-time given that ambient context detection is
performed every 1.28 seconds in the absence of silence, and
emotions and speaker recognition is triggered every 5 seconds
in the presence of speech. The majority of processing in these
cases is occupied by the feature extraction stage, whereas the
deep learning classification is fast once we have the DNN pa-
rameters loaded in the DSP memory. In addition, the fea-
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Figure 12: Accuracy of the downscaled DNNs compared against the top
performing unmodified models trained with noisy data.

tures of the emotion recognition and speaker identification are
shared and the input layers of these tasks’ DNNs are identical.

Accuracy Reduction. We next discuss the loss in accuracy
when reducing the size of the DNNs. We recall that the clas-
sification networks are downscaled as shown in Table 3 so
that we can fit all audio sensing task parameters in the run-
time memory limit of the DSP and thus enable all computa-
tions to be performed on it at ultra low power. In Figure 12
we show the average accuracy penalty, for the separate in-
ferences, when using the smaller networks. Overall the loss
amounts to a modest 3% across all audio sensing scenarios
which guarantees that good performance is achievable even
when operating within the hardware constraints of the DSP.
We also note that although we lose on the accuracy of the top
performing larger DNNs, the downscaled deep learning clas-
sification still outperforms the traditional GMM-based sys-
tems in the voice-related scenarios by a considerable margin,
and achieves comparable results to Ambient Scene Analysis.

DISCUSSION AND LIMITATIONS

This work focuses primarily on the challenges to audio sens-
ing presented by diverse acoustic environments. Although
this is a critical challenge, other sources of noise and intra-
class differences include: variations between people [74];
position of the device [67]; and, specific confounding fac-
tors due to the similarity to inference targets of audio sensing
(e.g., pre-recorded sounds from the television being mistaken
for real conversations [63]). Nevertheless, the robustness of
DeepEar to a key source of diversity (the environment) is a
promising signal of likely robustness to other such factors.

Similarly, a notable limitation in existing experiment results
is the emphasis on comparing DeepEar with existing mobile
audio sensing systems only. This focus, as we noted ear-
lier, neglects a number of techniques for offline (i.e., server-
side) audio analysis that are designed to combat diversity in
acoustic environments [51]. Significantly, many of these ap-
proaches are either compatible with – or are even built specif-
ically for – GMMs, such as subspace [68] or i-vector [41]
GMM variations. While DeepEar clearly outperforms state-
of-the-art mobile audio sensing pipelines, further experiments
are needed to understand how it compares to the latest in shal-
low learning for speech and general audio tasks (especially
those yet to appear in mobile sensing prototypes).

Accompanying any future experiments with DeepEar will be
a close investigation into the use of even larger-scale datasets.
Prior work in deep learning has shown the benefits of integrat-
ing increasingly larger amounts of training data; for example,

speech models have been trained using thousands of hours of
audio data [37]. In contrast, DeepEar has been exposed to
≈12 hours. (Although deep models are also trained at times
with just 20 or 30 hours of data, such as in [23]).

Beyond dataset size, we also anticipate exploring further the
wide diversity of deep learning architectures and algorithms
that have been developed to model audio. In this work, we
have adopted some of the most canonical approaches within
the field, and provide a concrete example of the potential for
this new direction in learning and mobile sensing. However,
alternative deep techniques likely exist that offer even larger
benefits. Thus, we intend to perform more broader system-
atic study of such techniques; in particular, we are excited by
the potential for Recurrent Neural Networks [34] (along with
Long Short Term Memory Networks) that have the ability to
encode temporal behavior – a strong need for audio sensing.

Finally, our current implementation primarily aims to demon-
strate the feasibility of executing DeepEar-style modeling di-
rectly on mobile devices. As a result, we currently have con-
sidered only a few optimizations during inference execution.
However, we believe techniques, such as, selectively incor-
porating the GPU (due to the energy overhead) and reducing
redundant computation between multiple DNNs (especially
if performing related sensor or related inference tasks) will
enable more complex forms of DeepEar (and deep learning
more generally) to be possible for mobile devices. We expect
to explore these issues within the context of not only audio
sensing but other modalities in future work. Moreover, even
though we only develop a smartphone-based implementation
we expect even our existing prototype to have relevance for
other device form factors. A growing number of wearables
incorporate closely related system-on-a-chip devices, to the
one used in the Snapdragon 800 that we target in our design;
for example, the Android-based LG G Watch R [3] includes
a Snapdragon 400 [6] with the same pairing of DSP and CPU
(albeit at lower computational capacity) as the 800 model.

CONCLUSION

There are two key experimental results in this paper. First, by
embracing deep learning algorithms and model architectures,
as realized in DeepEar – we are able to demonstrate mobile
audio sensing with higher accuracy, and greater robustness to
acoustic diversity, than a range of state-of-the-art classifiers
designed for mobile devices. Second, we show that – even
though training requires large-scale datasets and significant
computational power – the energy and execution overhead of
this approach is still feasible for mobile devices. We believe
these two results will be significant to the development of fu-
ture mobile audio sensing systems by promoting additional
exploration and usage of deep learning within this domain.

When considered more broadly this work contributes to the
growing, but still limited, investigations of deep learning ap-
plied to activity recognition and mobile sensing. There is
general agreement within the community that our ability to
robustly interpret noisy sensor data must fundamentally im-
prove for the potential of the field to be realized; deep learn-
ing continues to prove itself to be one of the most promising
ways forward towards this goal currently under study.
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