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Abstract 
Cryo-electron microscopy (cryo-EM) maps are among the most valuable sources of information 
for protein structure modeling. However, due to the loss of contrast at high frequencies, they 
generally need to be post-processed before modeling in order to improve their interpretability. To 
that end, approaches based on B-factor correction are the most popular choices, yet they suffer 
from some limitations such as the fact that the correction is applied globally, ignoring the presence 
of heterogeneity in the map local quality that cryo-EM reconstructions tend to exhibit. 
With the aim of overcoming these limitations, here we present DeepEMhacer, a deep learning 
approach designed to perform automatic post-processing of cryo-EM maps. Trained on a dataset 
of pairs of experimental cryo-EM maps and maps sharpened by LocScape using their respective 
atomic models, DeepEMhacer has automatically learned how to post-process experimental maps 
performing masking-like and sharpening-like operations in a single step. DeepEMhacer has been 
evaluated on a testing set of 20 different experimental maps, showing its ability to obtain much 
cleaner and detailed versions of the experimental maps, thus, improving their interpretability. 
Additionally, we have illustrated the benefits of DeepEMhacer with a use case in which the 
structure of the SARS-CoV 2 RNA polymerase is improved.

Introduction 
Almost one decade after the beginning of the so-
called “resolution revolution”, cryogenic electron 
microscopy (cryo-EM) has become one of the 
most versatile tools in the field of structural 
biology. Beginning from thousands of single 
particle projection images, cryo-EM workflows 
are capable of obtaining three-dimensional (3D) 
reconstructions of many macromolecules at “near-
atomic” resolution levels. However, the ultimate 
goal of cryo-EM Single Particle Analysis is not the 
obtention of 3D maps but the detailed atomic 
understanding through the derivation of atomic 
models. 

During the atomic model building process, raw 3D 
maps are rarely employed, as they suffer from loss 
of contrast at high resolution (Rosenthal and 
Henderson, 2003) that makes difficult the 
detection and interpretability of residues and 
secondary structure. Fortunately, loss of contrast 

can be alleviated using different contrast 
restoration algorithms, which are usually known 
as sharpening methods. The first sharpening 
approach for cryo-EM maps was introduced by 
Rosenthal and Henderson (Rosenthal and 
Henderson, 2003) and its formulation, based on 
the B-factor correction, is still at the basis of the 
most commonly employed sharpening methods, 
including RELION postprocessing (Kimanius et 
al., 2016; Zivanov et al., 2018) or Phenix 
AutoSharpen (Terwilliger et al., 2018). The 
principle behind these algorithms consists in the 
correction of the raw maps by boosting the 
amplitude of their high frequency Fourier 
components. The strength of the amplitude boost 
at each frequency depends on the frequency itself 
and on a single number, the B-factor, that 
measures the global loss of contrast. Thus, 
although the different B-factor-based methods 
differ in the procedures employed to determine the 
B-factor that is applied, all of them modify the 
volume globally in a similar manner. 
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Despite being widely used, B-factor-based 
approaches present an important limitation: they 
do not consider the differences in quality that 
different parts of the map may present and they 
produce density maps that do not correspond to the 
scattering properties of biological 
macromolecules (Vilas et al., 2020). 
Consequently, for the case of maps that exhibit 
heterogeneous local resolution, some regions 
could be undersharpened whereas others could be 
oversharpened. Recently, local sharpening 
algorithms, that alleviate this shortcoming, have 
been proposed. Thus, the LocScale (Jakobi et al., 
2017) algorithm uses the information contained in 
an atomic model to locally scale up a map. Such 
transformation is achieved by means of a sliding 
window approach in which the amplitudes of the 
map region that lay inside the window are scaled 
up to agree with the atomic model provided.  
Following a totally different strategy, the 
LocalDeblur (Ramírez-Aportela et al., 2020) 
algorithm employs a Wiener filtering approach 
that performs local deblurring with a strength 
proportional to an estimation of the local 
resolution, that has to be pre-computed. Similarly, 
LocSpiral (Kaur et al., 2020) employs the spiral 
phase transformation to factorize the volume and 
then, perform a local enhancement based on the 
normalization and thresholding of the amplitudes.  

Despite their benefits, current local sharpening 
approaches present some drawbacks. Thus, both 
LocSpiral and LocalDeblur depend on masks to 
distinguish the macromolecule from the noise and 
LocalDeblur requires also from an estimation of 
the local resolution of the map. On the other hand, 
the main strength of LocScale, its ability to 
employ the structural information of atomic 
models, could also be regarded as its main 
weakness since the availability of atomic models 
limits its applicability. 

With the aim of overcoming these shortcomings, 
in this work, we present Deep cryo-EM Map 
Enhancer (DeepEMhacer), a fully automatic deep 
learning-based approach that performs cryo-EM 
volume post-processing. Deep learning has 
revolutionized the field of Artificial Intelligence 
and its impact has been felt in many others 
including cryo-EM. Deep learning in cryo-EM 
was firstly applied for the problem of particle 
picking (Wagner et al., 2019; Wang et al., 2016; 
Zhu et al., 2017) and since then, it has evolved to 
deal with other questions such as map 
reconstruction (Gupta et al., 2020; Zhong et al., 
2019), map segmentation (Maddhuri Venkata 

Subramaniya et al., 2019; Si et al., 2020) or local 
resolution determination (Avramov et al., 2019; 
Ramírez-Aportela et al., 2019). As in most of 
those methods, our approach relies on a 
convolutional neural network (CNN) that is 
trained on massive quantities of data. Particularly, 
our development, that follows a simple image 
super-resolution setup (Yang et al., 2019), exploits 
the vast amount of structural information that is 
contained in the Electron Microscopy Data Bank 
(EMDB) database (Lawson et al., 2015) in order 
to mimic the local sharpening effect of the 
LocScale algorithm. However, DeepEMhacer 
does not require any atomic model to function and, 
contrary to previous methods, it also performs 
automatic (tight) masking of input maps. Our 
results show that DeepEMhacer, that works in a 
fully automatic manner, is able to largely improve 
the interpretability of the maps contained in our 
benchmark, performing better than classical B-
factor approaches. 

Methods 

DeepEMhacer is based on an end-to-end U-net 
architecture (Ronneberger et al., 2015) trained in 
a supervised manner. Thus, pairs of input maps 
(X) and target maps (Y), consisting in tightly 
masked LocScale post-processed maps, are 
required to that end. The following sections 
describe in detail the data preparation, training and 
evaluation processes. 

Raw data collection:  

DeepEMhacer has been trained and evaluated 
using as input a subset of cryo-EM maps obtained 
from the EMDB (Lawson et al., 2015) that meet 
the following requirements: 1) resolution better 
than 7 Å; 2) have one and only one atomic model 
associated; 3) correlation between the atomic 
model and the map better than 0.6 and 4) half maps 
available. As a result, an original list of 415 maps 
was compiled. However, this initial list is highly 
redundant and, in order to avoid biases in both the 
training and evaluation procedures, this list was 
further filtered to reduce its redundancy, (see 
subsection Redundancy control). Finally, after a 
visual inspection aimed at removing problematic 
cases that survived to the automatic filtering 
procedure, a total amount of 151 maps, with an 
average reported resolution of 3.8 Å, was selected. 
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Since the main objective of DeepEMhacer is to 
perform a sharpening-like post-processing 
transformation, it is important to ensure that the 
maps used in this study were not previously 
sharpened. Given the fact that most of the maps 
deposited in EMDB are sharpened and many are 
also masked, we decided to employ only the half-
maps available in EMDB (condition number 4). 
Due to the lack of an appropriate searching tool in 
EMDB and a file name convention, we had to 
analyze all the map file names included in the 
database looking for the substring “half” to 
recover the half maps. Full maps were obtained 
averaging respective half maps. 

As learning targets, we employed the output 
generated by LocScale using as input the 
aforementioned maps and their associated atomic 
models. Additionally, the output maps were 
tightly masked using as masks the maps simulated 
from the atomic models after a thresholding 
operation. Although it is true that the simulated 
maps could be directly employed as targets, we 
discarded this alternative for two reasons. The first 
one is empirical: we obtained better results when 
targets were produced with LocScale, probably 
because the input and target maps, although 
different, they still share some similar properties 
such as intensity ranges or local quality, which are 
not necessarily preserved when using simulated 
maps as targets. The other reason is that we 
wanted to reproduce the state-of-the-art local 
sharpening effect and not a new type of post-
processing that could not be compatible with 
downstream atomic modelling tools. 

Data preparation: 

Due to the fact that the monomers (amino acids, 
nucleotides…) that compose the macromolecules 
have fixed size but the deposited maps vary in 
voxel size, both the input and the target maps were 
resampled to 1 Å/voxel size with the aim of 
facilitating the learning process. After that, the 
intensity of each volume was normalized using the 
classical cryo-EM approach by which the map 
noise statistics are forced to adopt a fixed mean 
and standard deviation (0 and 0.1 respectively). 
Finally, due to GPU size limitations, the maps 
were chunked into 64x64x64 cubes, the maximum 
size that our computing systems were able to 
efficiently manage. As a result, more than 70k 
volume cubes, including both signal cubes and 
noise-only cubes were used for training. 

 Redundancy control: 

In order to perform the train/test/validation split 
used to develop and evaluate our method, it is 
important to consider that the universe of proteins 
is highly redundant and that the EMDB entries are 
even more redundant. Serve as an example the 
case of the ribosome, that supposes ~10% of the 
all EMDB entries. Thus, in order to avoid an over-
optimistic performance estimation, we have 
ensured that the train, test and validation sets are 
mutually exclusive in the sense that their 
intersections are empty under a certain 
equivalence criterion. Particularly, we consider 
that two EMDB entries are equivalent if they share 
one sequence that belongs to the same 30% 
sequence identity cluster. Similarly, with the aim 
of eliminating potential bias in the evaluation, we 
have guaranteed that only one member per cluster 
is included in testing and validation sets. On the 
contrary, we have relaxed our quite strict 
redundancy control policy in the training set 
allowing up to five cluster representatives in an 
attempt to increase the size of this set. This 
decision is founded on the fact that even maps of 
the same exact protein may present different 
statistics due to the intrinsic variability of cryo-
EM reconstruction workflows and thus, limiting 
their presence in the training set may difficult the 
generalization of the neural network. 

As a result, a list of 110, 21 and 20 maps were used 
for training, validation and testing respectively. 
The full list of the EMDB entries used can be 
found in Supplementary Material.  

Neural network architecture:  

We have employed a 3D U-net-like neural 
network (Ronneberger et al., 2015) as a regression 
model for the estimation of post-processed maps. 
Our neural network consists of three 
downsampling blocks and three upsampling 
blocks with skip connections. Each block contains 
three convolutional layers followed by group 
normalization (Wu and He, 2020) and PRelu 
activation (He et al., 2015). The number of filters 
for each block is 3x32, 3x64 and 3x128 
respectively. Downsampling is carried out using 
strided convolutions and upsampling is performed 
via transposed convolution. See Supplementary 
Material for additional details. 
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Neural network training:  

Our neural network was trained using stochastic 
gradient descent with a batch size of 8 cubes. 
Initial learning rate was set to 10-3 and decreased 
by a factor of 0.5 when the validation loss did not 
improve during 5 epochs. As loss function, mean 
absolute error was employed. Data augmentation, 
consisting in random 90º rotations, gaussian 
blurring and patch corruption was applied to the 
training data. 

Neural network inference:  

In order to perform volume post-processing, the 
input volume is pre-processed as described in the 
Data preparation subsection. Then, the resized 
and normalized volume is chunked into 
overlapping cubes of size 64x64x64 with strides 
of 16 voxels. Each cube is individually processed 
by the trained neural network, yielding post-
processed cubes. After that, the post-processed 
cubes are re-assembled into the final volume 
averaging the overlapping parts. Finally, the 
processed volume is resized to the size of the 
original volume, thus, showing the correct 
sampling rate value. 

Evaluation:  

With the aim of guiding the cross-validation 
process, we computed the correlation coefficient 
between the maps produced by DeepEMhacer and 
the maps used as learning targets (masked 
LocScale post-processed maps). Once the final 
model was selected, the quality of DeepEMhacer 
predictions were assessed comparing the input and 
processed maps against the reference maps 
obtained from the atomic models. Specifically, we 
computed the Fourier Shell Correlation coefficient 
(FSC) between them and we estimated the 
resolution using 0.5 as threshold. Due to the fact 
that DeepEMhacer performs a non-conventional 
post-processing operation, including masking and 
enhancement operations, in order to disentangle 
the two effects, the FSC was also computed after 
masking the maps to compare with a tight mask 
derived from the atomic model.  

As a complementary metric, we also applied 
DeepRes (Ramírez-Aportela et al., 2019) over the 
input and processed maps. DeepRes is a deep 
learning-based local resolution method that, 
contrary to others, is sensitive to the sharpening 

process and thus, it can provide an alternative 
estimation of the post-processing effect. 

Finally, for comparison purposes, we repeated the 
FSC and DeepRes experiments using the Relion 
postprocessing program (Kimanius et al., 2016; 
Zivanov et al., 2018). As Relion automatic 
masking is very simple, in order to make the 
comparison more interesting, we decided to 
execute the postprocessing algorithm using the 
mask derived from the atomic models. Similarly, 
since the automatic determination of the B-factor 
can produce worse results than a manually 
selected one, in addition to the maps computed 
using an automatically determined B-factor by 
Relion, we also considered the sharpened map 
deposited in EMDB. 

EMD-30178 map evaluation and atomic model 

modification:  

DeepEMhacer was applied to the half maps 
deposited in EMDB entry EMD-30178. The 
original and post-processed maps were visually 
inspected using Coot (Emsley and Cowtan, 2004) 
and chimera (Pettersen et al., 2004), and chosen 
regions on the 7btf PDB were newly built or 
modified using Coot. 

 
Figure 1. DeepEMhacer produces maps that are more 
similar to the atomic models. Resolution (determined 
by Fourier Shell Correlation coefficient, FSC) between 
the reference maps obtained from the atomic model and 
1) the input maps (blue), 2) the input maps tightly 
masked (orange), 3) the post-processed maps (green) 
and 4) the post-processed maps tightly masked (red). 
EMDB entries are sorted by published global 
resolution.  
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Results 

Deep cryo Map Enhancer performance on the 

testing set. 

In order to assess the quality of DeepEMhacer 
predictions, we first compared them against the 
target maps generated by LocScale. Thus, for 
DeepEMhacer maps, we measured a median 
correlation coefficient of 0.91 in contrast to 0.60 
for input maps (see Supplementary Material 
Figure S1). Such an important increase in the 
correlation coefficient implies that DeepEMhacer 
has learned to accurately reproduce the effect of 
LocScale sharpening with one important 
advantage: no atomic models are required to 
employ DeepEMhacer. 

 
Figure 2. DeepEMhacer produces better quality maps. 
DeepRes median local resolution estimation for 1) the 
input maps (blue), 2) the post-processed maps obtained 
with Relion postprocessing automatic B-factor 
(orange), 3) the post-processed maps deposited in 
EMDB (green) and 4) the post-processed maps 
obtained with DeepEMhacer (Red). EMDB entries are 
sorted by published global resolution.  

Although reproducing the LocScale sharpening 
effect was our main objective, the ultimate goal of 
map post-processing is to simplify the process of 
atomic model building. With the aim of studying 
if DeepEMhacer also contributes to that purpose, 
we next explored whether DeepEMhacer post-
processed maps were more similar to the actual 
atomic models. To do so, we computed, for all the 
maps included in the testing set, the Fourier Shell 
Correlation coefficient (FSC) between the input 
and post-processed maps against the reference 
maps obtained from the atomic models. As it is 
shown in Figure 1, for all the examples included 
in the testing set, the application of DeepEMhacer 

increased the similarity of the input maps with 
respect to the references (blue and green bars). 
Indeed, the post-processed maps exhibit a median 
FSC resolution value of 3.3 Å compared to 3.9 Å 
for the input maps. Particularly, the median 
improvement achieved by DeepEMhacer was ~0.6 
Å (~14% in the frequency domain). Such an 
important improvement confirms that the maps 
computed by DeepEMhacer are much more 
similar to the target maps.  

 
Figure 3. DeepEMhacer produces better results than B-
factor-based methods. Resolution (determined by 
Fourier Shell Correlation coefficient, FSC) between the 
reference maps obtained from the atomic model and 1) 
the input maps (blue), 2) the post-processed maps 
obtained with Relion postprocessing automatic B-
factor (orange), 3) the post-processed maps deposited 
in EMDB (green) and 4) the post-processed maps 
obtained with DeepEMhacer (red). EMDB entries are 
sorted by published global resolution. 

DeepEMhacer post-processing operation 
performs a non-linear transformation of the 
experimental volume that produces a set of effects 
that could be broadly classified as 
masking/denoising and sharpening-like features 
enhancement. In order to disentangle the 
contribution of the different effects, we have also 
computed the FSC of the input and post-processed 
maps using a very tight mask derived from the 
atomic model. As it can be observed in Figure 1, 
the FSC resolution obtained for the post-processed 
maps tend to be better than the values computed 
for the input independently of the mask 
application (green and red bars vs orange bar), 
which implies that the masking effect is of high-
quality, as the resolutions for the unmasked 
DeepEMhacer results tend to be better than the 
ones for the masked input maps. 
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Similarly, and, although it is true that the trend is 
not as strong as in the previous experiment, 
DeepEMhacer also tends to improve the resolution 
of the masked regions (Figure 1, orange vs red 

bars), which supposes an enhancement of the map 
features. Leaving aside some problematic 
examples such as EMD-7055

 

Figure 4. Testing map EMD-7099. a, Lateral view of the published map (B-factor sharpened, shown at recommended 
threshold). b, Lateral view of the raw data map obtained from the half maps that was used as input for DeepEMhacer. 
c, Lateral view of the published map after rising the threshold and removing the small connected components so that 
the signal coming from the lipids was removed. As a collateral consequence, some densities corresponding to the 
protein were also lost. d, Lateral view of the map obtained with DeepEMhacer. e, Zoom-in of the region marked with 
a blue box in c. f, Zoom-in of the region marked with a blue box in d, in which DeepEMhacer post-processed map, 
contrary to the published map, shows the densities corresponding to a missing loop in PDB 6bhu chain A. As a result, 
the residues A195 to I203 have been de novo modeled (new residues depicted in yellow, published in green). 

 (Tenthorey et al., 2017), that will be discussed in 
Supplementary Material, most of the evaluated 
maps exhibit a non-negligible improvement in 
resolution, especially notable when compared to 
B-factor-based results (see next section), with a 
median value of ~0.3 Å. 

Alternatively, with the aim of obtaining a 
complementary measurement of improvement, we 
computed the DeepRes local resolution for the 
input and post-processed maps. As can be 
appreciated in Figure 2, all test cases treated with 
DeepEMhacer improved in terms of DeepRes 
local resolution, with dramatic improvements of 

more than 0.8 Å and a median improvement of 
~0.4 Å. Again, those figures, consistent with the 
FSC-based measurements, point out that 
DeepEMhacer is improving the interpretability of 
the maps.  

Comparison with B-factor-based methods. 

With the aim of comparing DeepEMhacer with the 
commonly employed B-factor-based sharpening 
methods, we repeated the same experiments using 
the post-processed maps obtained with the Relion 
postprocessing algorithm (Kimanius et al., 2016; 
Zivanov et al., 2018). Before, it is important to 
notice that, contrary to DeepEMhacer, Relion 
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Figure 5. Testing map EMD-4997. a, Overview of the published map (B-factor sharpened, shown at the recommended 
threshold of 0.031), bottom, and the map obtained with DeepEMhacer, top. Red box highlights an artifact that has 
been automatically removed by DeepEMhacer. Blue box delimits the region showed in b. b, Zoom-in of the region 
marked with a blue box that contains the β-sheet R7-A10, chains A and B. The published volume is shown at the 
recommended threshold and at the threshold at which the backbone begins to look discontinuous. As it can be 
appreciated, DeepEMhacer solution resolves better than the published map the two strands of the sheet. c, Zoom-in of 
the region centered at chain B residues H121 and Y361 (colored in magenta). The published volume is shown at the 
recommended threshold and at the smaller threshold at which the density that connects the two residues disappears. 
As it can be appreciated, DeepEMhacer post-processed map resolves better than the published map the two residues 

 

automatic masking is a simple process and thus, in 
order to make the comparison more interesting, we 
used instead the masks derived from the atomic 
models. Still, when we evaluated the FSC for the 
masked regions, only a few maps improved, while 
many others worsened, leading to a median 
improvement that was negligible (<0.05 Å) for 
both FSC and median DeepRes resolution (see 
Figure 2 and Figure 3).  

We acknowledge that the automatic determination 
of the B-factor can lead to less accurate results 
than if it were manually selected and it may be the 
reason behind the poor observed performance. 
Thus, we have also included in the comparison the 
post-processed maps deposited in EMDB in which 
the estimation of B-factor was carried out by the 
authors. In this case, the improvement in 
resolution, with median values of ~0.15 Å and 
~0.1 Å for DeepRes and FSC respectively, 
although closer to the values obtained using 
DeepEMhacer, are still considerably inferior (see 
Figure 2 and 3). In the light of these results, we 

can state that DeepEMhacer maps tend to be much 
more similar to the atomic models than the ones 
obtained using B-factor-based methods and thus, 
more useful for the process of model building. 

Visual inspection of testing maps 

The purpose of this section is to further explore the 
results obtained with DeepEMhacer for some of 
the maps included in the testing set with the aim 
of illustrating how the improvements in global 
quality measurements translate to tangible 
improvements in the quality of the maps. 

EMD-7099 

The EMD-7099 (Johnson and Chen, 2018) is a 
high-resolution volume (global resolution 3.1 Å) 
of a multidrug resistance ATP-driven pump. 
EMD-7099 presents 17 transmembrane helices 
and, although the overall quality of the map is 
excellent, visualizing the transmembrane regions 
is challenging because of the signal that comes 
from the lipids. As a result, important parts of the 
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protein are not traced. Due to the fact that 
DeepEMhacer was trained to ignore the signal 
coming from lipidic layers, this example 
illustrates the unique characteristics of 
DeepEMhacer when applied to membrane 
proteins. Thus, as can be observed in Figure 4a-d, 
DeepEMhacer has been able to suppress the signal 
coming from the lipid layer in a much more simple 
and effective way than diminishing the threshold 
in the raw map or the B-factor-based sharpened 
maps. The noise suppression effect simplifies the 

process of model building, as the researchers do 
not have to deal with masks or larger thresholds 
that make the visualization of near to noise level 
features more difficult. Yet, not only 
DeepEMhacer produces a noise reduction effect, 
but also it is able to enhance some parts of the map 
that under B-factor based sharpening seem noisy 
and disconnected. Such improvement, although 
observed in several regions of the map,  

 

 
Figure 6. Use case EMD-30178 from SARS-CoV-2 RNA-dependent RNA polymerase. a, Overview of the original 
map displayed with two different thresholds 0.3 (recommended) and 0.5 (left and middle panel, respectively) and 
processed with DeepEMhacer software (right). 7btf pdb is shown in ribbon, black squares designated the zoomed 
areas in b panel and blue squares the zoomed areas in c. b, Zoom-in and extraction of the density in mesh from the 
3D reconstruction of the original map at different thresholds and DeepEMhacer map corresponding to the black 
squares in a, chain D from residues C114 to I132. c, Zoom-in and extraction of the density in mesh from the 3D 
reconstruction of the original map at different thresholds and DeepEMhacer map corresponding to the blue squares in 
a, chain A residues H362 to L366. 7btf PDB in b and c is presented in ribbon and the residues in sticks. 
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is more noticeable at the transmembrane region 
Thus, the most important enhancement is depicted 
in Figure 4e-f, in which an important part of the 
backbone of the protein has been de novo traced 
thanks to DeepEMhacer enhancement, that has 
restored the densities corresponding to residues 
A195 to I203 in chain A of PDB 6bhu. 

EMD-4997 

The EMD-4997 (Walter et al., 2019) is a medium-
high resolution volume (4.0 Å) for a murine 
epithelial anion transporter. As in the previous 
example, the overall quality of the map is quite 
good, yet it presents lower quality regions. Figure 
5a shows an overview of the published map, 
displayed at the recommended threshold, and the 
map obtained with DeepEMhacer. Although it is 
true that both the original map and the post-
processed map look very similar, it is also true that 
there exist important differences. Firstly, the map 
processed with DeepEMhacer is cleaner than the 
original one. Serve as an example the removal of 
the artifacts that the published map presents near 
the elbow of the complex (see Figure 5a, red box). 
More importantly, there can also be found many 
regions for which the DeepEMhacer post-
processed volume resolves better the different 
residues of the regions. One of such examples can 
be found near the N-terminal end of the protein 
complex. Thus, as it is shown in Figure 5b, the 
densities that correspond to the strands of the beta 
sheet are better separated than in the published 
volume. It is important to notice that this better 
separation is not a consequence of the employed 
thresholds, as it is proven by the fact that rising the 
threshold makes the densities corresponding to the 
backbone discontinuous before the densities for 
the two strands separate (see Figure 5b). As a 
result, we can affirm that the quality of this region 
has been improved by the usage of DeepEMhacer. 

Another similar example is displayed in Figure 5c. 
In this case, two non-contiguous aromatic 
residues, Y361 and H121, seem connected in the 
original map. However, when DeepEMhacer is 
applied, the densities corresponding to the two 
residues look separated while the backbone 
remains continuous.  

Use case EMD-30178 from SARS-CoV-2 RNA-

dependent RNA polymerase 

In order to further explore the benefits of the 
DeepEMhacer algorithm we analyzed more 
deeply the post-processing of EMD-30178 map 
from Gao et al. (Gao et al., 2020), corresponding 
to the SARS-CoV-2 RNA-dependent RNA 
polymerase. The original map presents detailed 
structure up to 2.9 Å resolution, however as is 
often the case in cryo-EM, the resolution of the 
map is highly heterogeneous. We have chosen this 
map not only for the importance of this structure 
in current days but also because of the fact that the 
heterogeneous quality of the map density presents 
an ideal case for DeepEMhacer software. As it is 
shown in Figure 6a, the application of the 
algorithm reduces the noise and improves the 
consistency and depiction of the map. To better 
illustrate these differences, we have chosen two 
different regions in chains A and D where the 
differences between the original and the 
DeepEMHancer map can be appreciated (Figure. 
6b-c). While the density in the original map looks 
noisy or discontinuous depending on the displayed 
threshold (Figure 6 b-c, left and middle panel), the 
application of the DeepEMhacer software results 
in a well-defined continuous density where the 
side chains are nicely depicted (Figure 6 b-c, right 
panel).  This improvement in the map density 
allowed us to close the loop between residues 
C114 to I132 from chain D tracing 4 new residues 
that were not traced in the original structure 
(Figure 6b and Figure 7a). The improvement of the 
density is not only applicable to the edges of the 
map but it can be also appreciated in its core. 
Residues H362 to L366 in chain A, traced on the 
original map where positioned more accurately on 
the density after map post-processing (Figure 6c 
and Figure 7b). 

 
Figure 7. Examples of improvement of the tracing in 
SARS-CoV-2 RNA-dependent RNA polymerase 

.CC-BY-NC 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 13, 2020. . https://doi.org/10.1101/2020.06.12.148296doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.12.148296
http://creativecommons.org/licenses/by-nc/4.0/


DeepEMhacer map. a, Zoom-in and extraction of the 
density in mesh from the 3D reconstruction in two 
different views of DeepEMhacer map showing 7btf in 
turquoise and new traced loop region in magenta (chain 
D residues T123, T124, A125 and A126, in sticks). b, 
Zoom-in and extraction of the density in mesh from the 
3D reconstruction of DeepEMhacer map in two 
different views, 7btf in turquoise shows the 
repositioning of the chain A residues H362, S363, 
S364, R365 (in sticks). 

Discussion 
The number of deposited high resolution cryo-EM 
maps have soared since the beginning of the 
‘resolution revolution’. As a result, there is an 
increasing number of atomic models that are being 
built using cryo-EM as the primary source of 
information. However, building atomic models 
directly from the raw maps is generally not 
possible. Instead, maps are post-processed in order 
to enhance the contrast of their high-resolution 
features. 

In this work we have presented Deep cryo-EM 
Map Enhancer (DeepEMhacer), a new map post-
processing method based on deep learning. 
Trained on pairs of experimental cryo-EM maps 
and post-processed maps constructed with 
LocScale using atomic models, DeepEMhacer has 
learned how to perform a high-quality post-
processing operation that reproduces the effects of 
masking and local sharpening in an automatic 
fashion. 

The performance of our new algorithm has been 
assessed using a testing set of 20 experimental 
maps that were not used for training nor during the 
trial and error process required for its 
implementation. In all cases, the similarity 
between the maps obtained from the atomic 
models and the experimental maps improved after 
the application of DeepEMhacer. Additionally, we 
evaluated in detail the performance of 
DeepEMhacer on two of those maps, showing 
that, not only DeepEMhacer facilitates the 
visualization of cryo-EM maps, but also that 
DeepEMhacer can unveil some details that are not 
easily recognizable in the raw maps. Finally, we 
have employed DeepEMhacer on a map of the 
RNA polymerase of the SARS-CoV 2 virus, 
improving its quality of the map and the quality of 
the associated atomic model. 

DeepEMhacer is available as an Xmipp plugin for 
Scipion v3 (currently branch 
rsg_deepPostProcessing).  
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