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Abstract. The goal of this paper is to advance the state-of-the-art of
articulated pose estimation in scenes with multiple people. To that end
we contribute on three fronts. We propose (1) improved body part detec-
tors that generate effective bottom-up proposals for body parts; (2) novel
image-conditioned pairwise terms that allow to assemble the proposals
into a variable number of consistent body part configurations; and (3) an
incremental optimization strategy that explores the search space more
efficiently thus leading both to better performance and significant speed-
up factors. Evaluation is done on two single-person and two multi-person
pose estimation benchmarks. The proposed approach significantly out-
performs best known multi-person pose estimation results while demon-
strating competitive performance on the task of single person pose esti-
mation (Models and code available at http://pose.mpi-inf.mpg.de).

1 Introduction

Human pose estimation has recently made dramatic progress in particular on
standard benchmarks for single person pose estimation [1,2]. This progress has
been facilitated by the use of deep learning-based architectures [3,4] and by the
availability of large-scale datasets such as “MPII Human Pose” [2]. In order to
make further progress on the challenging task of multi-person pose estimation we
carefully design and evaluate several key-ingredients for human pose estimation.

The first ingredient we consider is the generation of body part hypotheses.
Essentially all prominent pose estimation methods include a component that
detects body parts or estimates their position. While early work used classi-
fiers such as SVMs and AdaBoost [1,5–7], modern approaches build on different
flavors of deep learning-based architectures [8–11]. The second key ingredient
are pairwise terms between body part hypotheses that help grouping those into
valid human pose configurations. In earlier models such pairwise terms were
essential for good performance [1,5,6]. Recent methods seem to profit less from
such pairwise terms due to stronger unaries [8,10,11]. Image-conditioned pair-
wise terms [7,9] however have the promise to allow for better grouping. Last
but not least, inference time is always a key consideration for pose estimation
models. Often, model complexity has to be treated for speed and thus many
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Fig. 1. Sample multi-person pose estimation results by the proposed DeeperCut.

models do not consider all spatial relations that would be beneficial for best
performance.

In this paper we contribute to all three aspects and thereby significantly
push the state of the art in multi-person pose estimation. We use a general
optimization framework introduced in our previous work [10] as a test bed for
all three key ingredients proposed in this paper, as it allows to easily replace and
combine different components. Our contributions are three-fold, leading to a
novel multi-person pose estimation approach that is deeper, stronger, and faster
compared to the state of the art [10]:

– “deeper”: we propose strong body part detectors based on recent advances in
deep learning [12] that – taken alone – already allow to obtain competitive
performance on pose estimation benchmarks.

– “stronger”: we introduce novel image-conditioned pairwise terms between
body parts that allow to push performance in the challenging case of multi-
people pose estimation.

– “faster”: we demonstrate that using our image-conditioned pairwise along with
very good part detection candidates in a fully-connected model dramatically
reduces the run-time by 2–3 orders of magnitude. Finally, we introduce a novel
incremental optimization method to achieve a further 4x run-time reduction
while improving human pose estimation accuracy.

We evaluate our approach on two single-person and two multi-person pose esti-
mation benchmarks and report the best results in each case. Sample multi-person
pose estimation predictions by the proposed approach are shown in Fig. 1.
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Related work. Articulated human pose estimation has been traditionally for-
mulated as a structured prediction task that requires an inference step combining
local observations of body joints with spatial constraints. Various formulations
have been proposed based on tree [6,13–15] and non-tree models [16,17]. The
goal of the inference process has been to refine observations from local part
detectors into coherent estimates of body configurations. Models of this type
have been increasingly superseded by strong body part detectors [18–20], which
has been reinforced by the development of strong image representations based on
convolutional networks. Recent work aimed to incorporate convolutional detec-
tors into part-based models [9] or design stronger detectors by combining the
detector output with location-based features [21].

Specifically, as we suggest in [10], in the presence of strong detectors spatial
reasoning results in diminishing returns because most contextual information
can be incorporated directly in the detector. In this work we elevate the task
to a new level of complexity by addressing images with multiple potentially
overlapping people. This results in a more complex structured prediction problem
with a variable number of outputs. In this setting we observe a large boost from
conducting inference on top of state-of-the-art part detectors.

Combining spatial models with convnets allows to increase the receptive field
that is used for inferring body joint locations. For example [11] iteratively trains
a cascade of convolutional parts detectors, each detector taking the scoremap
of all parts from the previous stage. This effectively increases the depth of the
network and the receptive field is comparable to the entire person. With the
recent developments in object detection newer architectures are composed of
a large number of layers and the receptive field is large automatically. In this
paper, we introduce a detector based on the recently proposed deep residual
networks [12]. This allows us to train a detector with a large receptive field [11]
and to incorporate intermediate supervision.

The use of purely geometric pairwise terms is suboptimal as they do not take
local image evidence into account and only penalize deviation from the expected
joint location. Due to the inherent articulation of body parts the expected loca-
tion can only approximately guide the inference. While this can be sufficient
when people are relatively distant from each other, for closely positioned people
more discriminative pairwise costs are essential. Two prior works [7,9] have intro-
duced image-dependent pairwise terms between connected body parts. While [7]
uses an intermediate representation based on poselets our pairwise terms are con-
ditioned directly on the image. [9] clusters relative positions of adjacent joints
into T = 11 clusters, and assigns different labels to the part depending on which
cluster it falls to. Subsequently a CNN is trained to predict this extended set
of classes and later an SVM is used to select the maximum scoring joint pair
relation.

Single person pose estimation has advanced considerably, but the setting is
simplified. Here we focus on the more challenging problem of multi-person pose
estimation. Previous work has addressed this problem as sequence of person
detection and pose estimation [22–24]. [22] use a detector for initialization and
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reasoning across people, but rely on simple geometric body part relationships
and only reason about person-person occlusions. [24] focus on single partially
occluded people, and handle multi-person scenes akin to [6]. In [10] we propose to
jointly detect and estimate configurations, but rely on simple pairwise terms only,
which limits the performance and, as we show, results in prohibitive inference
time to fully explore the search space. Here, we innovate on multiple fronts both
in terms of speed and accuracy.

2 DeepCut Recap

This section summarizes DeepCut [10] and how unary and pairwise terms are
used in this approach. DeepCut is a state-of-the-art approach to multi-person
pose estimation based on integer linear programming (ILP) that jointly esti-
mates poses of all people present in an image by minimizing a joint objective.
This objective aims to jointly partition and label an initial pool of body part
candidates into consistent sets of body-part configurations corresponding to dis-
tinct people. We use DeepCut as a general optimization framework that allows
to easily replace and combine different components.

Specifically, DeepCut starts from a set D of body part candidates, i.e. putative
detections of body parts in a given image, and a set C of body part classes, e.g.,
head, shoulder, knee. The set D of part candidates is typically generated by body
part detectors and each candidate d ∈ D has a unary score for every body part
class c ∈ C. Based on these unary scores DeepCut associates a cost or reward
αdc ∈ R to be paid by all feasible solutions of the pose estimation problem for
which the body part candidate d is a body part of class c.

Additionally, for every pair of distinct body part candidates d, d′ ∈ D and
every two body part classes c, c′ ∈ C, the pairwise term is used to generate a cost
or reward βdd′cc′ ∈ R to be paid by all feasible solutions of the pose estimation
problem for which the body part d, classified as c, and the body part d′, classified
as c′, belong to the same person.

With respect to these sets and costs, the pose estimation problem is cast as
an ILP in two classes of 01-variables: Variables x : D × C → {0, 1} indicate
by xdc = 1 that body part candidate d is of body part class c. If, for a d ∈ D
and all c ∈ C, xdc = 0, the body part candidate d is suppressed. Variables
y :

(

D
2

)

→ {0, 1} indicate by ydd′ = 1 that body part candidates d and d′ belong
to the same person. Additional variables and constraints described in [10] link
the variables x and y to the costs and ensure that feasible solutions (x, y) well-
define a selection and classification of body part candidates as body part classes
as well as a clustering of body part candidates into distinct people.

The DeepCut ILP is hard and hard to approximate, as it generalizes the mini-
mum cost multicut or correlation clustering problem which is APX-hard [25,26].
Using the branch-and-cut algorithm [10] to compute constant-factor approxima-
tive feasible solutions of instances of the DeepCut ILP is not necessarily practical.
In Sect. 5 we propose an incremental optimization approach that uses branch-
and-cut algorithm to incrementally solve several instances of ILP, which results
into 4–5x run-time reduction with increased pose estimation accuracy.
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3 Part Detectors

As argued before, strong part detectors are an essential ingredient of modern pose
estimation methods. We propose and evaluate a deep fully-convolutional human
body part detection model drawing on powerful recent ideas from semantic seg-
mentation, object classification [12,27,28] and human pose estimation [10,11,20].

3.1 Model

Architecture. We build on the recent advances in object classification and
adapt the extremely deep Residual Network (ResNet) [12] for human body
part detection. This model achieved excellent results on the recent ImageNet
Object Classification Challenge and specifically tackles the problem of vanishing
gradients by passing the state through identity layers and modeling residual
functions. Our best performing body part detection model has 152 layers (c.f.
Sect. 3.2) which is in line with the findings of [12].

Stride. Adapting ResNet for the sliding window-based body part detection is
not straight forward: converting ResNet to the fully convolutional mode leads to
a 32 px stride which is too coarse for precise part localization. In [10] we show
that using a stride of 8 px leads to good part detection results. Typically, spatial
resolution can be recovered by either introducing up-sampling deconvolutional

layers [27], or blowing up the convolutional filters using the hole algorithm [28].
The latter has shown to perform better on the task of semantic segmentation.
However, using the hole algorithm to recover the spatial resolution of ResNet
is infeasible due to memory constraints. For instance, the 22 residual blocks
in the conv4 bank of ResNet-101 constitute the major part of the network and
running it at stride 8 px does not fit the net into GPU memory1. We thus employ
a hybrid approach. First, we remove the final classification as well as average
pooling layer. Then, we decrease the stride of the first convolutional layers of
the conv5 bank from 2 px to 1 px to prevent down-sampling. Next, we add holes
to all 3x3 convolutions in conv5 to preserve their receptive field. This reduces
the stride of the full CNN to 16 px. Finally, we add deconvolutional layers for
2x up-sampling and connect the final output to the output of the conv3 bank.

Receptive field size. A large receptive field size allows to incorporate con-
text when predicting locations of individual body parts. [8,11] argue about the
importance of large receptive fields and propose a complex hierarchical architec-
ture predicting parts at multiple resolution levels. The extreme depth of ResNet
allows for a very large receptive field (on the order of 1000 px compared to
VGG’s 400 px [4]) without the need of introducing complex hierarchical archi-
tectures. We empirically find that re-scaling the original image such that an
upright standing person is 340 px high leads to best performance.

Intermediate supervision.Providing additional supervision addresses the
problem of vanishing gradients in deep neural networks [11,29,30]. In addition

1 We use NVIDIA Tesla K40 GPU with 12 GB RAM.
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to that, [11] reports that using part scoremaps produced at intermediate stages
as inputs for subsequent stages helps to encode spatial relations between parts,
while [31] use spatial fusion layers that learn an implicit spatial model. ResNets
address the first problem by introducing identity connections and learning resid-
ual functions. To address the second concern, we make a slightly different choice:
we add part loss layers inside the conv4 bank of ResNet. We argue that it is not
strictly necessary to use scoremaps as inputs for the subsequent stages. The acti-
vations from such intermediate predictions are different only up to a linear trans-
formation and contain all information about part presence that is available at that
stage of the network. In Sect. 3.2 we empirically show a consistent improvement
of part detection performance when including intermediate supervision.

Loss functions. We use sigmoid activations and cross entropy loss function
during training [10]. We perform location refinement by predicting offsets from
the locations on the scoremap grid to the ground truth joint locations [10].

Training. We use the publicly available ResNet implementation (Caffe) and
initialize from the ImageNet-pre-trained models. We train networks with SGD
for 1M iterations, starting with the learning rate lr=0.001 for 10k, then lr=0.002
for 420k, lr=0.0002 for 300k and lr=0.0001 for 300k. This corresponds to roughly
17 epochs of the MPII [2] train set. Finetuning from ImageNet takes two days on
a single GPU. Batch normalization [32] worsens performance, as the batch size
of 1 in fully convolutional training is not enough to provide a reliable estimate
of activation statistics. During training we switch off collection of statistics and
use the mean and variance that were gathered on the ImageNet dataset.

3.2 Evaluation of Part Detectors

Datasets. We use three public datasets: “Leeds Sports Poses” (LSP) [1] (person-
centric (PC) annotations); “LSP Extended” (LSPET) [15]; “MPII Human Pose”
(“Single Person”) [2] consisting of 19185 training and 7247 testing poses. To
evaluate on LSP we train part detectors on the union of MPII, LSPET and LSP
training sets. To evaluate on MPII Single Person we train on MPII only.

Evaluation measures. We use the standard “Percentage of Correct Keypoints
(PCK)” evaluation metric [8,33,34] and evaluation scripts from the web page
of [2]. In addition to PCK at fixed threshold, we report “Area under Curve”
(AUC) computed for the entire range of PCK thresholds.

Results on LSP. The results are shown in Table 1. ResNet-50 with 8 px stride
achieves 87.8 % PCK and 63.7 % AUC. Increasing the stride size to 16 px and up-
sampling the scoremaps by 2x to compensate for the loss on resolution slightly
drops the performance to 87.2 % PCK. This is expected as up-sampling cannot
fully compensate for the information loss due to a larger stride. Larger stride min-
imizes memory requirements, which allows for training a deeper ResNet-152. The
latter significantly increases the performance (89.1 vs. 87.2 % PCK, 65.1 vs. 63.1 %
AUC), as it has larger model capacity. Introducing intermediate supervision fur-
ther improves the performance to 90.1 % PCK and 66.1 % AUC, as it constraints
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Table 1. Pose estimation results (PCK) on LSP (PC) dataset.

Setting Head Sho Elb Wri Hip Knee Ank PCK AUC

ResNet-50 (8 px) 96.9 90.3 85.0 81.5 88.6 87.3 84.8 87.8 63.7

ResNet-50 (16 px +
2x up-sample)

96.7 89.8 84.6 80.4 89.3 86.4 82.8 87.2 63.1

ResNet-101 (16 px +
2x up-sample)

96.9 91.2 85.8 82.6 90.9 90.2 85.9 89.1 64.6

ResNet-152 (16 px +
2x up-sample)

97.4 91.7 85.7 82.4 90.1 89.2 86.9 89.1 65.1

+ intermediate
supervision

97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1 66.1

DeepCut [10] 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1 63.5

Wei et al. [11] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5 65.4

Tompson et al. [8] 90.6 79.2 67.9 63.4 69.5 71.0 64.2 72.3 47.3

Chen & Yuille [9] 91.8 78.2 71.8 65.5 73.3 70.2 63.4 73.4 40.1

Fan et al. [35] 92.4 75.2 65.3 64.0 75.7 68.3 70.4 73.0 43.2

the network to learn useful representations in the early stages and uses them in
later stages for spatial disambiguation of parts.

The results are compared to the state of the art in Table 1. Our best model
significantly outperforms DeepCut [10] (90.1 % PCK vs. 87.1 % PCK), as it
relies on deeper detection architectures. Our model performs on par with the
recent approach of Wei et al. [11] (90.1 vs. 90.5 % PCK, 66.1 vs. 65.4 AUC).
This is interesting, as they use a much more complex multi-scale multi-stage
architecture.

Results on MPII Single Person. The results are shown in Table 2. ResNet-
152 achieves 87.8 % PCKh and 60.0 % AUC, while intermediate supervision
slightly improves the performance further to 88.5 % PCKh and 60.8 % AUC.
Comparing the results to the state of the art we observe significant improvement
over DeepCut [10] (+5.9 % PCKh, +4.2 % AUC), which again underlines the

Table 2. Pose estimation results (PCKh) on MPII Single Person.

Setting Head Sho Elb Wri Hip Knee Ank PCKh AUC

ResNet-152 96.3 94.1 88.6 83.9 87.2 82.9 77.8 87.8 60.0

+ intermediate supervision 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5 60.8

DeepCut [10] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4 56.5

Tompson et al. [8] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6 51.8

Carreira et al. [36] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3 49.1

Tompson et al. [20] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0 54.9

Wei et al. [11] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5 61.4
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importance of using extremely deep model. The proposed approach performs on
par with the best know result by Wei et al. [11] (88.5 vs. 88.5 % PCKh) for the
maximum distance threshold, while slightly loosing when using the entire range
of thresholds (60.8 vs. 61.4 % AUC). We envision that extending the proposed
approach to incorporate multiple scales as in [11] should improve the perfor-
mance. The model trained on the union of MPII, LSPET and LSP training sets
achieves 88.3 % PCKh and 60.7 % AUC. The fact that we use the same trained
model on both LSP and MPII benchmarks and achieve similar performance
demonstrates the generality of the proposed approach.

4 Image-Conditioned Pairwise Terms

As discussed in Sect. 3, a large receptive field for the CNN-based part detectors
allows to accurately predict the presence of a body part at a given location.
However, it also contains enough evidence to reason about locations of other
parts in the vicinity. We draw on this insight and propose to also use deep
networks to make pairwise part-to-part predictions. They are subsequently used
to compute the pairwise probabilities and show significant improvements for
multi-person pose estimation.

4.1 Model

Our approach is inspired by the body part location refinement described in
Sect. 3. In addition to predicting offsets for the current joint, we directly regress
from the current location to the relative positions of all other joints. For each
scoremap location k = (xk, yk) that is marked positive w.r.t the joint c ∈ C and
for each remaining joint c′ ∈ C \ c, we define a relative position of c′ w.r.t. c as
a tuple tkcc′ = (xc′ − xk, yc′ − xk). We add an extra layer that predicts relative
position ok

cc′ and train it with a smooth L1 loss function. We thus perform joint

training of body part detectors (cross-entropy loss), location regression (L1 loss)
and pairwise regression (L1 loss) by linearly combining all three loss functions.
The targets t are normalized to have zero mean and unit variance over the
training set. Results of such predictions are shown in Fig. 2.

We then use these predictions to compute pairwise costs βdd′cc′ . For any
pair of detections (d, d′) (Fig. 3) and for any pair of joints (c, c′) we define the
following quantities: locations ld, l′d of detections d and d′ respectively; the offset
prediction od

cc′ from c to c′ at location d (solid red) coming from the CNN and

similarly the offset prediction od′

c′c (solid turquoise). We then compute the offset
between the two predictions: ôdd′ = ld′ − ld (marked in dashed red). The degree
to which the prediction od

cc′ agrees with the actual offset ôdd′ tells how likely d,
d′ are of classes c, c′ respectively and belong to the same person. We measure
this by computing the distance between the two offsets ∆f = ‖ôdd′ − od

cc′‖2,
and the absolute angle θf = |∡(ôdd′ , od

cc′)| where f stands for forward direction,

i.e. from d to d′. Similarly, we incorporate the prediction od′

c′c in the backwards

direction by computing ∆b = ‖ôd′d − od′

c′c‖2 and θb = |∡(ôd′d, o
d′

c′c)|. Finally, we
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Fig. 2. Visualizations of regression predictions. Top: from left shoulder to the right
shoulder (green), right hip (red), left elbow (light blue), right ankle (purple) and top
of the head (dark blue). Bottom: from right knee to the right hip (green), right ankle
(red), left knee (dark blue), left ankle (light blue) and top of the head (purple). Longer-
range predictions, such as e.g. shoulder – ankle may be less accurate for harder poses
(top row, images 2 and 3) compared to the nearby predictions. However, they provide
enough information to constrain the search space in the fully-connected spatial model.
(Color figure online)

Fig. 3. Visualization of features extracted to score the pairwise. See text for details.
(Color figure online)

define a feature vector by augmenting features with exponential terms: fdd′cc′ =
(∆f , θf ,∆b, θb, exp(−∆f ), . . . , exp(−θb)).

We then use the features fdd′cc′ and define logistic model:

p(zdd′cc′ = 1|fdd′cc′ , ωcc′) =
1

1 + exp(−〈ωcc′ , fdd′cc′〉)
. (1)

where K = (|C| × (|C| + 1))/2 parameters ωcc′ are estimated using ML.

4.2 Sampling Detections

Location refinement NMS. DeepCut samples the set of detections D from
the scoremap by applying non-maximum suppression (NMS). Here, we utilize
location refinement and correct grid locations with the predicted offsets before
applying NMS. This pulls detections that belong to a particular body joint
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Table 3. Effects of proposed pairwise and unaries on the pose estimation performance
(AP) on MPII Multi-person Val.

Unary Pairwise Head Sho Elb Wri Hip Knee Ank AP time [s/frame]

DeepCut [10] DeepCut [10] 50.1 44.1 33.5 26.5 33.0 28.5 14.4 33.3 259220

DeepCut [10] this work 68.3 58.3 47.4 38.9 45.2 41.8 31.2 47.7 1987

this work this work 70.9 59.8 53.1 44.4 50.0 46.4 39.5 52.3 1171

+ location refinement before NMS 70.3 61.6 52.1 43.7 50.6 47.0 40.6 52.6 578

towards its true location thereby increasing the density of detections around that
location, which allows to distribute the detection candidates in a better way.

Splitting of part detections. DeepCut ILP solves the clustering problem by
labeling each detection d with a single part class c and assigning it to a particular
cluster that corresponds to a distinct person. However, it may happen that the
same spatial location is occupied by more than one body joint, and therefore, its
corresponding detection can only be labeled with one of the respecting classes. A
naive solution is to replace a detection with n detections for each part class, which
would result in a prohibitive increase in the number of detections. We simply
split a detection d into several if more than one part has unary probability that
is higher than a chosen threshold s (in our case s = 0.4).

4.3 Evaluation of Pairwise

Datasets and evaluation measure. We evaluate on the challenging public
“MPII Human Pose” (“Multi-Person”) benchmark [2] consisting of 3844 training
and 1758 testing groups of multiple overlapping people in highly articulated poses
with a variable number of parts. We perform all intermediate experiments on
a validation set of 200 images sampled uniformly at random and refer to it as
MPII Multi-Person Val. We report major results on the full testing set, and on
the subset of 288 images for the direct comparison to [10]. The AP measure [10]
evaluating consistent body part detections is used for performance comparison.
Additionally, we report median running time per frame measured in seconds2.

Table 4. Effects of different versions of the pairwise terms on the pose estimation
performance (AP) on MPII Multi-person Val.

Setting Head Sho Elb Wri Hip Knee Ank AP time [s/frame]

bi-directional + angle 70.3 61.6 52.1 43.7 50.6 47.0 40.6 52.6 578

uni-directional + angle 69.3 58.4 51.8 44.2 50.4 44.7 36.3 51.1 2140

bi-directional 68.8 58.3 51.0 42.7 51.1 46.5 38.7 51.3 914

Evaluation of unaries and pairwise. The results are shown in Table 3.
Baseline DeepCut achieves 33.3 % AP. Using the proposed pairwise significantly

2 Run-time is measured on a single core Intel Xeon 2.70 GHz.
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improves performance achieving 47.7 % AP. This clearly shows the advantages of
using image-conditioned pairwise to disambiguate the body part assignment for
multiple overlapping individuals. Remarkably, the proposed pairwise dramati-
cally reduce the run-time by two orders of magnitude (1987 vs. 259220 s/frame).
This underlines the argument that using strong pairwise in the fully-connected
model allows to significantly speed-up the inference. Using additionally the pro-
posed part detectors further boosts the performance (52.3 vs. 47.7 % AP), which
can be attributed to better quality part hypotheses. Run-time is again almost
halved, which clearly shows the importance of obtaining high-quality part detec-
tion candidates for more accurate and faster inference. Performing location
refinement before NMS slightly improves the performance, but also reduces the
run-time by 2x: this allows to increase the density of detections at the most prob-
able body part locations and thus suppresses more detections around the most
confident ones, which leads to better distribution of part detection candidates
and reduces confusion generated by the near-by detections. Overall, we observe
significant performance improvement and dramatic reduction in run-time by the
proposed DeeperCut compared to the baseline DeepCut.

Ablation study of pairwise. An ablation study of the proposed image-
conditioned pairwise is performed in Table 4. Regressing from both joints onto
the opposite joint’s location and including angles achieves the best performance
of 52.6 % AP and the minimum run-time of 578 s/frame. Regressing from a sin-
gle joint only slightly reduces the performance to 51.1 % AP, but significantly
increases run-time by 4x: these pairwise are less robust compared to the bi-
directional, which confuses the inference. Removing the angles from the pairwise
features also decreases the performance (51.3 vs. 52.6 % AP) and doubles run-
time, as it removes the information about body part orientation.

5 Incremental Optimization

Solving one instance of the DeepCut ILP for all body part candidates detected
for an image, as suggested in [10] and summarized in Sect. 2, is elegant in theory
but disadvantageous in practice:

Firstly, the time it takes to compute constant-factor approximative feasible
solution by the branch-and-cut algorithm [10] can be exponential in the number
of body part candidates in the worst case. In practice, this limits the number of
candidates that can be processed by this algorithm. Due to this limitation, it does
happen that body parts and, for images showing many persons, entire persons
are missed, simply because they are not contained in the set of candidates.

Secondly, solving one instance of the optimization problem for the entire
image means that no distinction is made between part classes detected reliably,
e.g. head and shoulders, and part classes detected less reliably, e.g. wrists, elbows
and ankles. Therefore, it happens that unreliable detections corrupt the solution.

To address both problems, we solve not one instance of the DeepCut ILP but
several, starting with only those body part classes that are detected most reliably
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and only then considering body part classes that are detected less reliably. Con-
cretely, we study two variants of this incremental optimization approach which
are defined in Table 5. Specifically, the procedure works as follows:

For each subset of body part classes defined in Table 5, an instance of the
DeepCut ILP is set up and a constant-factor approximative feasible solution
computed using the branch-and-cut algorithm. This feasible solution selects,
labels and clusters a subset of part candidates, namely of those part classes that
are considered in this instance. For the next instance, each cluster of body part
candidates of the same class from the previous instance becomes just one part
candidate whose class is fixed. Thus, the next instance is an optimization problem
for selecting, labeling and clustering body parts that have not been determined
by previous instances. Overall, this allows us to start with more part candidates
consistently and thus improve the pose estimation result significantly.

Table 5. As the run-time of the DeepCut branch-and-cut algorithm limits the number
of part candidates that can be processed in practice, we split the set of part classes
into subsets, coarsely and finely, and solve the pose estimation problem incrementally.

Stage 1 Stage 2 Stage 3

2-stage head, shoulders hips, knees

elbows, wrists ankles

3-stage head elbows hips, knees

shoulders wrists ankles

5.1 Evaluation of Incremental Optimization

Results are shown in Table 6. Single stage optimization with |D| = 100 part
detection candidates achieves 52.6 % AP (best from Table 3). More aggressive
NMS with radius of 24 px improves the performance (54.5 vs. 52.6 % AP), as it
allows to better distribute detection candidates. Increasing |D| to 150 slightly
improves the performance by +0.6 % AP, but significantly increases run-time
(1041 vs. 596 s/frame). We found |D| = 150 to be maximum total number
of detection candidates (11 per part) for which optimization runs in a reason-
able time. Incremental optimization of 2-stage inference slightly improves the
performance (56.5 vs. 55.1 % AP) as it allows for a larger number of detection
candidates per body part (20) and leverages typically more confident predictions
of the upper body parts in the first stage before solving for the entire body. Most
importantly, it halves the median run-time from 1041 to 483 s/frame. Incremen-
tal optimization of 3-stage inference again almost halves the run-time to 271
s/frame while noticeably improving the human pose estimation performance for
all body parts but elbows achieving 57.6 % AP. These results clearly demon-
strate the advantages of the proposed incremental optimization. Splitting the
detection candidates that simultaneously belong to multiple body parts with
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Table 6. Performance (AP) of different hierarchical versions of DeeperCut on MPII
Multi-person Val.

Setting Head Sho Elb Wri Hip Knee Ank AP time [s/frame]

1-stage optimize,
100 det, nms 1x

70.3 61.6 52.1 43.7 50.6 47.0 40.6 52.6 578

1-stage optimize,
100 det, nms 2x

71.3 64.1 55.8 44.1 53.8 48.7 41.3 54.5 596

1-stage optimize,
150 det, nms 2x

74.1 65.6 56.0 44.3 54.4 49.2 39.8 55.1 1041

2-stage optimize 75.9 66.8 58.8 46.1 54.1 48.7 42.4 56.5 483

3-stage optimize 78.3 69.3 58.4 47.5 55.1 49.6 42.5 57.6 271

+ split detections 78.5 70.5 59.7 48.7 55.4 50.6 44.4 58.7 270

DeepCut [10] 50.1 44.1 33.5 26.5 33.0 28.5 14.4 33.3 259220

high confidence slightly improves the performance to 58.7 % AP. This helps to
overcome the limitation that each detection candidate can be assigned to a single
body part and improves on cases where two body parts overlap thus sharing the
same detection candidate. We also compare the obtained results to DeepCut in
Table 6 (last row). The proposed DeeperCut outperforms baseline DeepCut (58.7
vs. 33.3 % AP) by almost doubling the performance, while run-time is reduced
dramatically by 3 orders of magnitude from the infeasible 259220 s/frame to
affordable 270 s/frame. This comparison clearly demonstrates the power of the
proposed approach and dramatic effects of better unary, pairwise and optimiza-
tion on the overall pose estimation performance and run-time.

5.2 Comparison to the State of the Art

We compare to others on MPII Multi-Person Test and WAF [22] datasets.

Results on MPII Multi-person. For direct comparison with DeepCut we
evaluate on the same subset of 288 testing images as in [10]. Additionally,
we provide the results on the entire testing set. Results are shown in Table 7.
DeeperCut without incremental optimization already outperforms DeepCut by a
large margin (66.2 vs. 54.1 % AP). Using 3-stage incremental optimization fur-
ther improves the performance to 69.7 % AP improving by a dramatic 16.5 %
AP over the baseline. Remarkably, the run-time is reduced from 57995 to 230
s/frame, which is an improvement by two orders of magnitude. Both results
underline the importance of strong image-conditioned pairwise terms and incre-
mental optimization to maximize multi-person pose estimation performance at
the reduced run-time. A similar trend is observed on the full set: 3-stage opti-
mization improves over a single stage optimization (59.4 vs. 54.7 % AP). We
observe that the performance on the entire testing set is over 10 % AP lower
compared to the subset and run-time is doubled. This implies that the subset
of 288 images is easier compared to the full testing set. We envision that per-
formance differences between DeeperCut and DeepCut on the entire set will be
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Table 7. Pose estimation results (AP) on MPII Multi-person.

Setting Head Sho Elb Wri Hip Knee Ank AP time [s/frame]

subset of 288 images as in [10]

DeeperCut (1-stage) 83.3 79.4 66.1 57.9 63.5 60.5 49.9 66.2 1333

DeeperCut 87.5 82.8 70.2 61.6 66.0 60.6 56.5 69.7 230

DeepCut [10] 73.4 71.8 57.9 39.9 56.7 44.0 32.0 54.1 57995

full set

DeeperCut (1-stage) 73.7 65.4 54.9 45.2 52.3 47.8 40.7 54.7 2785

DeeperCut 79.1 72.2 59.7 50.0 56.0 51.0 44.6 59.4 485

Faster R-CNN [37] + unary 64.9 62.9 53.4 44.1 50.7 43.1 35.2 51.0 1

at least as large as when compared on the subset. We also compare to a strong
two-stage baseline: first each person is pre-localized by applying the state-of-the-
art detector [37] following by NMS and retaining rectangles with scores at least
0.8; then pose estimation for each rectangle is performed using DeeperCut unary
only. Being significantly faster (1 s/frame) this approach reaches 51.0 % AP vs.
59.4 % AP by DeeperCut , which clearly shows the power of joint reasoning by
the proposed approach.

Table 8. Pose estimation results (mPCP) on WAF dataset.

Setting Head U Arms L Arms Torso mPCP AOP

DeeperCut nms 3.0 99.3 83.8 81.9 87.1 86.3 88.1

DeepCut [10] 99.3 81.5 79.5 87.1 84.7 86.5

Ghiasi et al. [38] - - - - 63.6 74.0

Eichner & Ferrari [22] 97.6 68.2 48.1 86.1 69.4 80.0

Chen & Yuille [24] 98.5 77.2 71.3 88.5 80.7 84.9

Results on WAF. Results using the official evaluation protocol [22] assum-
ing mPCP and AOP evaluation measures and considering detection bounding
boxes provided by [22] are shown in Table 8. DeeperCut achieves the best result
improving over the state of the art DeepCut (86.3 vs. 84.7 % mPCP, 88.1 vs.
86.5 % AOP). Noticeable improvements are observed both for upper (+2.3 %
mPCP) and lower (+2.4 % mPCP) arms. However, overall performance dif-
ferences between DeeperCut and the baseline DeepCut are not as pronounced
compared to MPII Multi-Person dataset. This is due to the fact that actual
differences are washed out by the peculiarities of the mPCP evaluation mea-
sure: mPCP assumes that people are pre-detected and human pose estimation
performance is evaluated only for people whose upper body detections match
the ground truth. Thus, a pose estimation method is not penalized for generat-
ing multiple body pose predictions, since the only pose prediction is considered
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whose upper body bounding box best matches the ground truth. We thus re-
evaluate the competing approaches [10,24] using the more realistic AP evaluation
measure3. The results are shown in Table 9. DeeperCut significantly improves
over DeepCut (82.0 vs. 76.2 % AP). The largest boost in performance is achieved
for head (+16.0 % AP) and wrists (+5.2 % AP): DeeperCut follows incremental
optimization strategy by first solving for the most reliable body parts, such as
head and shoulders, and then using the obtained solution to improve estima-
tion of harder body parts, such as wrists. Most notably, run-time is dramatically
reduced by 3 orders of magnitude from 22000 to 13 s/frame. These results clearly
show the advantages of the proposed approach when evaluated in the real-world
detection setting. The proposed DeeperCut also outperforms [24] by a large mar-
gin. The performance difference is much more pronounced compared to using
mPCP evaluation measure: in contrast to mPCP, AP penalizes multiple body
pose predictions of the same person. We envision that better NMS strategies are
likely to improve the AP performance of [24].

Table 9. Pose estimation results (AP) on WAF dataset.

Setting Head Sho Elb Wri AP time [s/frame]

DeeperCut 92.6 81.1 75.7 78.8 82.0 13

DeepCut [10] 76.6 80.8 73.7 73.6 76.2 22000

Chen & Yuille [24] 83.3 56.1 46.3 35.5 55.3 -

6 Conclusion

In this paper we significantly advanced the state of the art in articulated multi-
person human pose estimation. To that end we carefully re-designed and thor-
oughly evaluated several key ingredients. First, drawing on the recent advances
in deep learning we proposed strong extremely deep body part detectors that
– taken alone – already allow to obtain state of the art performance on stan-
dard pose estimation benchmarks. Second, we introduce novel image-conditioned
pairwise terms between body parts that allow to significantly push the perfor-
mance in the challenging case of multi-people pose estimation, and dramatically
reduce the run-time of the inference in the fully-connected spatial model. Third,
we introduced a novel incremental optimization strategy to further reduce the
run-time and improve human pose estimation accuracy. Overall, the proposed
improvements allowed to almost double the pose estimation accuracy in the chal-
lenging multi-person case while reducing the run-time by 3 orders of magnitude.

3 We used publicly-available pose predictions of [24] for all people in WAF dataset.
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