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Abstract

The parsing of building facades is a key component
to the problem of 3D street scenes reconstruction,
which is long desired in computer vision. In this
paper, we propose a deep learning based method
for segmenting a facade into semantic categories.
Man-made structures often present the characteris-
tic of symmetry. Based on this observation, we pro-
pose a symmetric regularizer for training the neu-
ral network. Our proposed method can make use
of both the power of deep neural networks and the
structure of man-made architectures. We also pro-
pose a method to refine the segmentation results us-
ing bounding boxes generated by the Region Pro-
posal Network. We test our method by training a
FCN-8s network with the novel loss function. Ex-
perimental results show that our method has out-
performed previous state-of-the-art methods signif-
icantly on both the ECP dataset and the eTRIMS
dataset. As far as we know, we are the first to em-
ploy end-to-end deep convolutional neural network
on full image scale in the task of building facades
parsing.

1 Introduction

Building facades parsing is an important problem in com-
puter vision. It enjoys many real world applications. First,
this problem is key to the 3D reconstruction of street scenes,
which has long been desired in computer vision community.
Successful parsing of building facades can not only store
building information more effectively but also record the in-
formation based on rules. These rules can be further used to
reconstruct different styles of building facades, which is use-
ful in game engines. Second, precise parsing of building fa-
cade can be useful in street map reconstruction and automatic
driving cars. It can help the car to understand the surrounding
environments better and increase security. The task’s goal is
to semantically identify each pixel’s category. The semantic
categories mainly consist building facades, like window, wall,
balcony and so on.

∗Corresponding author.

Figure 1: An example of the parsing result of our approach.

However, building facades parsing is a very challenging
problem. This problem is usually formulated as an image
segmentation problem. This problem is difficult not only due
to the vast variation across different environments but also
because of the changing in illumination, visual perspective,
and occlusions. First, buildings are usually in a wild complex
environment. Building styles also vary significantly across
different areas. Even in the same city, there are no two iden-
tical buildings. The forming components of building facade
also have great diversity, like texture, genre, and color. Sec-
ond, there is also a lot of occlusions. Third, the parsing of
building facades may involve some complex non-building el-
ements, like cars and pedestrians. The left image in Figure 1
shows this difficulty.

In literature, building facades parsing has been actively
studied and various methods have been proposed in com-
puter vision [Mathias et al., 2016; Cohen et al., 2014]. Most
of these methods operate on per-pixel or super-pixel level,
addressing this problem as an image segmentation problem.
Early methods [Teboul et al., 2010] assume that building fa-
cades have an appropriate shape grammar. This poses strong
prior knowledge on the facade of a building. If the prior does
not apply, the methods fail. More recent methods [Math-
ias et al., 2016] tried to learn label information at different
abstract levels. Despite achieving some promising results,
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the learning process is still hand crafted to some extent and
may not perform very well in some scenarios. [Cohen et
al., 2014] took another approach and used dynamic program-
ming. The optimization technique increased the performance
significantly, however, it does not make full use of learning
technique to learn from the data.

Recently, deep learning has shown its power in various
computer vision tasks, like image classification [Krizhevsky
et al., 2012], image recognition, object detection [Girshick
et al., 2014] and image segmentation [Long et al., 2015;
Chen et al., 2016]. Even low-level image processing prob-
lems have also benefitted from deep learning techniques, like
image denoising [Xie et al., 2012], art style transfer [Gatys
et al., 2015] and image super-resolution [Dong et al., 2014].
Deep learning has outperformed traditional vision approaches
in a lot of benchmarks. As to the problem of image segmenta-
tion, deep learning has mainly seen its application in general
image segmentation problems. [Schmitz and Mayer, 2016]

has applied deep learning to facade parsing by treating the fa-
cade parsing as a general image segmentation problem. De-
spite promising results, the general technique for image seg-
mentation has not delved into the specific problem of facade
parsing to fully take advantage of the characteristics of this
problem. Specifically, the man-made rules of the structures
are not incorporated into the network.

While many previous methods have relied on hand crafted
priors to parse the building facades, we explore a deep learn-
ing based approach to resolving the facade parsing problem.
We call our method DeepFacade. As far as we now, we are
the first to apply deep learning to facade parsing on full im-
age scale. In particular, we present a novel symmetric reg-
ularizer to train the neural network to make use of both the
learning capacity of deep convolutional neural networks and
man-made rules in building facades.

The basic idea of our proposed symmetric neural facade
parsing is to train deep convolutional neural networks with
the constraints under man-made rules. The main focus of fa-
cade parsing problem is on {window, door, balcony}. These
objects often have a high level of symmetry inside them.
We impose a symmetric regularization on the aforementioned
classes during training the network. As most windows have
a square shape, we assume that bounding boxes generated
by object detection will also be helpful to location and refine
the shape of the predicted results. In particular, we use Re-
gion Proposal Network to generate the bounding boxes. We
conducted experiments on ECP dataset and eTRIMS dataset.
On the ECP dataset, our method outperforms the state-of-the-
art by more than 6% percent. On the eTRIMS dataset, our
method outperforms the state-of-the-art by more than 10%
percent.

2 Related Work

The problem of building facade parsing has long been ac-
tively studied and there exists a lot of work on how to tackle
this problem. [Zhao et al., 2010] proposed an approach that
parses registered images captured at ground level into archi-
tectural units for large-scale city modeling. Each parsed unit
has a regularized shape, which can be used for further mod-
eling purposes. [Wendel et al., 2010; Recky et al., 2011]

used repetitive patterns to tackle the same problem. [Math-
ias et al., 2011] took another approach by proposing an algo-
rithm which automates this process through classification of
architectural styles from facade images. Their classifier first
identifies the images containing buildings, then separates in-
dividual facades within an image and determines the building
style.

Many approaches assume a procedural grammar. [Müller
et al., 2007] combine the procedural modeling pipeline of
shape grammars with image analysis to derive a meaning-
ful hierarchical facade subdivision. [Ripperda and Brenner,
2006] use a process based on reversible jump Markov Chain
Monte Carlo (rjMCMC) to guide the application of deriva-
tion steps during the construction of the tree. [Han and Zhu,
2009] study an effective top-down/bottom-up inference algo-
rithm for parsing images. [Teboul et al., 2011] address shape
grammar parsing for facade segmentation using Reinforce-
ment Learning (RL). Their methods achieve good results with
a significant speed-up compared to previous methods. Shape
priors may provide good regularization if the building facades
are constructed under these grammars.

[Mathias et al., 2016] propose a parsing method that con-
sists of three distinct layers. In the first layer, facade labeling
is learned at super-pixel level via Recursive Neural Network.
In the middle layer, they introduce the knowledge about dis-
tinct facade elements. They combine the output of the RNN
with object detectors. They model the merging procedure as
a 2D Markov Random Field over the pixels. The MRF is
solved via graph cut. The top layer encodes a set of rules and
lead to a more structured configuration.

[Cohen et al., 2014] present an optimization problem for
which they can construct optimality certificates while being
more efficient if not interested in their computation. They
use a dynamic programming algorithm with extensions for
improved expected case efficiency. The proposed algorithm
requires individual executions of a dynamic program to find
a labeling. Global optimality certificates are obtained if the
individual algorithms remain independent.

Deep learning has shown its amazing power in various vi-
sion tasks. There has also been quite a body of work address-
ing the image segmentation problem. [Long et al., 2015]

is the first to train an end-to-end deep convolutional neural
network for general image segmentation task. [Chen et al.,
2016] use dilated convolution instead of plain convolution.
This approach avoids the use of a deconvolution layer, thus
making the network easier to train. CRF post-processing can
be applied to refine the results. However, the deep learning
methods mainly focus on the network structure [Long et al.,
2015; Chen et al., 2016] or the learning methodology, like
batch normalization [Ioffe and Szegedy, 2015] or new initial-
ization methods [He et al., 2015]. Few works has looked into
how to guide the neural network with prior information or
assumptions. For the problem of facade parsing, [Schmitz
and Mayer, 2016] has taken a fully convolutional network ap-
proach. They trained the network on facade image patches
and did not take advantage of the structure of facades.

In this paper, we propose a novel symmetric loss for the
deep convolutional neural network and demonstrate its effi-
cacy on two facade parsing datasets.
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3 Approach

To incorporate the man-made rules into the end-to-end system
of a deep convolutional neural network, we propose a new
loss term based on the common symmetry found in structures
like windows, walls, and doors. Besides segmentation tech-
nique, we also found deep learning based detection helpful
in the parsing procedure. This step is optional alongside the
end-to-end segmentation pipeline.

3.1 Network Structure

Typically, a deep convolutional neural network consists of l
layers, each layer applies a linear convolution to its input, fol-
lowed by an activation layer. Convolutional layers are usually
followed by a pooling layer to downscale the feature map so
that the final output has a smaller feature size for classifica-
tion. A fully convolutional neural network replace the fully
connect layers of a classification network with fully convo-
lutional layers, making the network produce dense classifi-
cation for each pixel in the last layer of the response map.
We need to upsample the feature map to obtain an output that
has the same size with the input image. Several methods can
be used to achieve this goal, for example, bilinear filter and
transposed convolution. Transposed convolution is called de-
convolution in the FCN paper[Long et al., 2015]

For the network structure, we follow the settings of FCN-
8s in[Long et al., 2015]. The first 13 layers of VGG16[Si-
monyan and Zisserman, 2014] are used as the base network.
The two fully connected layers of the VGG16 network are
cast into two fully convolutional layers. As the casted convo-
lutional layer has a filter size of 1 × 1, the parameters of the
fully connected layers in VGG16 can be directly copied to the
fully convolutional layers. To unify the number of neurons,
the two convolutional layers are set to have 4096 channels.

Transposed convolution (i.e., deconvolution in the FCN pa-
per) can be used to upscale the response map, thus obtaining
a prediction of the same size with the original image. FCN-
32s directly upscale the feature 32 times to the original in-
put size, so the final prediction may be coarse and will not
be very accurate. Intermediate features in the early convo-
lutional layers are also helpful in dense classification tasks,
so we want to incorporate this information into the final seg-
mentation phase. Also, upscaling the feature map gradually
may result in a more accurate shape. FCN-8s first upscale the
feature map to twice as large, then concatenate the upscaled
feature map with the feature map after pool4. The new fea-
ture map is again upscaled to twice larger and is concatenated
with the feature map after pool3. Then it is upscaled 8 times
larger to the original image size.

3.2 A Symmetric Constraint for Man-Made
Architectures

Typically, the segmentation network is trained with a regular
cross entropy loss as follows

L(x,y) =
1

N

N
∑

i

[yi log ŷi + (1− yi) log(1− ŷi)] (1)

Here x is the input image array, y is the probability distribu-
tion of the category label of the image. N is the number of

X_c

Y_c

Center

X_c

Y_c

Center

Figure 2: An illustration for the symmetric loss term. The centers
of a symmetric object should fall on the center of both vertical and
horizontal centers of the line segments.

pixels in the image, i is pixel index. yi is the true probability
distribution and ŷi is the predicted probability distribution.

Although deep convolutional neural networks have shown
their strength in the problem of general image segmentation,
this loss function does not pose any constraint or guide on the
neural network. We expect the neural network to be able to
utilize the man-made rules in building facades. So we pro-
pose the following symmetric loss term.

For each category that we want to impose the symmetric
constraint, let p denote each object that belongs to this cat-
egory. As in the case of building facades, no two different
objects of the same class have an intersection, it is feasible
to partition the objects into a set P in which no two elements
intersect. Then for each object p, the symmetric loss term is
as follows:

L̃s(x) =
∑

p

(Var[Xc] + Var[Yc]) (2)

Let L̃s(x) denote the overall symmetric loss for all the object
p ∈ P. Let Ls denote the symmetric loss for a single object
p. Here Xc is the random variable that represents the center
of each horizontal line segment of object p, and Yc is the ran-
dom variable that represents the center of each vertical line
segment of object p.

Each object p is a set of pixels p = {(x, y)} where x and
y are vertical and horizontal coordinates respectively. Let xcj

be a sample of Xc, xcj represents the center of the j-th verti-
cal line segment of p

xcj =
1

Nj

Nj
∑

y=j

x (3)

where Nj is the number of pixels in vertical line segment
pvj = {(x, y)|y = j}. Similarly for horizontal symmetry we
have

yci =
1

Ni

Ni
∑

x=i

y (4)

Where Ni is the number of pixels in horizontal line segment
phi = {(x, y)|x = i}.

Ideally, for all i, xcj should have the same value because
of vertical symmetry. The same goes for yci. However, inac-
curate segmentation will lead to variance of the distribution
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Figure 3: Bounding boxes example from Region Proposal Network
(RPN)

of Xc and Yc, as illustrated in Figure 2. If an object p is per-
fectly symmetric, the variance of Xc and Yc should both be 0
as shown in the picture. Otherwise, the variance gets bigger
as one direction goes further away from being symmetric. Let
Lsv and Lsh denote the symmetric loss along the vertical and
horizontal direction respectively. Then we have

Lsv =
1

Nj

∑

(xcj −
1

Nj

∑

xcj)
2

= Var[Xc]

(5)

Lsh =
1

Ni

∑

(yci −
1

Ni

∑

yci)
2

= Var[Yc]
(6)

We combine both terms to form a symmetry loss in both di-
rections

Ls = Lsv + Lsh

= Var[Xc] + Var[Yc]
(7)

The final loss function becomes

L̃ = L(x,y) + ηL̃s (8)

where 0 ≤ η ≤ 1. We call this loss function the symmetric
loss in the following sessions.

3.3 Boosting the Performance Using Object
Detection

Window, door, balcony are the most important structures in
facade parsing. Most of these also have a square shape, we
can use this prior information to greatly improve the visual
results of our parsing. Object detection generates bounding
boxes to show the location of a particular object. If the pre-
dicted bounding boxes can match the location of these objects
well, then the results will be significantly refined. Here we
use the Faster R-CNN [Ren et al., 2015] to generate bound-
ing boxes for windows.

The RPN was a region proposal generator in Faster R-
CNN[Ren et al., 2015], which is class-agnostic in multi-
category. For single-category detection as ours (window),
RPN is naturally a detector. The specification of RPN in our
task is as follows.

Following [Ren et al., 2015], a VGG-16 net pre-trained
on the ImageNet dataset [Deng et al., 2009] is adopted as

Figure 4: Some examples of the region proposals generated by RPN.

base network. Our RPN is built on the top of Conv5_3, then
an intermediate 3 × 3 convolutional layer and two siblings
1×1 convolutional layers for classification and bounding box
regression follows (more details in [Ren et al., 2015]). In this
way, feature stride of feature map 5 (Conv5_3) is 16. We
adopt 9 anchor boxes with 3 aspect ratios of 1 : 1, 1 : 2 and
2 : 1, and with box areas of 322, 642 and 1282 which are
different from the original RPN [Ren et al., 2015] of 1282,
2562, 5122 for the reason that the size of windows in the ECP
dataset are generally small (ranging from 103 to 104 pixels)
with respect to image size of MaxLength = 1000.

To choose a single bounding box in every possible posi-
tion, we simply take two steps of NMS (Non-Maximum Sup-
pression). First, NMS with threshold 0.7 is set to get Top-M
possible windows where M is 100 in our experiments, then a
threshold of 0.01 is set to suppress overlaps to take final pro-
posals. 5-fold cross-validation is taken to generate proposals
from all images. Some of the results are shown in Figure 4.

To apply the detection results to the segmentation, we first
cast the bounding boxes into a score map across the whole
image. Let s = {sijk}H×W×K denote the score map for the
prediction of an image. s is a matrix of size H ×W ×K, H
and W are the height and width of the image, and K is the
number of semantic categories. Each entry sijk represents
the probability of pixel (i, j) belonging to class k. In the
case of facade parsing, the following classes are suitable for
a detector to generate bounding boxes for them: {window,
door, balcony, chimney, shop}. After generating bounding
boxes for these classes in an image we have

sijk =

{

1, if (i, j) ∈ class-k

0, otherwise
(9)

Let sfcn be the score map produced by FCN, then the final
score will be a linear combination of the two

ŝ = sfcn + s (10)

the predicted labels for each pixel (i, j) will be

ŷ = argmax ŝ (11)

3.4 Training and Inference

First, we initialize the network with a model pre-trained on
ImageNet data. We then apply the Adam optimizer to fine-
tune the network. The initial learning rate is set to 10−6. For
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the ECP dataset, training epoch is 100 and for the eTRIMS
dataset training epoch is 80. The number is chosen by observ-
ing when the training loss stops decreasing. Dropout [Srivas-
tava et al., 2014] is used during training to prevent overfitting.
The training procedure is the same for FCN-8s with a cross
entropy loss and with a symmetric loss. The only difference
is the loss function. For η in Equation 8, we set it to be 0.17
empirically.

Once the network is successfully trained, it can output a
prediction directly given an input image. To increase the ac-
curacy of some main classes in building facades and improve
the visual quality, one can use the RPN bounding boxes to
refine the segmentation result output by the network as de-
scribed in Section 3.3

4 Experiments

4.1 Dataset

We evaluate our porposed approach on two different datasets,
the Ecole Centrale Paris (ECP) Facades dataset [Teboul et al.,
2010] and the eTRIMS [Korč and Förstner, 2009] database.

ECP Dataset. The ECP dataset consists of 104 images of
building facades. The dataset contains the following classes:
{window, wall, balcony, door, shop, sky, chimney, roof }. All
the images in the ECP dataset contains rectified and cropped
facades of Haussmannian style buildings in Paris. The orig-
inal annotation labeled the images using a Haussmannian-
style grammer. This often results in imprecise or even wrong
annotations. So we use the annotation provided by [Mathias
et al., 2016], where the annotation better fits the ground truth.

eTRIMS Database. The eTRIMS database has two vari-
ants. We use the 8-Class eTRIMS Dataset with 8 annotated
object classes, which consists of 60 annotated images. The
eTRIMS database consists of the following classes: {Window,
Wall, Door, Sky, Pavement, Vegetation, Car, Road}. Different
from the ECP dataset, images in the eTRIMS are not rectified.
The windows and walls may not be a perfect square in most
cases. This poses some challenge in the RPN refinement.

4.2 Experiment Setup

For the ECP dataset, we report three results based on the
method configuration. The first is the FCN-8s trained with
a regular softmax cross entropy loss, in the following sec-

tions it is denoted as Ours
1. The second is the FCN-8s

trained with the symmetric loss proposed in Section 3.2, de-

noted as Ours
2. The third one is the results refined with

RPN, denoted as Ours
3. We compare with dataset base-

line and state-of-the-art results. in [Mathias et al., 2016;
Cohen et al., 2014]. For the eTRIMS dataset, we report one
result obtained by the FCN-8s trained with the symmetric
loss. Objects in this dataset are often not rectangles, so in
many cases bounding boxes cannot give a precise pixel-wise
prediction. As a consequence, refinement by detection could
not help too much and even may decrease the performance
with some parameter settings. For the eTRIMS dataset, we
also compare our results with state-of-the-arts methods [Yang
and Förstner, 2011; Mathias et al., 2016; Cohen et al., 2014;
Schmitz and Mayer, 2016].

Class [1] [2] [3] [4] Ours

Building [%] 71 91 91 83 96.03

Car [%] 35 74 70 - 94.20

Door [%] 16 50 18 97 80.66

Pavement [%] 22 15 33 - 84.81

Road [%] 35 73 57 - 90.58

Sky [%] 78 97 97 - 98.06

Vegetation [%] 66 87 90 - 94.16

Window [%] 75 73 71 86 90.91

total acc. [%] 65.8 83.39 83.84 85 94.15

Table 1: Pixel accuracies on the eTRIMS dataset. Accuracies are
shown in percentage. [1] is [Yang and Förstner, 2011], [2] is [Math-
ias et al., 2016], [3] is [Cohen et al., 2014], [4] is [Schmitz and
Mayer, 2016]

4.3 Quantitative Evaluation

Table 2 shows the comparison result of our method and state-
of-the-art methods on the ECP dataset. Ours trained with
symmetric loss and then refined by RPN bounding boxes have
beaten previous state-of-the-art methods by 5.06% absolute
percentage. We report three configurations of our method.

Ours
1 is the result of FCN-8s trained with a plain cross en-

tropy loss. Ours
2 is the result of FCN-8s trained with a sym-

metric loss. Ours
3 is the result of Ours

2 refined by the RPN
bounding boxes. [1] is a baseline method. [2] is the result of
layer 2 in [Mathias et al., 2016] and [3] is the result of layer 3
in [Mathias et al., 2016]. These two layers hold the top accu-
racies of this methods. [4], [5] and [6] are the three parameter
setting reported in [Cohen et al., 2014].

Our method not only outperforms previous state-of-the-
art methods in total accuracy by a large percentage but also
outperforms previous state-of-the-art methods in every sin-
gle class. Specially, window is one of the most important
classes in building facade parsing. Previous methods’ best ac-
curacy was 87%, our best result is 93.04%, that is more than
6% percent improvement. As we can see in the table, {door,
balconey} are hard classes compared to other easier classes.
Our method also achieves a performance gain of 8.95% and
3.07% respectively.

As we can see, the accuracy of the window class increased
from 86.81% to 88.52% after training with the symmetric loss
proposed in this paper. This proves the efficacy of this reg-
ularization term. The accuracies of several classes get a per-
formance boost one step further after being refined with RPN
bounding boxes.

Table 1 shows the accuracies on the eTRIMS dataset. Ours

represents our method training the network using the sym-
metric loss. No bounding box refinement is applied to the
output result. We can see again that our method beats the
previous method in both total accuracy and every single class
by a large extent. Especially in some hard cases like {door,
pavement}. The overall performance gain is over 10%.

4.4 Qualitative Evaluation

Figure 5 shows four samples of qualitative result on the
eTRIMS dataset. In each of the group, the left column shows
the original image. The middle column shows the ground
truth label. The right column shows the result obtained with
our symmetric loss. Generally, the segmentation is visually
pleasing. The location and shape of the objects in the im-
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(a) original image (b) bounding boxes (c) FCN-8s (d) Symmetric Loss (e) RPN refinement

(f) Image (g) Ground Truth (h) Our Result (i) Image (j) Ground Truth (k) Our Result

Figure 5: Qualitative examples on the ECP and eTRIMS dataset.

Class [%] [1] [2] [3] [4] [5] [6] Ours1 Ours2 Ours3

Window [%] 62 76 78 68 87 85 86.81 88.52 93.04

Wall [%] 82 90 89 92 88 90 96.08 95.79 96.14

Balcony [%] 58 81 87 82 92 91 92.44 94.64 95.07

Door [%] 47 58 71 42 82 79 86.08 85.17 90.95

Roof [%] 66 87 79 85 92 91 92.75 94.02 93.73

Sky [%] 95 94 96 93 93 94 96.62 97.48 97.72

Shop [%] 88 97 95 94 96 94 95.68 94.22 95.62

Chimney [%] - - - 54 90 85 85.34 91.30 90.29

total acc. [%] 74.71 88.07 88.02 86.71 89.90 90.34 93.79 94.59 95.40

Table 2: Pixel accuracies comparison on the ECP dataset. [1] is [Yang and Förstner, 2011], [2] and [3] are two variants of [Mathias et al.,
2016], [4][5][6] are three variants of [Cohen et al., 2014].

age are precisely predicted. Specially, windows get well pre-
dicted shapes and are generally symmetric.

Figure 5 shows two examples of qualitative comparison of
different settings of our method. In each row, the left two
images show the original building image and the detected
bounding boxes on the windows. The third image shows the
segmentation result of FCN-8s trained with a plain cross en-
tropy loss. The fourth image shows the result trained with
our symmetric loss. The image on the right shows the result
refined with RPN bounding boxes. We can see the symmetric
loss greatly improve the visual quality of the window class,
making the output shape more symmetric, though not per-
fect. After refinement with RPN bounding boxes, the quality
of the segmentation is further improved. The windows are
more square and the edges of the windows are more smooth.

5 Conclusion

In this paper, we applied deep convolutional neural network
to the 2D facade parsing problem. As far as we know, we

are the first to train an end-to-end deep convolutional neu-
ral network to tackle this problem. We propose a symmet-
ric regularization term and obtain a novel loss function for
training the neural network. The symmetric regularization
can help neural networks to predict the location and shapes
of several object classes more precisely. We also propose an
approach to refine the segmentation result using the Region
Proposal Network (RPN). Experimental results on two chal-
lenging datasets have outperformed previous state-of-the-art
methods significantly, proving the efficacy of our proposed
approach.
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