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Abstract

In modern face recognition, the conventional pipeline

consists of four stages: detect ⇒ align ⇒ represent ⇒ clas-

sify. We revisit both the alignment step and the representa-

tion step by employing explicit 3D face modeling in order to

apply a piecewise affine transformation, and derive a face

representation from a nine-layer deep neural network. This

deep network involves more than 120 million parameters

using several locally connected layers without weight shar-

ing, rather than the standard convolutional layers. Thus

we trained it on the largest facial dataset to-date, an iden-

tity labeled dataset of four million facial images belong-

ing to more than 4,000 identities. The learned representa-

tions coupling the accurate model-based alignment with the

large facial database generalize remarkably well to faces in

unconstrained environments, even with a simple classifier.

Our method reaches an accuracy of 97.35% on the Labeled

Faces in the Wild (LFW) dataset, reducing the error of the

current state of the art by more than 27%, closely approach-

ing human-level performance.

1. Introduction

Face recognition in unconstrained images is at the fore-

front of the algorithmic perception revolution. The social

and cultural implications of face recognition technologies

are far reaching, yet the current performance gap in this do-

main between machines and the human visual system serves

as a buffer from having to deal with these implications.

We present a system (DeepFace) that has closed the ma-

jority of the remaining gap in the most popular benchmark

in unconstrained face recognition, and is now at the brink

of human level accuracy. It is trained on a large dataset of

faces acquired from a population vastly different than the

one used to construct the evaluation benchmarks, and it is

able to outperform existing systems with only very minimal

adaptation. Moreover, the system produces an extremely

compact face representation, in sheer contrast to the shift

toward tens of thousands of appearance features in other re-

cent systems [5, 7, 2].

The proposed system differs from the majority of con-

tributions in the field in that it uses the deep learning (DL)

framework [3, 21] in lieu of well engineered features. DL is

especially suitable for dealing with large training sets, with

many recent successes in diverse domains such as vision,

speech and language modeling. Specifically with faces, the

success of the learned net in capturing facial appearance in

a robust manner is highly dependent on a very rapid 3D

alignment step. The network architecture is based on the

assumption that once the alignment is completed, the loca-

tion of each facial region is fixed at the pixel level. It is

therefore possible to learn from the raw pixel RGB values,

without any need to apply several layers of convolutions as

is done in many other networks [19, 21].

In summary, we make the following contributions : (i)

The development of an effective deep neural net (DNN) ar-

chitecture and learning method that leverage a very large

labeled dataset of faces in order to obtain a face representa-

tion that generalizes well to other datasets; (ii) An effective

facial alignment system based on explicit 3D modeling of

faces; and (iii) Advance the state of the art significantly in

(1) the Labeled Faces in the Wild benchmark (LFW) [18],

reaching near human-performance; and (2) the YouTube

Faces dataset (YTF) [30], decreasing the error rate there by

more than 50%.

1.1. Related Work

Big data and deep learning In recent years, a large num-

ber of photos have been crawled by search engines, and up-

loaded to social networks, which include a variety of un-

constrained material, such as objects, faces and scenes.

This large volume of data and the increase in compu-

tational resources have enabled the use of more powerful

statistical models. These models have drastically improved

the robustness of vision systems to several important vari-

ations, such as non-rigid deformations, clutter, occlusion

and illumination, all problems that are at the core of many

computer vision applications. While conventional machine
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learning methods such as Support Vector Machines, Prin-

cipal Component Analysis and Linear Discriminant Analy-

sis, have limited capacity to leverage large volumes of data,

deep neural networks have shown better scaling properties.

Recently, there has been a surge of interest in neu-

ral networks [19, 21]. In particular, deep and large net-

works have exhibited impressive results once: (1) they

have been applied to large amounts of training data and (2)

scalable computation resources such as thousands of CPU

cores [11] and/or GPU’s [19] have become available. Most

notably, Krizhevsky et al. [19] showed that very large and

deep convolutional networks [21] trained by standard back-

propagation [25] can achieve excellent recognition accuracy

when trained on a large dataset.

Face recognition state of the art Face recognition er-

ror rates have decreased over the last twenty years by three

orders of magnitude [12] when recognizing frontal faces in

still images taken in consistently controlled (constrained)

environments. Many vendors deploy sophisticated systems

for the application of border-control and smart biometric

identification. However, these systems have shown to be

sensitive to various factors, such as lighting, expression, oc-

clusion and aging, that substantially deteriorate their perfor-

mance in recognizing people in such unconstrained settings.

Most current face verification methods use hand-crafted

features. Moreover, these features are often combined

to improve performance, even in the earliest LFW con-

tributions. The systems that currently lead the perfor-

mance charts employ tens of thousands of image descrip-

tors [5, 7, 2]. In contrast, our method is applied directly

to RGB pixel values, producing a very compact yet sparse

descriptor.

Deep neural nets have also been applied in the past to

face detection [24], face alignment [27] and face verifica-

tion [8, 16]. In the unconstrained domain, Huang et al. [16]

used as input LBP features and they showed improvement

when combining with traditional methods. In our method

we use raw images as our underlying representation, and

to emphasize the contribution of our work, we avoid com-

bining our features with engineered descriptors. We also

provide a new architecture, that pushes further the limit of

what is achievable with these networks by incorporating 3D

alignment, customizing the architecture for aligned inputs,

scaling the network by almost two order of magnitudes and

demonstrating a simple knowledge transfer method once the

network has been trained on a very large labeled dataset.

Metric learning methods are used heavily in face ver-

ification, often coupled with task-specific objectives [26,

29, 6]. Currently, the most successful system that uses a

large data set of labeled faces [5] employs a clever transfer

learning technique which adapts a Joint Bayesian model [6]

learned on a dataset containing 99,773 images from 2,995

different subjects, to the LFW image domain. Here, in order

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Alignment pipeline. (a) The detected face, with 6 initial fidu-

cial points. (b) The induced 2D-aligned crop. (c) 67 fiducial points on

the 2D-aligned crop with their corresponding Delaunay triangulation, we

added triangles on the contour to avoid discontinuities. (d) The reference

3D shape transformed to the 2D-aligned crop image-plane. (e) Triangle

visibility w.r.t. to the fitted 3D-2D camera; darker triangles are less visible.

(f) The 67 fiducial points induced by the 3D model that are used to direct

the piece-wise affine warpping. (g) The final frontalized crop. (h) A new

view generated by the 3D model (not used in this paper).

to demonstrate the effectiveness of the features, we keep the

distance learning step trivial.

2. Face Alignment

Existing aligned versions of several face databases (e.g.

LFW-a [29]) help to improve recognition algorithms by pro-

viding a normalized input [26]. However, aligning faces

in the unconstrained scenario is still considered a difficult

problem that has to account for many factors such as pose

(due to the non-planarity of the face) and non-rigid expres-

sions, which are hard to decouple from the identity-bearing

facial morphology. Recent methods have shown successful

ways that compensate for these difficulties by using sophis-

ticated alignment techniques. These methods can use one

or more from the following: (1) employing an analytical

3D model of the face [28, 32, 14], (2) searching for sim-

ilar fiducial-points configurations from an external dataset

to infer from [4], and (3) unsupervised methods that find a

similarity transformation for the pixels [17, 15].

While alignment is widely employed, no complete phys-

ically correct solution is currently present in the context of

unconstrained face verification. 3D models have fallen out

of favor in recent years, especially in unconstrained envi-

ronments. However, since faces are 3D objects, done cor-

rectly, we believe that it is the right way. In this paper, we

describe a system that includes analytical 3D modeling of

the face based on fiducial points, that is used to warp a de-

tected facial crop to a 3D frontal mode (frontalization).

Similar to much of the recent alignment literature, our

alignment is based on using fiducial point detectors to direct

the alignment process. We use a relatively simple fiducial



point detector, but apply it in several iterations to refine its

output. At each iteration, fiducial points are extracted by

a Support Vector Regressor (SVR) trained to predict point

configurations from an image descriptor. Our image de-

scriptor is based on LBP Histograms [1], but other features

can also be considered. By transforming the image using

the induced similarity matrix T to a new image, we can run

the fiducial detector again on a new feature space and refine

the localization.

2D Alignment We start our alignment process by de-

tecting 6 fiducial points inside the detection crop, centered

at the center of the eyes, tip of the nose and mouth loca-

tions as illustrated in Fig. 1(a). They are used to approxi-

mately scale, rotate and translate the image into six anchor

locations by fitting T i
2d := (si, Ri, ti) where: xj

anchor :=
si[Ri|ti]∗x

j
source for points j = 1..6 and iterate on the new

warped image until there is no substantial change, even-

tually composing the final 2D similarity transformation:

T2d := T 1

2d ∗ ... ∗ T k
2d. This aggregated transformation

generates a 2D aligned crop, as shown in Fig. 1(b). This

alignment method is similar to the one employed in LFW-a,

which has been used frequently to boost recognition accu-

racy. However, similarity transformation fails to compen-

sate for out-of-plane rotation, which is particularly impor-

tant in unconstrained conditions.

3D Alignment In order to align faces undergoing out-

of-plane rotations, we use a generic 3D shape model and

register a 3D affine camera, which are used to warp the 2D-

aligned crop to the image plane of the 3D shape. This gen-

erates the 3D-aligned version of the crop as illustrated in

Fig. 1(g). This is achieved by localizing additional 67 fidu-

cial points x2d in the 2D-aligned crop (see Fig. 1(c)), using

a second SVR. As a 3D generic shape model, we simply

take the average of the 3D scans from the USF Human-ID

database, which were post-processed to be represented as

aligned vertices vi = (xi, yi, zi)
n
i=1

. We manually place

67 anchor points on the 3D shape, and in this way achieve

full correspondence between the 67 detected fiducial points

and their 3D references. An affine 3D-to-2D camera P
is then fitted using the generalized least squares solution

to the linear system x2d = X3d
~P with a known covari-

ance matrix Σ, that is, ~P that minimizes the following loss:

loss(~P ) = rTΣ−1r where r = (x2d −X3d
~P ) is the resid-

ual vector and X3d is a (67 ∗ 2)×8 matrix composed by

stacking the (2×8) matrices [x⊤

3d(i), 1,~0;~0, x
⊤

3d(i), 1], with
~0 denoting a row vector of four zeros, for each reference

fiducial point x3d(i). The affine camera P of size 2×4 is

represented by the vector of 8 unknowns ~P . The loss can

be minimized using the Cholesky decomposition of Σ, that

transforms the problem into ordinary least squares. Since,

for example, detected points on the contour of the face tend

to be more noisy, as their estimated location is largely in-

fluenced by the depth with respect to the camera angle, we

use a (67 ∗ 2)×(67 ∗ 2) covariance matrix Σ given by the

estimated covariances of the fiducial point errors.

Frontalization Since full perspective projections and

non-rigid deformations are not modeled, the fitted camera

P is only an approximation. In order to reduce the corrup-

tion of such important identity-bearing factors to the final

warping, we add the corresponding residuals in r to the x-y

components of each reference fiducial point x3d, we denote

this as x̃3d. Such a relaxation is plausible for the purpose of

warping the 2D image with smaller distortions to the iden-

tity. Without it, faces would have been warped into the same

shape in 3D, losing important discriminative factors. Fi-

nally, the frontalization is achieved by a piece-wise affine

transformation T from x2d (source) to x̃3d (target), directed

by the Delaunay triangulation derived from the 67 fiducial

points1. Also, invisible triangles w.r.t. to camera P , can be

replaced using image blending with their symmetrical coun-

terparts.

3. Representation

In recent years, the computer vision literature has at-

tracted many research efforts in descriptor engineering.

Such descriptors when applied to face-recognition, mostly

use the same operator to all locations in the facial im-

age. Recently, as more data has become available, learning-

based methods have started to outperform engineered fea-

tures, because they can discover and optimize features for

the specific task at hand [19]. Here, we learn a generic rep-

resentation of facial images through a large deep network.

DNN Architecture and Training We train our DNN

on a multi-class face recognition task, namely to classify

the identity of a face image. The overall architecture is

shown in Fig. 2. A 3D-aligned 3-channels (RGB) face im-

age of size 152 by 152 pixels is given to a convolutional

layer (C1) with 32 filters of size 11x11x3 (we denote this

by 32x11x11x3@152x152). The resulting 32 feature maps

are then fed to a max-pooling layer (M2) which takes the

max over 3x3 spatial neighborhoods with a stride of 2, sep-

arately for each channel. This is followed by another con-

volutional layer (C3) that has 16 filters of size 9x9x16. The

purpose of these three layers is to extract low-level features,

like simple edges and texture. Max-pooling layers make the

output of convolution networks more robust to local trans-

lations. When applied to aligned facial images, they make

the network more robust to small registration errors. How-

ever, several levels of pooling would cause the network to

lose information about the precise position of detailed facial

structure and micro-textures. Hence, we apply max-pooling

only to the first convolutional layer. We interpret these first

layers as a front-end adaptive pre-processing stage. While

they are responsible for most of the computation, they hold

1
T2d can be used here to avoid going through the 2D lossy warping.



Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three

locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million

parameters, where more than 95% come from the local and fully connected layers.

very few parameters. These layers merely expand the input

into a set of simple local features.

The subsequent layers (L4, L5 and L6) are instead lo-

cally connected [13, 16], like a convolutional layer they ap-

ply a filter bank, but every location in the feature map learns

a different set of filters. Since different regions of an aligned

image have different local statistics, the spatial stationarity

assumption of convolution cannot hold. For example, ar-

eas between the eyes and the eyebrows exhibit very differ-

ent appearance and have much higher discrimination ability

compared to areas between the nose and the mouth. In other

words, we customize the architecture of the DNN by lever-

aging the fact that our input images are aligned. The use

of local layers does not affect the computational burden of

feature extraction, but does affect the number of parameters

subject to training. Only because we have a large labeled

dataset, we can afford three large locally connected layers.

The use of locally connected layers (without weight shar-

ing) can also be justified by the fact that each output unit of

a locally connected layer is affected by a very large patch of

the input. For instance, the output of L6 is influenced by a

74x74x3 patch at the input, and there is hardly any statisti-

cal sharing between such large patches in aligned faces.

Finally, the top two layers (F7 and F8) are fully con-

nected: each output unit is connected to all inputs. These

layers are able to capture correlations between features cap-

tured in distant parts of the face images, e.g., position and

shape of eyes and position and shape of mouth. The output

of the first fully connected layer (F7) in the network will be

used as our raw face representation feature vector through-

out this paper. In terms of representation, this is in con-

trast to the existing LBP-based representations proposed in

the literature, that normally pool very local descriptors (by

computing histograms) and use this as input to a classifier.

The output of the last fully-connected layer is fed to a

K-way softmax (where K is the number of classes) which

produces a distribution over the class labels. If we denote

by ok the k-th output of the network on a given input, the

probability assigned to the k-th class is the output of the

softmax function: pk = exp(ok)/
∑

h exp(oh).

The goal of training is to maximize the probability of

the correct class (face id). We achieve this by minimiz-

ing the cross-entropy loss for each training sample. If k
is the index of the true label for a given input, the loss is:

L = − log pk. The loss is minimized over the parameters

by computing the gradient of L w.r.t. the parameters and

by updating the parameters using stochastic gradient de-

scent (SGD). The gradients are computed by standard back-

propagation of the error [25, 21]. One interesting property

of the features produced by this network is that they are very

sparse. On average, 75% of the feature components in the

topmost layers are exactly zero. This is mainly due to the

use of the ReLU [10] activation function: max(0, x). This

soft-thresholding non-linearity is applied after every con-

volution, locally connected and fully connected layer (ex-

cept the last one), making the whole cascade produce highly

non-linear and sparse features. Sparsity is also encouraged

by the use of a regularization method called dropout [19]

which sets random feature components to 0 during training.

We have applied dropout only to the first fully-connected

layer. Due to the large training set, we did not observe sig-

nificant overfitting during training2.

Given an image I , the representation G(I) is then com-

puted using the described feed-forward network. Any feed-

forward neural network with L layers, can be seen as a com-

position of functions glφ. In our case, the representation is:

G(I) = gF7

φ (gL6

φ (...gC1

φ (T (I, θT ))...)) with the net’s pa-

rameters φ = {C1, ..., F7} and θT = {x2d, ~P , ~r} as de-

scribed in Section 2.

Normaliaztion As a final stage we normalize the fea-

tures to be between zero and one in order to reduce the sen-

sitivity to illumination changes: Each component of the fea-

ture vector is divided by its largest value across the training

set. This is then followed by L2-normalization: f(I) :=
Ḡ(I)/||Ḡ(I)||2 where Ḡ(I)i = G(I)i/max(Gi, ǫ)

3.

Since we employ ReLU activations, our system is not in-

variant to re-scaling of the image intensities. Without bi-

2See the supplementary material for more details.
3
ǫ = 0.05 in order to avoid division by a small number.



ases in the DNN, perfect equivariance would have been

achieved.

4. Verification Metric

Verifying whether two input instances belong to the same

class (identity) or not has been extensively researched in the

domain of unconstrained face-recognition, with supervised

methods showing a clear performance advantage over unsu-

pervised ones. By training on the target-domain’s training

set, one is able to fine-tune a feature vector (or classifier)

to perform better within the particular distribution of the

dataset. For instance, LFW has about 75% males, celebri-

ties that were photographed by mostly professional photog-

raphers. As demonstrated in [5], training and testing within

different domain distributions hurt performance consider-

ably and requires further tuning to the representation (or

classifier) in order to improve their generalization and per-

formance. However, fitting a model to a relatively small

dataset reduces its generalization to other datasets. In this

work, we aim at learning an unsupervised metric that gener-

alizes well to several datasets. Our unsupervised similarity

is simply the inner product between the two normalized fea-

ture vectors. We have also experimented with a supervised

metric, the χ2 similarity and the Siamese network.

4.1. Weighted χ2 distance

The normalized DeepFace feature vector in our method

contains several similarities to histogram-based features,

such as LBP [1] : (1) It contains non-negative values, (2)

it is very sparse, and (3) its values are between [0, 1].

Hence, similarly to [1], we use the weighted-χ2 similarity:

χ2(f1, f2) =
∑

i wi(f1[i] − f2[i])
2/(f1[i] + f2[i]) where

f1 and f2 are the DeepFace representations. The weight

parameters are learned using a linear SVM, applied to vec-

tors of the elements (f1[i]− f2[i])
2/(f1[i] + f2[i]) .

4.2. Siamese network

We have also tested an end-to-end metric learning ap-

proach, known as Siamese network [8]: once learned, the

face recognition network (without the top layer) is repli-

cated twice (one for each input image) and the features are

used to directly predict whether the two input images be-

long to the same person. This is accomplished by: a) taking

the absolute difference between the features, followed by b)

a top fully connected layer that maps into a single logistic

unit (same/not same). The network has roughly the same

number of parameters as the original one, since much of it

is shared between the two replicas, but requires twice the

computation. Notice that in order to prevent overfitting on

the face verification task, we enable training for only the

two topmost layers. The Siamese network’s induced dis-

tance is: d(f1, f2) =
∑

i αi|f1[i] − f2[i]|, where αi are

Figure 3. The ROC curves on the LFW dataset. Best viewed in color.

trainable parameters. The parameters of the Siamese net-

work are trained by standard cross entropy loss and back-

propagation of the error.

5. Experiments

We evaluate the proposed DeepFace system, by learning

the face representation on a very large-scale labeled face

dataset collected online. In this section, we first introduce

the datasets used in the experiments, then present the de-

tailed evaluation and comparison with the state-of-the-art,

as well as some insights and findings about learning and

transferring the deep face representations.

5.1. Datasets

The proposed face representation is learned from a large

collection of photos from Facebook, referred to as the So-

cial Face Classification (SFC) dataset. The representa-

tions are then applied to the Labeled Faces in the Wild

database (LFW), which is the de facto benchmark dataset

for face verification in unconstrained environments, and the

YouTube Faces (YTF) dataset, which is modeled similarly

to the LFW but focuses on video clips.

The SFC dataset includes 4.4 million labeled faces from

4,030 people each with 800 to 1200 faces, where the most

recent 5% of face images of each identity are left out for

testing. This is done according to the images’ time-stamp

in order to simulate continuous identification through aging.

The large number of images per person provides a unique

opportunity for learning the invariance needed for the core

problem of face recognition. We have validated using sev-

eral automatic methods, that the identities used for train-

ing do not intersect with any of the identities in the below-

mentioned datasets, by checking their name labels.



The LFW dataset [18] consists of 13,323 web photos of

5,749 celebrities which are divided into 6,000 face pairs in

10 splits. Performance is measured by mean recognition ac-

curacy using A) the restricted protocol, in which only same

and not same labels are available in training; B) the unre-

stricted protocol, where additional training pairs are acces-

sible in training; and C) an unsupervised setting in which

no training whatsoever is performed on LFW images.

The YTF dataset [30] collects 3,425 YouTube videos

of 1,595 subjects (a subset of the celebrities in the LFW).

These videos are divided into 5,000 video pairs and 10 splits

and used to evaluate the video-level face verification.

The face identities in SFC were labeled by humans,

which typically incorporate about 3% errors. Social face

photos have even larger variations in image quality, light-

ing, and expressions than the web images of celebrities in

the LFW and YTF which were normally taken by profes-

sional photographers rather than smartphones4.

5.2. Training on the SFC

We first train the deep neural network on the SFC as a

multi-class classification problem using a GPU-based en-

gine, implementing the standard back-propagation on feed-

forward nets by stochastic gradient descent (SGD) with mo-

mentum (set to 0.9). Our mini-batch size is 128, and we

have set an equal learning rate for all trainable layers to

0.01, which was manually decreased, each time by an or-

der of magnitude once the validation error stopped decreas-

ing, to a final rate of 0.0001. We initialized the weights

in each layer from a zero-mean Gaussian distribution with

σ = 0.01, and biases are set to 0.5. We trained the network

for roughly 15 sweeps (epochs) over the whole data which

took 3 days. As described in Sec. 3, the responses of the

fully connected layer F7 are extracted to serve as the face

representation.

We evaluated different design choices of DNN in terms

of the classification error on 5% data of SFC as the test

set. This validated the necessity of using a large-scale face

dataset and a deep architecture. First, we vary the train/test

dataset size by using a subset of the persons in the SFC.

Subsets of sizes 1.5K, 3K and 4K persons (1.5M, 3.3M, and

4.4M faces, respectively) are used. Using the architecture

in Fig. 2, we trained three networks, denoted by DF-1.5K,

DF-3.3K, and DF-4.4K. Table 1 (left column) shows that

the classification error grows only modestly from 7.0% on

1.5K persons to 7.2% when classifying 3K persons, which

indicates that the capacity of the network can well accom-

modate the scale of 3M training images. The error rate rises

to 8.7% for 4K persons with 4.4M images, showing the net-

work scales comfortably to more persons. We’ve also varied

the global number of samples in SFC to 10%, 20%, 50%,

4See the supplementary material for more details about SFC.

leaving the number of identities in place, denoted by DF-

10%, DF-20%, DF-50% in the middle column of Table 1.

We observed the test errors rise up to 20.7%, because of

overfitting on the reduced training set. Since performance

does not saturate at 4M images, this shows that the network

would benefit from even larger datasets.

We also vary the depth of the networks by chopping off

the C3 layer, the two local L4 and L5 layers, or all these 3

layers, referred respectively as DF-sub1, DF-sub2, and DF-

sub3. For example, only four trainable layers remain in DF-

sub3 which is a considerably shallower structure compared

to the 9 layers of the proposed network in Fig. 2. In training

such networks with 4.4M faces, the classification errors stop

decreasing after a few epochs and remains at a level higher

than that of the deep network, as can be seen in Table 1

(right column). This verifies the necessity of network depth

when training on a large face dataset.

5.3. Results on the LFW dataset

The vision community has made significant progress

on face verification in unconstrained environments in re-

cent years. The mean recognition accuracy on LFW [18]

marches steadily towards the human performance of over

97.5% [20]. Given some very hard cases due to aging ef-

fects, large lighting and face pose variations in LFW, any

improvement over the state-of-the-art is very remarkable

and the system has to be composed by highly optimized

modules. There is a strong diminishing return effect and any

progress now requires a substantial effort to reduce the num-

ber of errors of state-of-the-art methods. DeepFace couples

large feedforward-based models with fine 3D alignment.

Regarding the importance of each component: 1) Without

frontalization: when using only the 2D alignment, the ob-

tained accuracy is “only” 94.3%. Without alignment at all,

i.e., using the center crop of face detection, the accuracy is

87.9% as parts of the facial region may fall out of the crop.

2) Without learning: when using frontalization only, and a

naive LBP/SVM combination, the accuracy is 91.4% which

is already notable given the simplicity of such a classifier.

All the LFW images are processed in the same pipeline

that was used to train on the SFC dataset, denoted as

DeepFace-single. To evaluate the discriminative capability

of the face representation in isolation, we follow the unsu-

pervised setting to directly compare the inner product of a

pair of normalized features. Quite remarkably, this achieves

a mean accuracy of 95.92% which is almost on par with

the best performance to date, achieved by supervised trans-

fer learning [5]. Next, we learn a kernel SVM (with C=1)

on top of the χ2-distance vector (Sec. 4.1) following the

restricted protocol, i.e., where only the 5,400 pair labels

per split are available for the SVM training. This achieves

an accuracy 97.00%, reducing significantly the error of the

state-of-the-art [7, 5], see Table 3.



Network Error Network Error Network Error

DF-1.5K 7.00% DF-10% 20.7% DF-sub1 11.2%

DF-3.3K 7.22% DF-20% 15.1% DF-sub2 12.6%

DF-4.4K 8.74% DF-50% 10.9% DF-sub3 13.5%

Table 1. Comparison of the classification errors on the SFC w.r.t.

training dataset size and network depth. See Sec. 5.2 for details.

Network Error (SFC) Accuracy ± SE (LFW)

DeepFace-align2D 9.5% 0.9430 ±0.0043

DeepFace-gradient 8.9% 0.9582 ±0.0037

DeepFace-Siamese NA 0.9617 ±0.0038

Table 2. The performance of various individual DeepFace net-

works and the Siamese network.

Ensembles of DNNs Next, we combine multiple net-

works trained by feeding different types of inputs to the

DNN: 1) The network DeepFace-single described above

based on 3D aligned RGB inputs; 2) The gray-level im-

age plus image gradient magnitude and orientation; and 3)

the 2D-aligned RGB images. We combine those distances

using a non-linear SVM (with C=1) with a simple sum

of power CPD-kernels: KCombined := Ksingle + Kgradient +
Kalign2d, where K(x, y) := −||x− y||2, and following the

restricted protocol, achieve an accuracy 97.15%.

The unrestricted protocol provides the operator with

knowledge about the identities in the training sets, hence

enabling the generation of many more training pairs to be

added to the training set. We further experiment with train-

ing a Siamese Network (Sec. 4.2) to learn a verification met-

ric by fine-tuning the Siamese’s (shared) pre-trained feature

extractor. Following this procedure, we have observed sub-

stantial overfitting to the training data. The training pairs

generated using the LFW training data are redundant as

they are generated out of roughly 9K photos, which are

insufficient to reliably estimate more than 120M parame-

ters. To address these issues, we have collected an ad-

ditional dataset following the same procedure as with the

SFC, containing an additional new 100K identities, each

with only 30 samples to generate same and not-same pairs

from. We then trained the Siamese Network on it followed

by 2 training epochs on the LFW unrestricted training splits

to correct for some of the data set dependent biases. The

slightly-refined representation is handled similarly as be-

fore. Combining it into the above-mentioned ensemble,

i.e., KCombined += KSiamese, yields the accuracy 97.25%, un-

der the unrestricted protocol. By adding four additional

DeepFace-single networks to the ensemble, each trained

from scratch with different random seeds, i.e., KCombined +=∑
KDeepFace-Single, the obtained accuracy is 97.35%. The

performances of the individual networks, before combina-

tion, are presented in Table 2.

The comparisons with the recent state-of-the-art meth-

Method Accuracy ± SE Protocol

Joint Bayesian [6] 0.9242 ±0.0108 restricted

Tom-vs-Pete [4] 0.9330 ±0.0128 restricted

High-dim LBP [7] 0.9517 ±0.0113 restricted

TL Joint Bayesian [5] 0.9633 ±0.0108 restricted

DeepFace-single 0.9592 ±0.0029 unsupervised

DeepFace-single 0.9700 ±0.0028 restricted

DeepFace-ensemble 0.9715 ±0.0027 restricted

DeepFace-ensemble 0.9735 ±0.0025 unrestricted

Human, cropped 0.9753

Table 3. Comparison with the state-of-the-art on the LFW dataset.

Method Accuracy (%) AUC EER

MBGS+SVM- [31] 78.9 ±1.9 86.9 21.2

APEM+FUSION [22] 79.1 ±1.5 86.6 21.4

STFRD+PMML [9] 79.5 ±2.5 88.6 19.9

VSOF+OSS [23] 79.7 ±1.8 89.4 20.0

DeepFace-single 91.4 ±1.1 96.3 8.6

Table 4. Comparison with the state-of-the-art on the YTF dataset.

ods in terms of the mean accuracy and ROC curves are pre-

sented in Table 3 and Fig. 3, including human performance

on the cropped faces. The proposed DeepFace method ad-

vances the state-of-the-art, closely approaching human per-

formance in face verification.

5.4. Results on the YTF dataset

We further validate DeepFace on the recent video-level

face verification dataset. The image quality of YouTube

video frames is generally worse than that of web photos,

mainly due to motion blur or viewing distance. We em-

ploy the DeepFace-single representation directly by creat-

ing, for every pair of training videos, 50 pairs of frames,

one from each video, and label these as same or not-same

in accordance with the video training pair. Then a weighted

χ2 model is learned as in Sec. 4.1. Given a test-pair, we

sample 100 random pairs of frames, one from each video,

and use the mean value of the learned weighed similarity.

The comparison with recent methods is shown in Ta-

ble 4 and Fig. 4. We report an accuracy of 91.4% which

reduces the error of the previous best methods by more than

50%. Note that there are about 100 wrong labels for video

pairs, recently updated to the YTF webpage. After these are

corrected, DeepFace-single actually reaches 92.5%. This

experiment verifies again that the DeepFace method easily

generalizes to a new target domain.

5.5. Computational efficiency

We have efficiently implemented a CPU-based feedfor-

ward operator, which exploits both the CPU’s Single In-

struction Multiple Data (SIMD) instructions and its cache

by leveraging the locality of floating-point computations



Figure 4. The ROC curves on the YTF dataset. Best viewed in color.

across the kernels and the image. Using a single core In-

tel 2.2GHz CPU, the operator takes 0.18 seconds to extract

features from the raw input pixels. Efficient warping tech-

niques were implemented for alignment; alignment alone

takes about 0.05 seconds. Overall, the DeepFace runs at

0.33 seconds per image, accounting for image decoding,

face detection and alignment, the feedforward network, and

the final classification output.

6. Conclusion

An ideal face classifier would recognize faces in accu-

racy that is only matched by humans. The underlying face

descriptor would need to be invariant to pose, illumination,

expression, and image quality. It should also be general, in

the sense that it could be applied to various populations with

little modifications, if any at all. In addition, short descrip-

tors are preferable, and if possible, sparse features. Cer-

tainly, rapid computation time is also a concern. We believe

that this work, which departs from the recent trend of using

more features and employing a more powerful metric learn-

ing technique, has addressed this challenge, closing the vast

majority of this performance gap. Our work demonstrates

that coupling a 3D model-based alignment with large capac-

ity feedforward models can effectively learn from many ex-

amples to overcome the drawbacks and limitations of previ-

ous methods. The ability to present a marked improvement

in face recognition, attests to the potential of such coupling

to become significant in other vision domains as well.
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