
Chapter 11
Deepfake Detection Using Multiple Data
Modalities

Hanxiang Hao, Emily R. Bartusiak, David Güera, Daniel Mas Montserrat,
Sriram Baireddy, Ziyue Xiang, Sri Kalyan Yarlagadda, Ruiting Shao,
János Horváth, Justin Yang, Fengqing Zhu, and Edward J. Delp

Abstract Falsified media threatens key areas of our society, ranging from politics to
journalism to economics. Simple and inexpensive tools available today enable easy,
credible manipulations of multimedia assets. Some even utilize advanced artificial
intelligence concepts to manipulate media, resulting in videos known as deepfakes.
Social media platforms and their “echo chamber” effect propagate fabricated digital
content at scale, sometimeswith dire consequences in real-world situations.However,
ensuring semantic consistency across falsified media assets of different modalities
is still very challenging for current deepfake tools. Therefore, cross-modal analysis
(e.g., video-based and audio-based analysis) provides forensic analysts an opportu-
nity to identify inconsistencies with higher accuracy. In this chapter, we introduce
several approaches to detect deepfakes. These approaches leverage different data
modalities, including video and audio. We show that the presented methods achieve
accurate detection for various large-scale datasets.

11.1 Introduction

The rapid proliferation of easy-to-use machine learning tools contributes to an ever-
increasing amount of manipulated media. These tools enable users to create realistic
and believable face swaps in images and videos. They also convincingly alter or
replace audio tracks in videos. Some of these tools use machine learning (ML) and
deep learning (DL) techniques. Videos (with or without audio) generated with deep
learning methods are collectively referred to as the term deepfakes. Recently, many
methods have been developed to effectively detect these deepfake videos. Since most
of the deepfake videos still contain the artifacts that are caused by inaccurate face
swapping (i.e., splicing artifacts), [1, 2] propose to detect these manipulated videos

H. Hao · E. R. Bartusiak · D. Güera · D. Mas Montserrat · S. Baireddy · Z. Xiang ·
S. K. Yarlagadda · R. Shao · J. Horváth · J. Yang · F. Zhu · E. J. Delp (B)
Video and Image Processing Laboratory (VIPER), School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN, USA
e-mail: ace@ecn.purdue.edu

© The Author(s) 2022
C. Rathgeb et al. (eds.), Handbook of Digital Face Manipulation and Detection,
Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-030-87664-7_11

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87664-7_11&domain=pdf
mailto:ace@ecn.purdue.edu
https://doi.org/10.1007/978-3-030-87664-7_11

236 H. Hao et al.

by finding the temporal inconsistency of 3-D head pose and facial landmarks using
Support Vector Machine (SVM). Most of the deepfake generation tools are based
on the Generative Adversarial Networks (GANs). In [3, 4], several deep-learning-
based detectors are proposed to discriminate between authentic images and GAN-
generated images obtained from various GAN-based deepfake generators. In order
to improve the generalizability of the detection methods, [5] uses metric learning
and adversarial learning to enable to the deepfake detection method trained only
with authentic videos without the requirement of manipulated videos. Please refer
to [6–9] for the completed survey about the deepfake detection methods.

In this chapter, we present various methods to detect the manipulated videos by
leveraging different datamodalities (e.g., video, audio).Wefirst propose an approach
to detect deepfakes by utilizing spatiotemporal information present in videos. More
specifically, we use Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) to extract visual and temporal features fromvideo frame sequences
to accurately detect manipulations. This technique focuses on face swapping detec-
tion by examining the visual and temporal features of facial regions in each frame.
Some frames may contain blurry faces, hindering effective detection of manipu-
lations. To solve this issue, we utilize a novel attention mechanism to emphasize
reliable frames and disregard low-quality frames in each sequence.

Next, we present a method that analyzes audio signals to determine whether they
contain real human voices or fake human voices (i.e., voices generated by neural
acoustic and waveform models). Instead of analyzing the audio signals directly, the
proposed approach converts the audio signals into spectrogram images displaying
frequency, intensity, and temporal content and evaluates them with a CNN. We con-
vert the audio signals into spectograms in order to leverage frequency information
and provide amore amenable configuration of the data to a CNN.ACNNcan analyze
different frequency ranges more explicitly from a spectrogram, revealing artifacts in
certain frequency ranges. This method can also aid in a deepfake detection task in
which the audio as well as the visual content has been manipulated. Analysts can
use our method to verify the voice tracks of videos and flag them as manipulated if
either the audio analysis or the video analysis reveals manipulated content.

Finally, we extend the previous video-based and audio-based methods to detect
deepfakes using audio-video inconsistency. As mentioned previously, ensuring
semantic consistency across these manipulated media assets of different modali-
ties is still very challenging for current deepfake tools. For a photo-realistic deepfake
video, a visual analysis alone may not be able to detect the manipulations, but pairing
the visual analysis with audio analysis provides an additional avenue for authentic-
ity verification. Therefore, we also describe several existing methods to analyze the
correlations between lip movements and voice signals via phoneme-viseme mis-
matching and affective cues. These methods incorporate both video and audio data
modalities, which provide rich information for deepfake detection.

The remaining sections in this chapter are structured as follows. Section11.2 dis-
cusses a deepfake detection method that relies only on video content. Section11.3
presents amethod that introduces audio analysis to detect manipulated audio. Finally,

11 Deepfake Detection Using Multiple Data Modalities 237

Sect. 11.4 explores several methods to evaluate audio-video inconsistency for deep-
fake video detection, building off of the methods presented in Sect. 11.3.

11.2 Deepfake Detection via Video Spatiotemporal Features

With the fast development of deepfake techniques, deepfake videos seem more and
more realistic, causing viewers to struggle to determine their authenticity. However,
current deepfake techniques still suffer from temporal inconsistency issues, such as
flickering and unrealistic eye blinking. In this section, we introduce a deep learning-
based method to detect deepfakes by incorporating temporal information with video
frames.

Figure11.1 shows the block diagram of our spatiotemporal-based method. A
shared CNN model first encodes input video frames into deep features. CNNs have
achieved success in many vision tasks, such as image recognition and semantic seg-
mentation. In our case, we utilize these CNNmodels to extract features for deepfake
detection. In recent literature [10, 11], InceptionV3 [12], EfficientNet [13], Xception
model [14], or an ensemble of these models have been used to extract deepfake fea-
tures. Transfer learning is also used to fine-tune these models that are pretrained on
some large-scale image datasets (e.g., ImageNet [15]) to speed up training processes
and improve performance. We will compare the results achieved with these CNNs
in Sect. 11.2.6. A shared CNN model also reduces the number of parameters that
must be trained. This technique will force the model to extract the features that are
agnostic to the input video content and manipulation methods, which is important to
make the model generalize better to new deepfake videos.

Then, we input the features to a temporally aware network to leverage the rela-
tionship between frames. There are many types of temporally aware networks,
including Recurrent Neural Networks (RNNs), Long Short-TermMemory networks

Fig. 11.1 Overview of the spatiotemporal deepfake detection system

238 H. Hao et al.

(LSTMs) [16], and Gated Recurrent Units (GRUs) [17]. LSTMs and GRUs are
special kinds of RNNs that are capable of learning long-term dependencies across
sequences. For our deepfake detection task, a GRU will analyze CNN-extracted
features from video frames to accumulate useful information related to deepfake
artifacts. The GRU leverages temporal information implicitly to reveal deepfakes,
rather then being explicitly designed to focus on temporal inconsistencies. This fea-
ture will also prepare the model to generalize better to different types of deepfakes.
The result of the GRU is a new representation of the video in the latent space that
contains discriminating information from the entire video.

Next, we use a classifier to label a video as authentic or manipulated. For deep
learning models, people often use a multi-layer perceptron (MLP) (i.e., fully con-
nected layers) as a classifier along with batch normalization and Rectified Linear
Unit (ReLU).

11.2.1 Overview

In this section, we introduce the details of our video-based deepfake detection
approach. The main workflow commences with CNN-based face detection followed
by CNN-based facial feature extraction to determine a set of salient facial indicators
that will aid in manipulation detection. Then, the facial features are analyzed by an
Automatic Face Weighting (AFW) mechanism and a Gated Recurrent Unit (GRU)
network to extract meaningful features to verify videos as authentic or manipulated.
Additionally, a Boosting Network is used to aid the backbone network in learning to
discriminate between authentic and manipulated videos.

11.2.2 Model Component

The next few sections detail the architecture of the main ensemble network, which
consists of the CNN-based face detector, CNN-based feature extractor, AFW, and
GRU.

Face Detection. For our analysis, we focus on faces, which typically are the pri-
mary target of deepfakes. This means that face regions generally contain indicators
of a video’s true nature. Thus, the first step in our approach is to locate faces within
video frames. We use a Multi-task Cascaded Convolutional Network (MTCNN)
[18] for this task since it produces bounding boxes around faces and facial land-
marks simultaneously. MTCNN consists of three stages. In the first stage, a fully
convolutional network, called Proposal Network, generates a large number of face
bounding box proposals. In the second stage, another CNN, called Refine Network,
improves the output from the first stage by rejecting a large number of false propos-
als. The remaining valid proposals are passed to the third stage, where the bounding
boxes and facial landmark positions are finalized. Non-maximum suppression and

11 Deepfake Detection Using Multiple Data Modalities 239

bounding box regression are applied in every stage to suppress overlapping proposals
and refine the output prediction.

To speed up face detection, we downsample each video by a factor of 4 and
extract faces from 1 in every 10 frames. We also expand the margin of detected
face bounding boxes by 20 pixels to include possible deepfake artifacts around the
edges of faces and hairlines. After face detection, we resize all face occurrences to
224 × 224 pixels.

Face Feature Extraction. After detecting faces in the frames, we begin to train
our deepfake detectionmodel to identify authentic andmanipulated faces.We extract
features with another CNN and perform binary classification to determine if the faces
contain authentic or manipulated information. Because of the large amount of video
data that needs to be processed, we prioritize CNNs that are both fast and accurate
for this task. In the end, we chose to use EfficientNet-b5 [13] since it was designed
with neural architecture search to ensure it is both lightweight and highly accurate.

We further enhance EfficientNet by training it with the additive angular margin
loss (ArcFace) [19] as opposed to softmax and cross-entropy. ArcFace is a learnable
loss function that modifies the regular classification cross-entropy loss to ensure
a more efficient representation. It aims to enforce a margin between each class in
the latent feature space obtained from the previously mentioned CNN models. This
results in features that are forced to be highly discriminative, resulting in a more
robust classification.

Automatic Face Weighting. After classifying each frame as manipulated or not,
we have to determine a classification for the entire video. The straightforward option
is to simply average the classifications of the frames to come up with a video clas-
sification. However, this may not be the best option. Generally, face detectors are
accurate, but sometimes they incorrectly categorize background regions in images as
“faces”, which can impact frame-level and video-level classifications in downstream
applications. Additionally, there is no limit on the number of faces in a frame, of
which any number can be authentic or manipulated. Faces can also be blurry or noisy,
which further complicates direct averaging of frame predictions.

To address this issue, we propose an automatic face weighting (AFW)mechanism
that highlights the faces that reliably contribute to the correct video-level classifica-
tion while disregarding less reliable faces. This approach can be considered similar
to the attention mechanisms found in transformer networks [20]. We assign a weight
w j to the output label l j determined by EfficientNet for the j th extracted face. Using
these weights, we can calculate a weighted average of all the frames’ labels to obtain
a final classification for the video. Both labels l j and weights w j are estimated by
a fully connected linear layer that takes the EfficientNet features as input, meaning
that the EfficientNet features are used to determine a label for how much a face has
been manipulated (l j) as well as how confident the network is of its classification
(w j). The final output probability pw of a video being manipulated can be calculated
as

pw = σ

(∑N
j=1 w j l j∑N
j=1 w j

)
, (11.1)

240 H. Hao et al.

where w j and l j are the weight value and label obtained for the j th face region,
respectively, N is the total number of frames under analysis, and σ(.) refers to the
sigmoid function. To ensure that w j ≥ 0, we pass w j through a ReLU function.
We also perturb the values with a small value to avoid division by 0. This process
ensureswehave an adaptive approach to combine frame-level classifications to obtain
a video-level classification.

GatedRecurrentUnit. In thiswork, we chooseGatedRecurrentUnit (GRU) [17]
as the temporal-aware network. As previously mentioned, LSTM and GRU are spe-
cial kinds of RNNs. Both of them improve the original RNN using multiple gated
units to resolve the vanishing gradient issue in order to learn the long-term depen-
dencies across sequences. Due to the less complicated structure, we choose GRU
instead of LSTM to reduce the training time. GRU is used to analyze all previously
computed values in a temporal manner to evaluate the information learned over
time. More specifically, GRU operates on vectors describing each face detected in
a video, where the vectors consist of 1,048 facial features extracted with Efficient-
Net for frame j , the logit l j , the weight w j , and the probability of manipulation pw

computed with AFW.
The GRU consists of three stacked, bi-directional layers, and a uni-directional

layer with a hidden layer of 512. The final layer consists of a linear layer with a
sigmoid activation function to estimate a final probability, pRNN , which describes
the likelihood that the video is manipulated.

Weight Initialization. Each network of the overall ensemble is initialized with
weights in a manner that will help it best succeed. We use a pretrained MTCNN for
face detection. The EfficientNet face extractor is initialized with weights pretrained
on ImageNet, and the AFW and GRU are initialized with random weights. Before
training the entire ensemble in an end-to-end fashion, we train the EfficientNet with
the ArcFace loss on 2,000 batches of cropped faces selected randomly. Although this
initial training step is not necessary to increase the accuracy of the overall approach,
our experiments indicated that it aided the network in faster convergence with a more
stable training process. This step ensures the parameters passed onto the rest of the
network are more suited to our deepfake detection task.

Loss Function. The network utilizes three different loss functions. The first is
ArcFace loss, which operates on the output of EfficientNet. It is used only to update
the weights of EfficientNet to extract facial features based on batches of cropped
faces from randomly selected frames and videos. The second loss function is a binary
cross-entropy (BCE) loss, which operates on the AFW prediction pw. It is used to
update theweights associatedwith EfficientNet and theAFW. The third loss function
is another BCE, which operates on the GRU prediction pRNN . It is used to update
the weights of EfficientNet, the AFW, and the GRU. The ArcFace loss evaluates
frame-level classifications, while the BCE losses evaluate video-level predictions.

11 Deepfake Detection Using Multiple Data Modalities 241

11.2.3 Training Details

In this work, we train and evaluate the proposed method on the Deepfake Detec-
tion Challenge (DFDC) Dataset [21]. We split the dataset into training, validation,
and testing sets with the ratio of 3:1:1. Since our approach consists of many com-
ponents that rely upon each other, it is important to train each portion properly to
ensure the success of the overall ensemble. We train our facial feature extractor (i.e.,
EfficientNet), the AFW, and the GRU ourselves, but we do not train or update the
MTCNN. The entire ensemble is trained end-to-end with the Adam optimizer [22]
and a learning rate of 0.001.

Our method can only afford to evaluate one video at a time during training due
to the size of the network, the number of frames, and GPU computational limits.
However, the network parameters are updated after processing groups of videos.
EfficientNet is updated with the ArcFace loss after 256 random frames, and the
entire ensemble is updated with the BCE losses after 64 videos. During training, we
oversample videos that contain genuine, authentic faces to balance the dataset so that
the network is presented with balanced manipulated and authentic faces during the
training process.

11.2.4 Boosting Network

In order to further improve themodel performance,we alsoutilize a boostingnetwork.
The boosting network is a duplicate of the backbonewith a different objective. Instead
of minimizing BCE on class predictions, the boosting network strives to predict error
in the logit domain between predictions and the true classifications for both the AFW
and the GRU. More specifically, the output of the AFW layer is defined as

pbw = σ

(∑N
j=1(w j l j + wb

j l
b
j)∑N

j=1(w j + wb
j)

)
, (11.2)

where w j and l j refer to the weights and logits produced by the main network and
wb

j and lbj refer to the weights and logits produced by the boosting network for the
j th face region. N is the total number of frames under analysis, and σ(.) refers to
the sigmoid function. In a similar manner, the output of the GRU is defined as

pbRNN = σ(lRNN + lbRNN), (11.3)

where lRNN refers to the logit produced by the GRU of the main network, lbRNN
refers to the logit produced by the GRU of the boosting network, and σ(.) refers
to the sigmoid function. The main network is trained on the training data, while
the boosting network is trained on the validation data. The main network and the
boosting network interact in the AFW layer and after the GRU.

242 H. Hao et al.

11.2.5 Test Time Augmentation

We leverage one other technique to enhance the performance of our approach: data
augmentation during testing. Data augmentation has been used in training to reduce
overfitting. However, in our experiments, we discover that using the following data
augmentation procedure during testing can reduce the incorrect and overconfident
predictions. Once the MTCNN identifies facial regions in a desired frame, we crop
the designated areas in the desired frame, in the previous two frames, and in the
following two frames. We repeat this for all frames in the test sequence, resulting in
five sequences of video frames depicting faces. Next, we randomly apply a horizontal
flip data augmentation to each sequence and run each of the sequences through our
full model. The final classification prediction for a video sequence is the average of
the five predictions on the shifted sequences. This technique decreases the number
of incorrect and overconfident predictions since averaging smooths out anomalous
predictions.

11.2.6 Result Analysis

We train and evaluate the proposed method on the Deepfake Detection Challenge
(DFDC) Dataset [21]. In addition, we make quantitative comparisons with Efficient-
Net [13], Xception [14], Conv-LSTM [10], and a modified version of Conv-LSTM
using the facial regions detected by MTCNN as input. For the EfficientNet [13]
and Xception [14] networks, the final prediction result of each video is obtained by
averaging the predictions of each frame.

We select a configuration for eachmodel based on the validation set with balanced
authentic/manipulated data. The corresponding Receiver Operating Characteristic
(ROC) and Detection Error Trade-off (DET) curves are shown in Fig. 11.2. Since the
Conv-LSTMmethod extracts the features based on the entire video frames, it cannot
effectively capture the manipulations that occur in facial regions. However, when we
use the detected facial regions instead of the entire frames as input, the detection per-
formance improves significantly. The two typical CNN models EfficientNet-b5 [13]
and Xception [14] have achieved good performance in manipulation detection based
on video frames. The results of the proposed method indicate that performance of
EfficientNet-b5 can be further improved by adding an Automatic Face Weighting
layer (AFW) and a Gated Recurrent Unit (GRU).

We also evaluate how the boosting network and data augmentation affects the
results in the testing phase. In order to do so, we use the log-likelihood error (the
lower the better) to represent the system performance, since log-likelihood score can
penalize heavily for being confident but wrong. The results are shown in Table11.1.
It demonstrates that by including both the boosting network and test augmentation
at the same time, the log-likelihood can be decreased to 0.321.

11 Deepfake Detection Using Multiple Data Modalities 243

(a) (b)

(c) (d)

Fig. 11.2 The manipulation detection performance comparison. Figures a and b are the ROC
curves obtained from validation and testing sets, respectively. Figures c and d are the DET curves
obtained from validation and testing sets, respectively

Table 11.1 The log-likelihood error results

Method Log-likelihood

Baseline 0.364

Baseline + Boosting network 0.341

Baseline + Boosting network + Test augmentation 0.321

11.3 Deepfake Detection via Audio Spectrogram Analysis

Visual content is just one data modality that can be altered. Audio attacks can be
used to spoof devices to gain access to personal records. They may also be used to
change the message delivered by a figure in a video. Such attacks may consist of
only newly synthesized audio to achieve a nefarious objective. Other times, falsified
audio may be used in deepfakes to sync with the newly generated faces (or just lips)
in the videos [23]. We need methods to analyze standalone audio signals as well as
signals that accompany visual content to verify the authenticity of the messages we
hear.

244 H. Hao et al.

A Genuine Audio Signal

A Synthesized Audio Signal

Fig. 11.3 Left column: Raw audio waveforms, where indicates an authentic audio signal
and indicates a synthesized audio signal. Right column: Spectrograms corresponding to the
raw audio waveforms, which serve as inputs to the CNN to classify the signals based on authenticity

In this section, we present a method that analyzes audio signals to determine
their authenticity. Our approach works by analyzing audio signals in the form of
spectrograms, as shown in Fig. 11.3, with a Convolutional Neural Network (CNN).
This work can prevent spoofing attacks by analyzing audio signals on their own, or
it can aid in the detection of deepfakes by adding audio analysis to a video analysis
as shown in Sect. 11.4.

11.3.1 Overview

We present a method that analyzes a few seconds of an audio signal and identifies
whether it is genuine human speech or synthesized speech. Figure11.4 depicts an
overview of our method. It consists of four main steps. First, we apply the Fourier
Transform to raw audio waveforms. Then, we use the resulting Fourier coefficients to

11 Deepfake Detection Using Multiple Data Modalities 245

Fig. 11.4 Proposed Method. The proposed approach applies the Fourier Transform to raw audio
signals to generate spectrogram “images”—the inputs to the CNN. The CNN classifies signals as
authentic or synthesized

construct spectrograms of the audio waveforms. Next, we analyze the spectrograms
with a CNN, and finally we classify audio signals as authentic or synthesized.

11.3.2 Dataset

For our experiments, we utilize the dataset [24] of the 2019 Automatic Speaker
Verification Spoofing and Countermeasures Challenge (ASVspoof2019) [25]. This
large-scale dataset contains 121,467 audio tracks. Some of the audio samples are
authentic and contain recordings of humans speaking. Other samples contain audio
to be used in spoofing attacks. The inauthentic audio samples were generated via
voice conversion (VC), speech synthesis (SS), and replay methods. Since our ambi-
tions focusmore on deepfake detection than spoofing attacks, we only consider audio
signals that have been synthetically generated to replicate human voices, which is
included in the VC and SS subsets. This data was generated with neural acoustic
models and Artificial Intelligence, including Long Short-Term Memory networks
(LSTMs) and Generative Adversarial Networks (GANs). For training and evaluat-
ing our CNN classifier, we utilize the official dataset split of the ASVspoof2019
challenge, which divides the full dataset into 25,380 training audio tracks, 24,844
validation tracks, and 71,243 testing tracks.

11.3.3 Spectrogram Generation

The first step in our audio verification method is to apply the Fourier transform
to raw audio signals. A Fast Fourier Transform (FFT) is a method that efficiently
computes the Discrete Fourier Transform (DFT) of a sequence. We utilize the FFT to
compute the Fourier coefficients of an audio signal under analysis. Then, we convert
the Fourier coefficients to decibels. The second step in our approach is to construct
spectrograms of the audio signals. We create spectrogram “images” of size 50x34
pixels to analyzewith our CNN. Examples of the spectrograms created for our dataset
are shown in Fig. 11.3.

246 H. Hao et al.

Spectrograms convey information about the intensity of an audio signal over time
and frequency. One axis depicts time and the other depicts frequency. The intensity
of an audio signal is represented via color at a specific time and frequency. Brighter
colors that are closer to shades of yellow indicate greater intensity and volume of
the audio signals. On the other hand, darker colors that are closer to shades of purple
or black indicate lower intensity and quieter volume of the audio signals. Although
these colors assist us in seeing the differences in intensity over time and frequency
of an audio signal, we do not use them in the spectrograms analyzed by the CNN.
After the spectrogram images are constructed, we remove the color and convert the
images to grayscale. We also normalize their values to prepare them for analysis by
the CNN.

11.3.4 Convolutional Neural Network (CNN)

Since our method analyzes spectrogram “images”, our CNN employs 2-D convolu-
tions. This is in contrast to a CNN that analyzes a raw audio waveform, which would
utilize 1-D convolutions across the 1-D sequence. By using 2-D convolutions to ana-
lyze spectrograms, our method incorporates intensity information over frequency
and time.

Table11.2 outlines the specifics of the network architecture. It mainly consists
of two convolutional layers. Next, it utilizes max pooling and dropout to introduce
regularization into the network and decrease the chances of overfitting. After two
dense layers and more dropout, the CNN produces a final class prediction, indicating
whether the audio signal is authentic or synthesized. We train the CNN for 10 epochs
using the Adam optimizer [26] and cross-entropy loss function.

Table 11.2 CNN Details. This table specifies the parameters of the developed CNN. Each row in
the table describes (from left to right) the function of the layer, its output shape, and the number of
parameters it introduces to the CNN. (N, H, W) refers to the number of feature maps produced by
the layer (N), along with their height H and width W

Layer Output shape (N, H, W) Parameters

conv1 (32, 48, 32) 320

conv2 (30, 46, 64) 18,496

max pooling (15, 23, 64) 0

dropout1 (15, 23, 64) 0

flatten1 (22080) 0

dense1 (128) 2,826,368

dropout2 (128) 0

dense2 (2) 258

11 Deepfake Detection Using Multiple Data Modalities 247

Table 11.3 Results. This table presents results achieved with the baseline random classifier and
our CNN approach

Method Accuracy (%) Precision (%) Recall (%) F-1 (%)

Baseline (random) 49.98 50.12 50.34 40.69

Proposed method 82.54 66.00 81.38 68.93

11.3.5 Experimental Results

Table11.3 summarizes the results of our method. We evaluate our results based on
accuracy, precision, recall, and F1-score. We also calculate Receiver Operator Char-
acteristic (ROC),DetectionErrorTrade-off (DET), andPrecision-Recall (PR) curves.
We demonstrate the success of our method over a random classifier, which serves
as a baseline for comparison. The random classifier randomly guesses whether an
audio signal is authentic or synthesized according to a uniform random distribution.
Results indicate that our method outperforms the baseline random classifier based
on all metrics.

Figure11.5 shows Receiver Operating Characteristic (ROC), Detection Error
Trade-off (DET), and Precision-Recall (PR) curves for our results in comparison
to the baseline. Our approach achieves a high ROC-AUC of 0.8975, which outper-
forms the baseline ROC-AUCof 0.5005. The PR-AUC exhibits similar behavior. Our
method achieves PR-AUC of 0.4611, while the baseline PR-AUC settles at 0.1024.
All metrics included in both the table and the figures indicate that our method accom-
plishes better verification of audio signals than the baseline for both the validation
and testing sets.

Considering that the testing dataset contains new audio attacks which were never
seen before in training and validation, these results are very promising. Analysis
of audio signals in the frequency domain formatted as spectrograms is effective
for an audio verification task. It can also be used as audio features for audio-video
inconsistency analysis in the following section.

11.4 Deepfake Detection via Audio-Video Inconsistency
Analysis

The previously mentioned audio analysis technique can aid in the detection of deep-
fake videos by extending the scope to include two different media modalities. For
videos in which only the audio has been altered, this method will complement a pixel
analysis method. For some realistic deepfakes, a visual analysis alone may not be
able to detect the manipulations, but pairing the visual analysis with audio analysis
provides an additional avenue for authenticity verification.

248 H. Hao et al.

Fig. 11.5 ROC,DET, PR curves. Figures a and b show theROCcurves obtained from the validation
and testing sets, respectively. Figures c and d show the DET curves obtained from the validation
and testing sets, respectively. Figures e and f show the PR curves obtained from the validation and
testing sets, respectively

11 Deepfake Detection Using Multiple Data Modalities 249

In this section, we discuss detecting deepfakes by analyzing the natural corre-
lations that manifest when lip movements are coherent with the voice in videos of
speakingpersons. Then, the absenceof such correlations in videoswill point to plausi-
ble manipulations. Several works [27, 28] have explored this direction. For example,
Korshunov et al. [27] propose to use lip keypoints obtained from 68-point facial land-
marks and audio Mel-frequency cepstrum to check their consistency. These lip and
audio features are concatenated together via Principal Component Analysis (PCA)
for dimensionality reduction. Then, we can use these features to train a classifier
(e.g., Gaussian mixture model, SVM, or LSTM) for deepfake detection.

However, simply concatenating the visual features and audio features does not
always work, especially due to the large variation of possible facial and head move-
ments and individual appearance differences. In the following sections, we will
describe several deepfake detection methods based on the work [28, 29] to provide
more reliable approaches using audio and video inconsistency analysis.

11.4.1 Finding Audio-Video Inconsistency via
Phoneme-Viseme Mismatching

Asdescribed earlier, current deepfake techniques are still not able to produce coherent
lip-syncmanipulated videos. To exploit this, Agarwal et al. [28] propose to explicitly
detect themismatch of phonemes and visemes. A phoneme is a distinct unit of human
speech, while viseme is the counterpart of a phoneme for lip movement. In their
work, they focus only on the close-mouth phoneme, such as the phoneme group of
M (e.g., mother), B (e.g., brother), and P (e.g., parent), since detecting closed lips
is more accurate than other lip movements. If the audio narrative text is available,
the closed-lip phoneme can be found directly through phonograms. If only audio
data is provided, there are tools available to transcribe the audio track into text, such
as the Speech-to-Text API from Google.1 After finding the closed-lip phoneme, we
describe an approach to detect the viseme.

Figure11.6 shows howwe detect the closed-lip viseme. 68-point facial landmarks
are first detected given a RGB frame using an online tool.2 As shown in Fig. 11.6,
the landmark points include both inner and outer loops of the lips. To find if the
lips are closed or open, we compute the two middle points of the upper and lower
lips and collect the intensities of the pixels along the line segment shown as the red
line in Fig. 11.6. Note that we use bilinear interpolation to obtain the pixel intensity
along the line segment. The right two plots in Fig. 11.6 show the corresponding pixel
intensity plot given the images on the left after converting to grayscale. We apply
moving average with a window size of 10 to smooth the plots. Then we find the local
maxima and local minima and their prominences, hi and li , using the MATLAB
function findpeaks for frame i . hi measures the intensity drop from upper lip to the

1 https://cloud.google.com/speech-to-text.
2 https://github.com/1adrianb/face-alignment.

https://cloud.google.com/speech-to-text
https://github.com/1adrianb/face-alignment

250 H. Hao et al.

Fig. 11.6 Viseme detection. The first row shows the viseme profile of open mouth and the second
row shows the case of closed mouth. The two images on the left are the original RGB images with
inpainted landmarks and profile line (red line). The two plots on the right are the corresponding
profile feature plots with local minima (blue triangle) and maxima (red triangle)

mouth interior, while li measures the intensity boost from mouth interior to lower
lip. To detect a closed-lip viseme, given the reference hr and lr from a ground truth
closed-lip frame, we measure the distance |li − lr | + |hi − hr |. If the distance is
smaller than a threshold value, it will be classified as a closed-lip viseme.

Given a closed-lip phoneme event at a specific event frame, we will first collect
several frames before and after the event frame. If there is at least one closed-lip
viseme that can be found in the selected frames, we consider the phoneme and
viseme to match. Otherwise, we consider the phoneme and viseme mismatched.
With this approach, we determine if the given video is deepfake or not by detecting
phoneme-viseme mismatching.

This approach explicitly finds phoneme-viseme mismatching to detect audio-
video inconsistency. However, it is not always necessary to explicitly find such a
mismatch. In the following section, we introduce a method that uses a deep learning
model to automatically detect deepfakes from audio and video data.

11 Deepfake Detection Using Multiple Data Modalities 251

11.4.2 Deepfake Detection Using Affective Cues

In this section, we will introduce a method based on [29] that does not rely on the
hand-designed audio and video features mentioned in Sect. 11.4.1. Instead, we will
guide the model to learn a latent space that disentangles the manipulated/authentic
data for both audio and video modalities. Different from the work in Sect. 11.2.1,
which learns a manipulated/authentic discriminative latent space for video only, the
presented work aims to find such a space for both audio and video, simultaneously.

Figure11.7 shows the block diagram of our presented method. Given an image
sequence, face features are extracted first using a CNN-based method, such as the
method previously shown in Sect. 11.2.1. To extract audio features, we can use the
same approach as proposed in Sect. 11.3 using spectrograms as audio features. Then,
we pass the video feature f and audio feature s to two separate CNN models (i.e.,
video and audio modality embedders) to map input features into a latent space that is
discriminative formanipulated/authentic data. Emotion features can also be extracted
from f and s using a pretrained Memory Fusion Network (MFN) [30]. MFN is a
deep learningmodel that aims to detect human emotion fromdifferent datamodalities
like facial expressions and speech. Similarly, we use two separate MFNs as video
and audio emotion embedders to map the input features into the latent space that
is discriminative for manipulated/authentic data. After obtaining the embeddings of
video and audio modality features (m f and ms) and the embeddings of video and
audio emotion features (e f and es), we compute the feature distance (e.g., Euclidean
distance or cosine distance) to determine if the input is a deepfake or not. There are
many loss functions that are applicable to obtaining a discriminative latent space for
the manipulated and authentic data, such as triplet loss [31] and ArcFace [19] (as
described in Sect. 11.2.1).

As described above, we show that instead of solely relying on video modality, we
can detect deepfakes using both audio and video modalities. These methods are more
robust to new attacks (i.e., new deepfake techniques) because they consider more

Fig. 11.7 Deepfake detection model using affective cues. The presented method extracts data
modality features and emotion features from both audio and video. Then the detection result is
obtained by jointly comparing the audio-video feature distances from data modality and emotion

252 H. Hao et al.

information. As deepfakes continue to become more realistic, focusing on multiple
data modalities can give us a better opportunity for accurate detection. Video and
audio datamodalities are not the onlymodalities that can assist in deepfake detection.
Other data modalities (e.g., video metadata [32]) are also useful to improve the
robustness of the detection algorithm.We believe that with the help ofmulti-modality
and cross-modality analysis, detection methods will be more robust against future
deepfake attacks.

11.5 Conclusion

In this chapter, we introduce several approaches that analyze deepfake features to
determine their authenticity. First, we design a deepfake detection method that relies
on spatiotemporal features obtained fromvideo frames. Then,we pivot to incorporate
an audio analysis to further improve our deepfake detection. We develop an audio-
based method to detect synthetic speech based on spectrogram analysis. Next, we
describe several methods that utilize both video frames and audio speech to detect
deepfakes via audio-video inconsistency. We show that the presented approaches
successfully identify deepfake videos from various large-scale datasets with high
accuracy. The true potential of deepfakes is still untapped. We continue to evolve
and innovate as new technology becomes available.

Acknowledgements This material is based on research sponsored by the Defense Advanced
Research Projects Agency (DARPA) and Air Force Research Laboratory (AFRL) under agree-
ment numbers FA8750-16-2-0173 and FA8750-20-2-1004. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright nota-
tion thereon. The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of DARPA and AFRL or the U.S. Government.

References

1. YangX, Li Y, Lyu S (2019) Exposing deep fakes using inconsistent head poses. In: Proceedings
of the IEEE international conference on acoustics, speech and signal processing, May 2019

2. Yang X, Li Y, Qi H, Lyu S (2019) Exposing gan-synthesized faces using landmark locations.
In: Proceedings of the international workshop on information hiding and multimedia security,
July 2019

3. Marra F, Gragnaniello D, Cozzolino D, Verdoliva L (2018) Detection of gan-generated fake
images over social networks. In: Proceedings of the IEEE conference on multimedia informa-
tion processing and retrieval, April 2018

4. Gragnaniello D, Cozzolino D, Marra F, Poggi G, Verdoliva L (2021) Are GAN generated
images easy to detect? A critical analysis of the state-of-the-art. In: Proceedings of the IEEE
international conference on multimedia and expo, July 2021

5. Cozzolino D, Rössler A, Thies J, Nießner M, Verdoliva L (2021) Id-reveal: Identity-aware
deepfake video detection. In: arXiv preprint arXiv:2012.02512, December 2021

http://arxiv.org/abs/2012.02512

11 Deepfake Detection Using Multiple Data Modalities 253

6. Verdoliva L (2020) Media forensics and deepfakes: an overview. IEEE J Select Topics Signal
Process 14(5):910–932

7. Tolosana R, Vera-Rodríguez R, Fiérrez J, Morales A, Ortega-Garcia J (2020) Deepfakes and
beyond: a survey of facemanipulation and fake detection. In: arXiv preprint arXiv:2001.00179,
January 2020

8. MirskyY, LeeW (2021) The creation and detection of deepfakes: a survey. In:ACMComputing
survey, vol 54, No 1, January 2021

9. Nguyen TT, Nguyen CM, Nguyen DT, Nguyen DT, Nahavandi S (2021) Deep learning for
deepfakes creation and detection. In: arXiv preprint arXiv:1909.11573, April 2021

10. Güera D, Delp EJ (2018) Deepfake video detection using recurrent neural networks. IEEE
international conference on advanced video and signal based surveillance, November 2018.
Auckland, New Zealand, pp 1–6

11. Montserrat D, Hao H, Yarlagadda S, Baireddy S, Shao R, Horvath J, Bartusiak ER, Yang J,
Guera D, Zhu F, Delp E (2020) Deepfakes detection with automatic face weighting. In: IEEE
conference on computer vision and pattern recognition workshops, June 2020, pp 2851–2859

12. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception archi-
tecture for computer vision. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, June 2016, Las Vegas, pp 2818–2826

13. TanM,LeQV (2019)Efficientnet: Rethinkingmodel scaling for convolutional neural networks.
In: arXiv preprint arXiv:1905.11946

14. Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition, July 2017, Honolulu,
pp 1251–1258

15. Russakovsky O, Deng J, Hao S, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A,
Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge.
Int J Comput Vis 115(3):211–252

16. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(7)
17. ChoK, vanMerriënboerB,GulcehreC,BahdanauD,Bougares F, SchwenkH,BengioY (2014)

Learning phrase representations using RNN encoder–decoder for statistical machine transla-
tion. In: Proceedings of the conference on empirical methods in natural language processing,
October 2014

18. Zhang K, Zhang Z, Li Z, Qiao Y (2016) Joint face detection and alignment using multitask
cascaded convolutional networks. In: IEEE signal processing letters, vol 23, April 2016

19. Deng J, Guo J, Xue N, Zafeiriou S (2019) ArcFace: additive angular margin loss for deep
face recognition. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, June 2019, Long Beach

20. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I
(2017) Attention is all you need. In: Proceedings of advances in neural information processing
systems, December 2017, Long Beach, pp 5998–6008

21. Dolhansky B, Howes R, Pflaum B, Baram N, Ferrer CC (2019) The deepfake detection chal-
lenge (dfdc) preview dataset. In: arXiv preprint arXiv:1910.08854

22. Kingma D, Ba J (2015) Adam: A method for stochastic optimization. In: Proceedings of the
IEEE conference on international conference for learning representations, May 2015

23. Suwajanakorn S, Seitz SM, Kemelmacher-Shlizerman I (2017) Synthesizing obama: learning
lip sync from audio. ACM Trans Graph 36(4)

24. Yamagishi J, Todisco M, Sahidullah M, Delgado H, Wang X, Evans N, Kinnunen T, Lee K,
Vestman V, Nautsch A (2019) Asvspoof 2019: The 3rd automatic speaker verification spoofing
and countermeasures challenge database. University of Edinburgh, The Centre for Speech
Technology Research

25. Todisco M, Yamagishi J, Sahidullah M, Delgado H, Wang X, Evans N, Kinnunen T, Lee K,
Vestman V, Nautsch A (2019) Asvspoof 2019: Automatic speaker verification spoofing and
countermeasures challenge evaluation plan. In: ASVspoof consortium, January 2019

26. Kingma D, Ba J (2015) Adam: a method for stochastic optimization. In: Proceedings of the
international conference for learning representations, May 2015, San Diego

http://arxiv.org/abs/2001.00179
http://arxiv.org/abs/1909.11573
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1910.08854

254 H. Hao et al.

27. Korshunov P, Marcel S (2018) Speaker inconsistency detection in tampered videos. In: Pro-
ceedings of the IEEE European signal processing conference, September 2018, pp 2375–2379

28. Agarwal S, Farid H, Fried O, Agrawala M (2020) Detecting deep-fake videos from phoneme-
viseme mismatches. In: Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, June 2020, pp 2814–2822

29. Mittal T, Bhattacharya U, Chandra R, Bera A, Manocha D (2020) Emotions don’t lie: an
audio-visual deepfake detection method using affective cues. In: Proceedings of the ACM
international conference on multimedia, October 2020, Seattle, pp 2823–2832

30. ZadehA, Liang PP,MazumderN, Poria S, Cambria E,Morency L-P (2018)Memory fusion net-
work for multi-view sequential learning. In: Proceedings of the AAAI conference on artificial
intelligence

31. Schroff F, KalenichenkoD, Philbin J (2015) FaceNet: A unified embedding for face recognition
and clustering. In: Proceedings of the IEEE computer vision and pattern recognition. Boston,
pp 815–823

32. Güera D, Baireddy S, Bestagini P, Tubaro S, Delp EJ (2019) We need no pixels: Video manip-
ulation detection using stream descriptors. In: Proceedings of the international conference on
machine learning, synthetic-realities: deep learning for detecting audiovisual fakes workshop,
June 2019, Long Beach

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	11 Deepfake Detection Using Multiple Data Modalities
	11.1 Introduction
	11.2 Deepfake Detection via Video Spatiotemporal Features
	11.2.1 Overview
	11.2.2 Model Component
	11.2.3 Training Details
	11.2.4 Boosting Network
	11.2.5 Test Time Augmentation
	11.2.6 Result Analysis

	11.3 Deepfake Detection via Audio Spectrogram Analysis
	11.3.1 Overview
	11.3.2 Dataset
	11.3.3 Spectrogram Generation
	11.3.4 Convolutional Neural Network (CNN)
	11.3.5 Experimental Results

	11.4 Deepfake Detection via Audio-Video Inconsistency Analysis
	11.4.1 Finding Audio-Video Inconsistency via Phoneme-Viseme Mismatching
	11.4.2 Deepfake Detection Using Affective Cues

	11.5 Conclusion
	References

