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Abstract
This study conducts research on deepfakes technology evolution and trends based on a bibliometric analysis of the articles
published on this topic along with six research questions: What are the main research areas of the articles in deepfakes? What
are the main current topics in deepfakes research and how are they related? Which are the trends in deepfakes research? How
do topics in deepfakes research change over time? Who is researching deepfakes? Who is funding deepfakes research? We
have found a total of 331 research articles about deepfakes in an analysis carried out on the Web of Science and Scopus
databases. This data serves to provide a complete overview of deepfakes. Main insights include: different areas in which
deepfakes research is being performed; which areas are the emerging ones, those that are considered basic, and those that
currently have the most potential for development; most studied topics on deepfakes research, including the different artificial
intelligence methods applied; emerging and niche topics; relationships among the most prominent researchers; the countries
where deepfakes research is performed; main funding institutions. This paper identifies the current trends and opportunities
in deepfakes research for practitioners and researchers who want to get into this topic.

Keywords Deepfakes · Artificial intelligence · Deep learning · Bibliometrics

1 Introduction

Deepfake technology can be used to forge synthetic media
that people cannot differentiate from true ones. It is a recent
research area in which researchers in academia and indus-
try have contributed deepfake databases, and synthesis and
detection algorithms, which has made the deepfake popular-
ity grow. Deepfakes are the product of artificial intelligence
(AI) applications that merge, combine, replace, and super-
impose images and video clips to create fake videos that
appear authentic (Maras and Alexandrou 2019). Deepfakes
use recent advances in deep neural networks to create hyper-
realistic synthetic media. When deepfake technology is used

B Roberto García
roberto.garcia@udl.cat

Rosa Gil
rosamaria.gil@udl.cat

Jordi Virgili-Gomà
jordi.virgili@udl.cat

Juan-Miguel López-Gil
juanmiguel.lopez@ehu.eus

1 Universitat de Lleida, 25001 Lleida, Spain

2 University of the Basque Country, 20018 Donostia-San
Sebastián, Spain

on videos or images, the face of a person can be swapped
with another face leaving little trace ofmanipulation (Chawla
2019). The emergence of deep learning has made previously
existing fake face detection strategies vulnerable (Cho and
Jeong 2017).

The availability of deepfake databases and synthesis and
detection algorithms have made it possible for the commu-
nity and even amateurish users to perform realistic deepfakes,
which in turn has made the amount of popularity deepfake
videos in thewild grow immensely (Pu et al. 2021a). Coupled
with the reach and speed of social media, convincing deep-
fakes can quickly reach millions of people and have negative
impacts on our society (Westerlund 2019).

The growth in deepfakes research has also been reflected
in the amount of related scientific literature. Apart from tech-
nological aspects related to deepfake creation and detection,
ethical, social, and legal aspects have also been carefully
analyzed. There are already some reviews in specific fields,
such as Creation and detection of deepfakes (Mirsky and
Lee 2021), Law (da Silva 2021), Forensics (Amerini et al.
2021a), and Social impact (Hancock and Bailenson 2021a),
to name a few. Still, none of them contemplates the full spec-
trum of research areas in deepfakes, which we believe can
be very useful for researchers who wish to work on this
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research topic. Despite its novelty, deepfakes research is a
fast-growing research area, in which the research topics and
their relationship is continuously changing over time and
new trends appear. The different areas in which deepfakes
research is performed indicate there are researchers with a
wide variety of backgrounds. Apart from current trends, ana-
lyzing the funding opportunities is interesting to help focus
the research effort.

The objective of this work is to get an overview of the cur-
rent trends and evolution of deepfakes research, as well as to
analyze the fields in which it is being applied. To this aim, all
the empirical evidence that fits pre-specified eligibility cri-
teria to answer the following six specific research questions
was collated in Scopus and Web of Science databases: What
are themain research areas of the articles in deepfakes?What
are themain current topics in deepfakes research and how are
they related? Which are the trends in deepfakes research?
How do topics in deepfakes research change over time?
Who is researching deepfakes? Who is funding deepfakes
research? It has been decided which disciplines are develop-
ing, which are consolidating, and which are promising. The
most studied areas of deep learning research, including the
various artificial intelligence techniques used, have also been
examined, along with emerging and niche topics. Relation-
ships between the most well-known scientists, the nations
where deepfakes research is conducted, and the major fund-
ing organizations have also been established. The prospects
and trends in deepfakes research are identified in this arti-
cle for practitioners and scholars who are interested in the
subject.

The remainder of this paper is structured as follows. The
next section presents themethods used to obtain the sample of
articles to study that determine the focus, the specific research
questions we seek to answer, and the software used to auto-
mate part of the process. In the results section, we expose
the findings of specified research questions. After providing
some reflections on the discussion, conclusions are drawn.

2 Methods

A systematic review attempts to collate all the empirical evi-
dence that fits pre-specified eligibility criteria to answer a
specific research question (Higgins et al. 2019). Therefore,
the authors have ensured that the review addresses relevant
questions to those who are expected to use and act upon
its conclusions. More specifically, the research questions
addressed by this review paper are:

• RQ1: What are the main research areas of the articles in
deepfakes?

• RQ2: What are the main current topics in deepfakes
research and how are they related?

Table 1 Records retrieved from Scopus andWeb of Science in July and
October 2021, between parentheses those in English

Results (in English)
July 2021 October 2021 Growth

Scopus 242 (229) 331 (311) 89 (82)

Web of Science 8 (6) 12 (10) 4 (4)

• RQ3: Which are the trends in deepfakes research?
• RQ4: How do topics in deepfakes research change over
time?

• RQ5: Who is researching deepfakes?
• RQ6: Who is funding deepfakes research?

Once the research questions were established, the starting
point was a search carried out in Scopus in July 2021 and
another in October of the same year. The specific query used
in the case of Scopus was:

ALL (
( deepfake deep-fake "deep fake" ) AND
( ( action unit OR facial action unit

coding system OR facs ) OR ( video
OR clip OR image OR photogram )

) )

The same procedure was followed in Web of Science
(WoS) also in July and October. The query in the case of
WoS was:

TS=(
( deepfake deep-fake "deep fake" )

AND ((Action Unit OR Facial Action
Unit Coding System OR FACS) OR

(video OR clip OR image OR photogram)))

As summarized in Table 1, the Scopus query retrieved a
total of 242 records (229 in English) in July and 331 (311
in English) in October. The range of years for the retrieved
records was from 2018 to 2021. There were no results before
2018 fromanyof the databases. In the case ofWebof Science,
the results were 8 in July (6 in English) and 12 in October
(10 in English).

The first objective of these querieswas to check if the same
articles were being published in both databases and to esti-
mate the rate of growth of the number of publications from
the change between the July and October requests. Given
the small number of results from Web of Science, and that
just one of them is not present in the Scopus results, the
detailed analysis focuses on the October results in English,
i.e., 311 records from Scopus, from now on the SDO21 (Sco-
pus Database October 2021) dataset. The dataset records are
listed in Appendix A, divided into clusters based on their
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keywords, and available for download online.1 It is also
important to note the importance that conference publications
have concerning deepfakes research as they are not included
in the Web of Science. One hundred and seventy-nine of the
records from Scopus are conference papers.

Given the size of the SDO21 dataset, the review has
been automated using the Bibliometrix (Aria and Cuccurullo
2017) package for R, including the Biblioshiny application,
as detailed in Sect. 3. Regarding transparent reporting of sys-
tematic review and meta-analysis, a PRISMA Flow Diagram
2 has not been considered necessary because the process has
been simple. All the records retrieved have been considered,
with the only exception of articles not in English, to facili-
tate the automated analysis using Bibliometrix. In any case,
as observed in Table 1, the number of records that are not in
English just represents between 5% and 6% of the results, in
July and October, respectively.

3 Results

3.1 Main topics in deepfakes research

Regarding the first two research questions,RQ1:What are the
main research areas of the articles in deepfakes? and RQ2:
What are the main current topics in deepfakes research and
how are they related?, our first exploration considers just the
review papers, the focus of which is mainly placed on ethical
and legal aspects as detailed next:

• Forensics (Amerini et al. 2021a; Castillo Camacho and
Wang 2021a)

• Pornography (Karasavva and Noorbhai 2021a)
• Law (O’Donnell 2021; da Silva 2021; Aboueldahab and
Freixo 2021a; Colon 2020a; Meskys et al. 2020a; Farish
2020a; Perot and Mostert 2020a)

• Theater (Fletcher 2018a)
• Social impact (Hancock and Bailenson 2021a)
• Social spam (Rao et al. 2021)
• Creation and detection of deepfakes (Mirsky and Lee
2021).

If we broaden to the whole set of 311 papers and just
analyze the research areas they belong to, Computer Science
is the most represented with 40.8% of the records related to
this area. It is followed by Engineering (19,5%) and Social
Sciences (9,4%), as shown inFig. 1. It is important to note that
papers might belong to more than one area, as defined by the
corresponding literature database for each journal and year.

1 Replication data, https://doi.org/10.34810/data750.
2 http://prisma-statement.org.

We consider all areas when calculating these percentages as
a way to recognize the interdisciplinary nature of deepfakes,
with scientific journals aiming to promote interdisciplinary
research and facilitate collaboration among researchers with
diverse expertise.

To get deeper into the specific topics deepfakes research
is dealing with, a knowledge discovery approach has been
applied to identify the underlying conceptual structure. The
keywords associated with each record in the SDO21 dataset
have been analyzed with the Bibliometrix R package. The
conceptual structure represents the relationship among the
records’ keywords. Keywords that appear together in a paper
corresponding to a record are connected in the resulting co-
keywords network. Keywords will be close in this network if
a large proportion of papers have them together. Otherwise,
they will be apart.

The process to create this co-keywords network that
highlights the main research topics is first to create a
co-occurrence symmetric matrix. As shown in Fig. 2, the ele-
ments in the diagonal kii correspond to the total amount of
occurrences of each keyword in the whole SDO21 dataset.
On the other hand, the element outside of the diagonal, ki j ,
corresponds to how many times the keyword i and keyword
j appear together in the same paper.

The co-keywords matrix is then used to generate the key-
words network that highlights the research topics structure
in deepfakes research. The network is an undirected graph
where the nodes correspond to keywords and whose size
depends on the keyword frequency, thus generated from the
matrix’s diagonal.

Then, two graph nodes are connected if the matrix cell
for the corresponding keywords is greater than 0, and thus
both keywords share at least one paper. The edges are
weightedwith the value of that cell, i.e., the number of papers
where both keywords appear together as captured in the non-
diagonal cells. Edges’ weight is interpreted as a measure of
the strength between two keywords, the higher they appear
the closer they are on the graph. Based on this interpretation
of the matrix, the graph can be rendered as shown in Fig. 3
and highlights the main research topics corresponding to the
most frequent keywords. This technique processes keywords
as text strings and thus does not include any kind of seman-
tic similarity measure. It focuses on the keywords associated
with each publication.

Co-occurrence networks use various measures to iden-
tify crucial nodes or vertices within the network. Among
these measures, Betweenness (Table 2), Closeness (Table 3),
and PageRank (Table 4) are used to provide notable insights.
When considering the top 5 keywords for each metric, a sum
of 8 unique keywords is obtained. This is consistent as each
measure is capturing a different aspect of the network of
keyword co-occurrences. Betweenness quantifies how often
a node falls on the shortest paths between other nodes in
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Fig. 1 Main research areas for
the papers included in the
SDO21 dataset (311 records
retrieved from Scopus on
October 2021)

Fig. 2 Co-keyword matrix used to generate the network highlighting
the research topics in deepfakes research shown in Fig. 3

the network. Nodes with high Betweenness are critical since
they connect different parts of the network, playing a vital
role in the flow of information or resources between distinct
groups of nodes. Closeness measures how closely connected
a node is to all other nodes in the network. Nodes with high
Closeness are significant since they have rapid access to a
vast amount of information or resources and can disseminate
them quickly throughout the network. PageRank assesses a
node’s importance based on the number and quality of incom-
ing links it has. Nodes with high PageRank are crucial since
they are highly connected to other important nodes in the
network. In identifying key intermediaries or brokers in the
network, Betweenness is the most critical measure. If the
aim is to identify nodes that can quickly disseminate infor-
mation throughout the network, Closeness is themost critical
measure. Finally, to identify nodes that shape the network’s
overall behavior, PageRank is the most important measure.
It is often useful to calculate all three measures to gain a
comprehensive understanding of the network’s structure and
dynamics.

This representation makes it easier to visualize how the
main research topics are organized in deepfakes research.
Just themost representative topics, corresponding to themost
used keywords, are shown. And they are more prominent the
more present they are in the SDO21 dataset. Highly related
topics, because they are covered jointly in many papers, are
shown closer. Thismakes it also possible to apply a clustering
algorithm that helps identify the main research topics and

Table 2 Top 5 keywords by co-occurrence (Betweenness)

Node Cluster Betweenness

Deep learning 5 334.138

Convolutional neural networks 2 172.340

Face recognition 3 123.595

Detection methods 5 85.786

Computer vision 3 68.919

Table 3 Top 5 keywords by co-occurrence (Closeness)

Node Cluster Closeness

Deep learning 5 0.0164

Convolutional neural networks 2 0.015

Detection methods 5 0.0144

Face recognition 3 0.014

Digital forensics 2 0.013

Table 4 Top 5 keywords by co-occurrence (PageRank)

Node Cluster PageRank

Deep learning 5 0.105

Convolutional neural networks 2 0.066

Detection methods 5 0.059

Face recognition 3 0.054

Adversarial networks 2 0.040

the central keywords giving the name to the corresponding
topics:

• Red: deep learning, adversarial networks, learning sys-
tems, etc.

• Blue: face recognition, detection methods, forgery detec-
tions, etc.
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Fig. 3 Co-keywords graph representing the main research topics in deepfakes research

• Green: convolutional neural networks, deep neural net-
works, etc.

• Orange: computer vision, digital forensics, etc.
• Purple: social media, video recording, social networking,
etc.

3.2 Trends and evolution of deepfakes research

In this section, we address the third and fourth research ques-
tions, RQ3: Which are the trends in deepfakes research?
and RQ4: How do topics in deepfakes research change over
time?. Despite the short time interval under study, the SDO21
dataset includes records from 2018 to 2021, it is possible to
observe the evolution of themain research topics and identify
their trends.

First of all, after applying a clustering algorithm to the
keywords as detailed in the previous section, we can do more
than just highlight the main topics of the deepfakes research
domain. Each topic can be represented on a plot called The-
matic Map (Cobo et al. 2011) as shown in Fig. 4.

This kind of plot classifies the cluster of keywords from the
co-keyword network obtained in the previous section accord-
ing to Callon’s centrality and density measures (Callon et al.
1991):

• Centrality: measures the strength of the links to other
topics, considering those from keywords included in a
cluster to keywords in other clusters. Thus, it measures
the importance of a topic in the context of the whole field
of study.

• Density: is related to the strength of internal links among
all keywords corresponding to the same topic cluster. It
is interpreted as a measure of the topic’s development
degree.

Centrality andDensity define the two axes of the Thematic
Map and are used to divide it into four regions. The topics in
these regions are associated with the following trends:
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Fig. 4 Thematic Map the topic trends in deepfakes research. From top-left to bottom-right: Niche, Motor, Emerging, and Basic topics

Fig. 5 This is the keywords plus graph. The colors represent the different clusters: deep learning (red), convolutional neural networks (green),
computer vision (orange), and detection methods (blue)
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• NicheTopics (upper-left quadrant):well-developed inter-
nal ties but unimportant external ties and so, they have
a marginal role in the development of the research field
under study. Non-central but dense.

• Motor Topics (upper-right quadrant): these topics are
both well-developed and important in the context of the
analyzed records. High centrality and density.

• Emerging orDecliningTopics (lower-left quadrant): they
are both weakly developed and marginal, with low cen-
trality and density.

• Basic Topics (lower-right quadrant): they are important
for a research field but are not developed, i.e., they show
high centrality but low density.

TheMotor andBasic topics are considered those that favor
the development and consolidation of a research field due to
their density and/or centrality. For the particular case of deep-
fakes research captured by the SDO21 dataset, there is a lack
of clear Motor Topics. Most of them are Basic Topics related
to the core of technologies used for deepfakes development,
as is the case of convolutional neural networks or deep neural
networks. This is also the case with detection methods such
as facial recognition.

The only topics that are partially classified as Motor Top-
ics, and thus are computer graphics, network architecture,
and digital forensics. This seems related to the fact that, as
noted at the beginning of Section 3.1, there are two reviews
on the particular topic of forensics in the last four years.

On the other hand, the topics partially related to Emerging
Topics (declining seems unfeasible given the youth of the
discipline and the short time range) are those associated with
artificial intelligence, data security, and adversarial networks.
Finally, the more mature topics, though apart from the main
efforts in this research domain, are those that have to do with
the analysis in time and frequency to achieve better returns
such as video recording or social networks.

It is important to note that what is being classified into
these different trends are the keywords associated with the
papers. Thus, quite related topics that might be even equiv-
alent in some contexts, like “deep neural networks” and
“neural networks,” might be classified in different quadrants
based on their use in the analyzed literature. The approach is
thus completely agnostic regarding the interpretation of these
keywords because they are highly contextual, like in the case
of neural networks methods and applications (Samek et al.
2021).

In addition to the static view provided by the Thematic
Map in Fig. 4, it is also possible to get an idea of the underly-
ing dynamics using the Thematic Evolution diagram shown
in Fig. 5. Thematic Maps for different periods are computed
to identify topics’ evolution over time. Topics at a particular
period are then connected with those in the following one to
create a stream of topics’ evolution. Linking among topics

is based on the percentage of keywords shared between the
identified topics at each period. This way, it is possible to
observe how initial topics might remain partially and split
into other topics that then include the corresponding key-
words.

For the SDO21 dataset, just two time periods have been
defined given the short period, 2018–2020 and 2021. On the
left of Fig. 5, there are the topics for the 2018–2020 period,
including computer vision or computer graphics among oth-
ers. On the right side, are those for 2021. The evolution of the
topics is illustrated through the links connecting them, which
are weighted based on the number of keywords shared by the
topics in different periods.

For instance, the computer vision topic has split intomany
different ones in 2021, partially remaining as the same topic
but less relevant because many of the associated keywords
are now tied to other topics like deep learning, convolutional
neural networks, or digital forensics. On the other hand, top-
ics like computer graphics have disappeared and now the
associated keywords are contributing to the digital foren-
sics one, which has emerged from keywords from this topic
combined with some from computer vision. Overall, Fig. 5
highlights the topics getting traction in deepfakes research
and how they are consolidating from the topics that attracted
the most attention just some years ago.

3.3 Deepfake technologies usage and funding

Regarding the last research questions, RQ5:Who is research-
ingdeepfakes? andRQ6:Who is fundingdeepfakes research?,
they are addressed by analyzing the intellectual and social
structures of the SDO21 dataset. First of all, and as can be
observed in Table 5, the most relevant papers come from
conferences, concretely from IEEE conferences and work-
shops. Forensics, signal processing, law, and blockchain are
among the topics dealt with by the most cited articles about
deepfakes research in Scopus between 2018 and 2021.

Going beyond this superficial analysis, the whole commu-
nity that has generated the papers in SDO21 should be taken
into account. It is for this reason that we have also carried out
an analysis of the social structure to highlight how authors or
institutions related to others in this particular research field.
First of all through a co-authorship network, which is dis-
played in Fig. 6.

Many of themost referenced authors in Table 5 can be also
identified in the co-authorship network, which also focuses
on the most prominent authors. These authors appear in little
clusters, like Amerini or Agarwal and their corresponding
co-authors. This highlights that even highly cited authors’
work collaborates in relatively closed circles and the overall
community is quite fragmented from this perspective.

If we switch from individual researchers to their insti-
tutions and countries, we can also unveil the underlying
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Table 5 The first 10 most cited articles in SDO21 between 2018 and 2021

Title Publisher Citations References

FaceForensics++: Learning to Detect Manipulated Facial Images IEEE 302 Rossler et al. (2019)

Exposing Deep Fakes Using Inconsistent Head Poses IEEE 165 Yang et al. (2019a)

Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations IEEE 136 Matern et al. (2019a)

Protecting World Leaders Against Deep Fakes IEEE 105 Agarwal et al. (2019a)

Combating Deepfake Videos Using Blockchain and Smart Contracts IEEE 80 Hasan and Salah (2019a)

Deep Fakes: A Looming Challenge for Privacy California Law 72 Chesney and Citron (2018)

Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics IEEE 64 Li et al. (2020d)

Detecting and Simulating Artifacts in GAN Fake Images IEEE 49 Zhang et al. (2019b)

Media Forensics and DeepFakes: An Overview IEEE 47 Verdoliva (2020)

Deepfake Video Detection through Optical Flow Based CNN IEEE 44 Amerini et al. (2019a)

Fig. 6 Co-authorship network
showing some of the more
prominent authors in SDO21

social structures at these levels. Looking at the corresponding
author countries, shown in Fig. 7, we can observe the great
leadership that researchers from China have in this particular
research area.

This is even more evident when we realize that, despite
it might seem that part of this leadership comes from col-
laborations with other countries because it is the country
with the highest amount of inter-country collaborations, these
collaborations are really with Chinese researchers based in

other countries. This is illustrated in Fig. 8, which shows
the connection between researchers and countries, and then
from countries to research topics. Therefore, although inter-
country collaboration is indeed very high in China, it is
because these researchers work in other countries, in most
cases in the USA as shown in Fig. 8.

Finally, focusing on RQ6: Who is funding deepfakes
research?, the main research funding organization of the
reviewed publications is the National Natural Science (Foun-
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Fig. 7 Corresponding author’s countries, including intra-country (SCP) and inter-country (MCP) collaborations in SDO21

dation of China) with 30 publications, followed by the
Defense Advanced Research Projects Agency (US DARPA)
with 22, and the National Key Research and Development
Program of China with 13. Then, with 12 publications, we
find the US Air Force Research Laboratory and the US
National Science Foundation. A complete table with the top
10 funding organizations is shown in Table 6. Therefore,
China is leading the investigation as a country, mostly from
institutions related to the military and defense sectors. And
as shown in Fig. 9, which displays the collaborations among
institutions, these collaborations are kept at the national level.

4 Discussion

This paper employs metadata analysis to investigate the
trends and tendencies related to deepfake research. It is
important to note that our objective was not to conduct a lit-
erature review, but to analyze its metadata. However, it may
be valuable to include this section in the paper that provides
further insights into the representative results of the included
publications.

Deepfakes is a field of research that has gained significant
attention in recent years due to its potential implications in
manipulating digital media. Following the content found in
the lower-right quadrant of Fig. 4, which contains “topics that
are important for the research field but are not yet fully devel-
oped” learning systems, detection methods, and algorithms
are the key and future directions in the topic. One of the most
common approaches used in Deepfakes is generative adver-
sarial networks (GANs) (Hu et al. 2021). These techniques
consist of two neural networks, one that generates fake data
and another that evaluates the generated data authenticity.
The results obtained using GANs have shown remarkable
progress in generating highly realistic images and videos.
Another popular method is the use of autoencoders (Singh
et al. 2021), neural networks that are trained to reconstruct
the input data. The encoded representation of the input is
then used to generate new data. The results obtained using
autoencoders have shown promise in generating high-quality
Deepfakes.

In addition to GANs and autoencoders, there are other
methods that have been used in Deepfakes, such as varia-
tional autoencoders (Zendran andRusiecki 2021), deepbelief
networks (Iacobucci et al. 2021), and convolutional neural
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Fig. 8 Relationships among the most prominent researchers, the countries where they conduct research, and the main research topics per country

Fig. 9 Collaboration among
institutions as derived from the
records in the SDO21 dataset
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networks (Agrawal andSharma2021). Eachof thesemethods
has shown varying degrees of success in generating Deep-
fakes. Of course, these methods are improving by applying
not only new approaches but combining known techniques
in a new way, as Zheng et al. (2018) proposes a novel two-
stage training process for deep convolutional neural networks
(CNNs) that improves their generalization ability by implicit
regularization, particularly when the training data is limited.

Practical cross-area applications can be found in works
like (Yao et al. 2021), where a method is proposed to auto-
matically separate compound figures in biomedical research
articles. It uses a deep learning model that is trained to sep-
arate the subfigures based on their visual features and is
augmented with a “side loss” to ensure that the model also
considers the context and layout of the subfigures. This arti-
cle is a good example of how a single publication can show
insights into distant topics from upper-left Fig. 4 (frequency
domain analysis) and lower-right (detection methods) at the
same time.

Despite the progressmade in deepfakes, there are still lim-
itations to the current state of the art. The primary challenges
are the ability to generate realistic and high-quality deep-
fakes without significant artifacts (Matern et al. 2019b) and
paradoxically, the ability to detect and prevent the spread of
deepfakes in the public domain (Rossler et al. 2019).

Finally, regarding funding, the topfive funding institutions
are either government agencies (NSFC, DARPA, AFRL, and
NSF) or state-sponsored programs (NKRDPC and USNCF)
that prioritize funding for research projects that are strategi-
cally important to their respective countries (see Table 6). As
these projects may include those with military applications
or those that promote the development of key industries, it is
reasonable to infer that these strategic priorities may account
for the low inter-country collaboration ratio (MCP) presented
in Fig. 7. This could be because researchwith strategic impor-
tance often challenges collaboration due to national security
concerns, funding restrictions (in some cases, funds may be
restricted for international collaborations), and intellectual
property issues.

5 Conclusions

It has been found that growth since 2018 has skyrocketed
regarding research publications in the area of deepfakes. The
queries for Web of Science and Scopus did not retrieve any
results before 2018 but accumulated 311 results, after less
than four years, in 2021. The specific findings for each of the
research questions are discussed in the next paragraphs.

RQ1: What are the main research areas of the articles
in deepfakes? Deepfakes research includes many different
research areas. Our analysis identified 10 different areas with
at least 2% of the articles about the topic. All 10 combined

represent roughly 95% of the papers. However, there is a
big imbalance as just 3 of them accumulate almost 70% of
the results. Computer Science is the most represented with
40.8%, followed by Engineering (19,5%). Thus, these tech-
nological research areas are thosewith the biggest percentage
of articles. The third area is Social Sciences (9,4%), so deep-
fakes research is also noticeable in social sciences-related
topics.

RQ2: What are the main current topics in deepfakes
research and how are they related? Regarding the most stud-
ied topics, a knowledge discovery approach has been applied
to identify the underlying conceptual structure starting from
the keywords associated with the analyzed articles. Using
a clustering algorithm, five main sets of topics have been
identified, being the most representative topics in each clus-
ter: deep learning, face recognition, convolutional neural
networks, computer vision, and social media. Other rele-
vant topics in each cluster are presented in Fig. 3. As can
be observed, overall, deep learning stands out. And more
specifically, adversarial and convolutional neural networks.
It is also relevant to the research on forgery detection and the
literature related to face recognition.

RQ3: Which are the trends in deepfakes research? The
main topics identified using clustering have been analyzed
using a Thematic Map, shown in Fig. 4. This kind of plot
classifies the clusters of keywords obtained in the previous
section according to Callon’s centrality and densitymeasures
(Callon et al. 1991). Based on these measures, we can iden-
tify:

• Niche Topics: well-developed but with a marginal role in
the development of the research field, like Social Media
related to Video Recording or Neural Networks in the
context of Frequency Domain Analysis.

• Emerging or Declining Topics: these are weakly devel-
oped and still marginal topics. Given the youth of the
deepfakes discipline, they should be mainly emerging
topics. Though the analysis does not identify clear emerg-
ing topics, research related to adversarial networks in the
context of security might be considered an emerging area
with potential relevance in the future.

• Motor Topics: these are both well-developed and impor-
tant in the context of deepfakes. As previously stated,
the youth of the discipline causes a lack of clear candi-
dates. Just topics related to computer graphics, network
architecture, and digital forensics might be classified as
Motor.

• Basic Topics: these are the topics on which research
should be focused. They are important for deepfake
research but have not been developed yet. Here, we can
find the bulk of the research. The most promising top-
ics are convolutional deep neural networks and detection
methods based on face recognition or deep learning.
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Table 6 Top 10 Research
Funding Organizations

Institution Funded Projects

National Natural Science (Foundation of China) 30

Defense Advanced Research Projects Agency, DARPA 22

National Key Research and Development Program of China 13

Air Force Research Laboratory, AFRL 12

US National Science Foundation 12

Google 5

Nvidia 4

Ministry of Science and ICT, South Korea, MSIT 4

Ministero dell’Istruzione, dell’Università e della Ricerca 4

National Research Foundation of Korea, NRF 4

RQ4: How do topics in deepfakes research change over
time? In addition to the dynamics of deepfakes research cap-
tured by the previous trends analysis, it is also possible to
visualize the underlying dynamics using a Thematic Evolu-
tion chart, as shown in Fig. 5. We use Thematic Maps for
different periods, which are then connected with those in the
following one to create a stream of topics’ evolution based
on the percentage of keywords shared between the identi-
fied topics at each period. An insight that can be derived
from this diagram is the diversification of the research around
deep learning, which remains one of the main topics but with
clear applications to texture analysis, fake detection, or online
social networking. The same can be said about computer
vision, which gets out of the main focus even more than deep
learning. On the contrary, from a technical perspective, con-
volutional neural networks are getting more attention from
recent research compared to the beginning of the analyzed
period.

RQ5: Who is researching deepfakes? and RQ6: Who is
funding deepfakes research? It is China as a country the one
that directs the investigations, being the one that contributes
the most in all regards, including funding through the Natu-
ral Science Foundation of China and NKRDPC. Researchers
are mainly from this country, though many of them perform
their research in the USA. On the other hand, the collabo-
ration communities in this research area are still small and
fragmented as observedwhen studying the co-authorship net-
work. Usually, they are formed by just 2 or 3 authors, except
for themost prolific Chinese researchers that are organized in
a community of 6 authors. The same happens at the country
level, most collaborations are among institutions of the same
country. Additionally, though authors might be based on cen-
ters in different countries, we do not observe inter-country
collaborations.

In addition to the conclusions regarding the different
research questions, we have identified somemissing research
topics that we think should already be in the literature, such
as research on the repercussions of deepfakes on marketing
or online negotiation processes. These kinds of risks have
been tangentially addressed in the context of studies about
identity usurpation, which have been the topic of some law
journals. In any case, we believe that considering the emerg-
ing risks of deepfakes in connection with tasks like online
meetings is crucial.

As a limitation of this work, the number of articles found
on deepfakes research made it impossible to perform a sys-
tematic literature review or meta-analysis on the whole area
of deepfakes research. On the other hand, this type of study
can be carried out by focusing on more specific aspects of
the area identified by this work, such as the different arti-
ficial intelligence techniques used to synthesize or analyze
deepfakes.

To conclude, the research articles retrieved about deep-
fakes serve to provide a complete overview of deepfakes. The
main insights of this work include the various areas in which
deepfakes research is being conducted, focusing on which
areas are emerging, those that are considered basic, and those
that currently have the greatest potential for development.
The most studied topics in deepfakes research, including the
various artificial intelligence methods employed, are ana-
lyzed together with emerging and niche topics, to provide
insight into the current trends.

The relationships among the most prominent researchers,
together with the countries in which deepfakes research is
conducted and the main funding sources, complete the out-
look regarding the people who carry out research in that
area and the options for collaboration and obtaining exist-
ing funds.
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Overall, this article discusses current trends and opportu-
nities in deepfakes research for practitioners and researchers
interested in this field. Future research directions emerging
from the review point in the direction of the identified “Basic
Topics": convolutional deep neural networks and detection
methods based on face recognition or deep learning.
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Appendix A References in SDO21 Dataset

The following table lists all references in the SDO21 dataset
of records retrieved from Scopus as detailed in Sect. 1. They
are divided into 4 clusters centered on the keywords associ-
ated with each of them.

Cluster References

deep learning 27.2%
detection methods
18.5% face
recognition 18.5%

Li et al. (2020c), Dang et al. (2020), Ciftci
et al. (2020), Lyu (2020), Nguyen et al.
(2021), Carlini and Farid (2020),
Tursman et al. (2020), Kaur et al.
(2020), Masi et al. (2020), Feng et al.
(2020), Maksutov et al. (2020), Amerini
et al. (2019b), Javed et al. (2021), Kuang
et al. (2021), Patil et al. (2021), Megías
et al. (2021), Patil and Chouragade
(2021), Xu et al. (2021b), Jiang et al.
(2021), Bonomi et al. (2021), Shang
et al. (2021), Ling et al. (2021), Fung
et al. (2021), England et al. (2021),
Fazheng et al. (2021), Zhao et al.
(2021b), Valenzuela et al. (2021), Xiang
et al. (2021), Hosler et al. (2021),
Caldelli et al. (2021), Pan et al. (2021),
Khalil and Maged (2021), Demir and
Ciftci (2021), Li and Lyu (2021), Whler
and Zembaty (2021), Kohli and Gupta
(2021), Lv (2021), Dondero (2021),
Guo et al. (2021), Carter et al. (2021),
Tu et al. (2021), Shelke and Kasana
(2021), Pokroy and Egorov (2021), Tjon
et al. (2021), Sun et al. (2021),
Sankaranarayanan et al. (2021), Li et al.
(2021a), Yang et al. (2021b), Kawa and
Syga (2021), Gong et al. (2021),
Hussain et al. (2021), Godulla et al.
(2021), Tolosana et al. (2021), Jeong
et al. (2021), Hernandez-Ortega et al.
(2021), Zhang et al. (2021a), Deshmukh
and Wankhade (2021), Caporusso
(2021), Amerini and Caldelli (2020),
Zhu et al. (2020a), Bonettini et al.
(2020), Kukanov et al. (2020), Bondi
et al. (2020), Nasar et al. (2020), Mittal
et al. (2020a), Du et al. (2020a), El Rai
et al. (2020), Ramadhani and Munir
(2020), Gupta et al. (2020), Du et al.
(2020b), Lewis et al. (2020), Chugh
et al. (2020), Shah et al. (2020), Tarasiou
and Zafeiriou (2020), Ross et al. (2020),
Nguyen and Derakhshani (2020),
Khodabakhsh and Loiselle (2020), Li
et al. (2020e), Zotov et al. (2020), Wu
et al. (2020a), Hongmeng et al. (2020),
Chowdhury and Lubna (2020), Suratkar
et al. (2020a), Hewage and Ekmekcioglu
(2020), Zhao et al. (2020b), Younus and
Hasan (2020a), Alattar et al. (2020), Li
et al. (2020a), Peng et al. (2020), Ivanov
et al. (2020), Zhao et al. (2020a),
Cozzolino et al. (2019)
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Cluster References

deep learning 11.3%
adversarial networks
7.5% artificial
intelligence 6.6%

Kietzmann et al. (2020), Ahmed et al.
(2021), Jung et al. (2020), Wang et al.
(2020a), Mirsky and Lee (2021),
Meskys et al. (2020a), Chesney and
Citron (2019), Zhang et al. (2020), Fallis
(2020), Maddocks (2020), Farish
(2020a), Fletcher (2018a), Rao et al.
(2021), Khormali and Yuan (2021), Lai
and Patrick Rau (2021), Yu et al. (2021),
Pavis (2021), Lees et al. (2021), de Seta
(2021), Bode et al. (2021), Holliday
(2021), Mihailova (2021), Bode (2021),
Ayers (2021), Hayward and Maas
(2021), Ahmed (2021c), Kim et al.
(2021a), Sybrandt and Safro (2021),
Diakopoulos and Johnson (2021), José
and García-Ull (2021), Huber et al.
(2021), Tahir and Batool (2021), Nygren
et al. (2021), Fagni et al. (2021), Medoff
and B.K. (2021), Pu et al. (2021b),
Castillo Camacho and Wang (2021b),
Mcglynn and Johnson (2021),
D’Alessandra and Sutherland (2021),
Freeman (2021), Karasavva and
Noorbhai (2021a), Brooks (2021),
Iacobucci et al. (2021), Hancock and
Bailenson (2021a), Johnson (2021),
Choraś et al. (2021), Tesfagergish et al.
(2021), O’Donnell (2021), da Silva
(2021), Thaw et al. (2021), Frick et al.
(2021), Aboueldahab and Freixo
(2021a), Hänska (2021), Zhang et al.
(2021b), de Ruiter (2021), Ahmed
(2021b), Murphy and Flynn (2021),
Zhao et al. (2021a), Wahl-Jorgensen and
Carlson (2021), Pavlíková et al. (2021),
Dasilva et al. (2021), Vizoso et al.
(2021), Johnson and Diakopoulos
(2021), Chi et al. (2021), Kietzmann
et al. (2021), Dobber et al. (2021),
Kwok and Koh (2021), Kikerpill (2020),
Perot and Mostert (2020a), Hasan and
Salah (2019a), Aliman and Kester
(2020), Xie et al. (2020), Pan et al.
(2020), Kozyreva et al. (2020),
Partadiredja et al. (2020), Tulk Jesso
et al. (2020), Colon (2020a), Gosse and
Burkell (2020), Lomnitz et al. (2020),
Wang et al. (2020b), Katarya and Lal
(2020), Kaye and Johnson (2020),
Gandhi and Jain (2020), Chang et al.
(2020), Šepec and Lango (2020), Hosier
and Stamm (2020), Hartmann and Giles
(2020), Gong et al. (2020), Jongman
(2020), Pertsch et al. (2020), Shahar and
Hel-Or (2020), Houde et al. (2020), Zhu
et al. (2020b), Jeong (2020), Amelin and
Channov (2020), Kang and Park (2020),
Pashentsev (2020), Davis and Fors
(2020), Hazan (2020), Bore (2020)

Cluster References

deep learning 27.7%
convolutional neural
networks 23.1%
detection methods
16.9%

Yang et al. (2019b), Jiang et al. (2020),
Agarwal et al. (2019b), Agarwal et al.
(2020a), Mittal et al. (2020b), Zi et al.
(2020), Agarwal et al. (2020b), Chen
et al. (2020), Montserrat et al. (2020),
Ahmed (2021a), Marcon et al. (2021),
Ajoy et al. (2021), Liang and Deng
(2021), Ru et al. (2021), Tran et al.
(2021), Ismail et al. (2021), Yavuzkilic
et al. (2021), Fei et al. (2021), Yang et al.
(2021a), Siegel et al. (2021), Agarwal
and Farid (2021), Masood et al. (2021),
Singh et al. (2021), Sanghvi et al. (2021),
Xu et al. (2021a), Agrawal and Sharma
(2021), Zendran and Rusiecki (2021),
Trinh et al. (2021), Li et al. (2021b), Lu
et al. (2021), Su et al. (2021), Luo et al.
(2021), Biswas et al. (2021), Jiang et al.
(2021), Korshunov and Marcel (2021),
Chen and Tan (2021), Jin et al. (2021),
Khalil et al. (2021), Gu et al. (2021),
Yang et al. (2021c), Chintha et al.
(2020a), Younus and Hasan (2020b),
Korshunov and Marcel (2019), Suratkar
et al. (2020b), Mitra et al. (2020), Liang
et al. (2020), Burroughs et al. (2020),
Huang et al. (2020a), Chintha et al.
(2020b), Ki Chan et al. (2020), Zhu et al.
(2020c), Yang et al. (2020), Wu et al.
(2020b), Jafar et al. (2020), Şener (2020),
Malolan et al. (2020), Fernandes and Jha
(2020), Pantserev (2020a), Wang et al.
(2020c), Zeng et al. (2020), Pantserev
(2020b), Karandikar et al. (2020),
Megahed and Han (2020), Albahar and
Almalki (2019), Sohrawardi et al. (2019)

deep learning 36.4%
adversarial networks
22. 7% computer
vision 20.5%

Li et al. (2020b), Tolosana et al. (2020),
Verdoliva (2020), Rossler et al. (2019),
Matern et al. (2019b), Prajwal et al.
(2020), Khalid and Woo (2020), Neves
et al. (2020), Fernandes et al. (2020),
Yang et al. (2021d), Swathi and Saritha
(2021), Amerini et al. (2021a), Agarwal
et al. (2021), Dal Cortivo et al. (2021),
Schwarcz and Chellappa (2021), Kim
et al. (2021b), Bailer et al. (2021), Tariq
et al. (2021), Hu et al. (2021), Ahmed and
Sonuç (2021), Laishram et al. (2021),
Goebel et al. (2021), Han and Gevers
(2021), Echizen et al. (2021), Fernando
et al. (2021), Kubanek et al. (2021),
Huang et al. (2020b), Baek et al. (2020),
Zhang et al. (2019c), Pu et al. (2020),
Pham et al. (2020), Wang and Dantcheva
(2020), Mi et al. (2020), Ranjan et al.
(2020), Frank et al. (2020), Yang and
Lim (2020), Hashmi et al. (2020),
Ranjith Kumar et al. (2020), Xuan et al.
(2019), Guan et al. (2019), Kharbat et al.
(2019), Bose and Aarabi (2019), Zhang
et al. (2019a), Ward (2019)
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