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METHODOLOGY

DeepFlower: a deep learning-based 
approach to characterize �owering patterns 
of cotton plants in the �eld
Yu Jiang1,2, Changying Li2,3* , Rui Xu2, Shangpeng Sun2, Jon S. Robertson3 and Andrew H. Paterson3,4

Abstract 

Background: Flowering is one of the most important processes for flowering plants such as cotton, reflecting the 

transition from vegetative to reproductive growth and is of central importance to crop yield and adaptability. Con-

ventionally, categorical scoring systems have been widely used to study flowering patterns, which are laborious and 

subjective to apply. The goal of this study was to develop a deep learning-based approach to characterize flowering 

patterns for cotton plants that flower progressively over several weeks, with flowers distributed across much of the 

plant.

Results: A ground mobile system (GPhenoVision) was modified with a multi-view color imaging module, to acquire 

images of a plant from four viewing angles at a time. A total of 116 plants from 23 genotypes were imaged during 

an approximately 2-month period with an average scanning interval of 2–3 days, yielding a dataset containing 8666 

images. A subset (475) of the images were randomly selected and manually annotated to form datasets for training 

and selecting the best object detection model. With the best model, a deep learning-based approach (DeepFlower) 

was developed to detect and count individual emerging blooms for a plant on a given date. The DeepFlower was 

used to process all images to obtain bloom counts for individual plants over the flowering period, using the resulting 

counts to derive flowering curves (and thus flowering characteristics). Regression analyses showed that the Deep-

Flower method could accurately  (R2 = 0.88 and RMSE = 0.79) detect and count emerging blooms on cotton plants, 

and statistical analyses showed that imaging-derived flowering characteristics had similar effectiveness as manual 

assessment for identifying differences among genetic categories or genotypes.

Conclusions: The developed approach could thus be an effective and efficient tool to characterize flowering pat-

terns for flowering plants (such as cotton) with complex canopy architecture.
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Background
Flowering is one of the most important processes for 

angiosperms (flowering plants), reflecting the transi-

tion from vegetative to reproductive growth and sig-

nificantly affecting crop yield and adaptability to various 

environments. �erefore, characterization of flowering 

patterns would not only facilitate studies for understand-

ing angiosperms genetically and physiologically, but also 

holding potential to contribute to breeding of new cul-

tivars for optimal yield and environmental adaptability 

[1–3].

Conventionally, studies related to plant flowering pat-

terns have required human evaluators to check experi-

ment fields and record flowering status manually. For 

instance, plants and plots can be checked regularly by 
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human evaluators to monitor characteristics such as the 

number of days after planting (DAPs) to the first bloom. 

In addition, human evaluators often used a categorical 

scoring system to assess flowering stages (e.g., estimat-

ing when 10% of plants in a plot have opened blooms), 

so that the time duration between particular flowering 

stages can be calculated. Human recorded flowering data 

have helped researchers to study flowering patterns for 

several important crops such as maize [4], rice [5], cereal 

[6], and sorghum [7]. Human evaluation, however, has 

two major disadvantages. First, the evaluation is subjec-

tive, which means that different human evaluators might 

give different scores to an individual plant/plot. As a 

result, human-evaluated flowering data could contain a 

substantial amount of noise. Second, human evaluation 

is laborious, and presents great challenges for large-scale 

experiments and breeding programs. An automated high 

throughput approach to characterize flowering patterns 

can mitigate each of these disadvantages.

Advances in high throughput plant phenotyping (HTP) 

and breakthroughs in deep learning enable the possibility 

of rapid characterization of flowering patterns for plants 

in the field. Several studies demonstrated the use of deep 

convolutional neural networks (CNNs) and meta-mod-

els (e.g., Faster RCNN developed by Ren et  al. [8]) to 

detect and count fruit in images for crops such as man-

goes [9], apples [10], and sweet peppers [11]. Although 

these studies achieved relatively high counting accuracies 

 (R2 > 0.92), they were primarily used for “one time” meas-

urements of yield estimation. A big challenge to flower-

ing characterization is that in many plants it occurs over 

a long period of time, requiring one to frequently detect 

and count newly opened blooms on plants.

Recent studies have intensively investigated deep learn-

ing-based solutions to flower detection and counting for 

field crops such as wheat [12–16], corn [17], sorghum 

[18], rice [19], and cotton [20]. Based on the counting 

strategies, these methods can be classified into three 

categories: regression-based, classification-based, and 

detection-based counting [21]. Regression-based count-

ing is a one-stage strategy and extracts features using 

CNNs to directly regress a continuous count of flowers/

floral structures in images. Classification-based count-

ing is a similar strategy but it classifies images into a class 

representing a discrete count/percentage of flowers/flo-

ral structures. �e two counting strategies considerably 

reduce the training complexity and the cost of data anno-

tation. Experiments showed that they can provide fairly 

good counting accuracies (up to 90%) [13, 15–17]. How-

ever, the regression- and classification-based methods 

may suffer from overfitting problems because the CNN 

models are generally much more complex than training 

objectives (a numeric value or several classes). Careful 

designing of network architecture would be necessary 

for good performance and generalizability. In addition, 

the spatial information of flowers/floral structures can-

not be obtained from regression/classification results, 

which limits the potential for flower distribution analy-

sis and actuation-based applications such as flower thin-

ning in crop load management. To address or mitigate 

these issues, the detection-based counting strategy has 

been used in very recent studies [12, 18–20]. �e detec-

tion-based counting is a two-stage strategy that detects 

flowers/floral structures in images and then counts the 

number of detections. A study reported that the detec-

tion-based counting could provide better counting accu-

racy and robustness than regression-based ones, showing 

the greatness of the detection-based strategy for flower 

counting over a growing season [12]. Among many stud-

ies for flower detection and counting in the past two 

years, only three of them used the developed counting 

methods to monitor plant flowering during the entire 

flowering period to characterize key flowering patterns 

such as heading date [13, 15, 19]. All three studies dem-

onstrated high accuracies of heading date estimation (up 

to an error of 2  days) because of superior performance 

of deep learning models for flower detection and count-

ing. On the other hand, having only few studies capable 

of monitoring plant flowering reiterates the challenges of 

intensive data collection and analysis over an extended 

period for the characterization of flowering patterns.

It is also noteworthy that nearly all studies focused on 

the crops with simple shoot architecture where flowers/

floral structures form  on top of plant canopies, which 

significantly simplifies data collection and flower detec-

tion and counting. In contrast, cotton plants have much 

more complex shoot architecture and can form flowers 

across the entire plant, presenting extreme challenges 

to the detection and counting of cotton flowers. To date, 

only one study reported a two-stage approach to detect 

and count blooms (white flowers) in cotton plots from 

aerial images. �e approach first segmented candidate 

regions of blooms using a thresholding method, and sub-

sequently classified the candidate regions as bloom or 

non-bloom using a custom CNN to count the number 

of blooms in individual cotton plots. Although the two-

stage approach showed some success in counting blooms, 

it had a major limitation in that a considerable portion of 

blooms could not be captured by aerial images because of 

occlusions, resulting in a relatively large underestimation 

of bloom counts. In addition, this study only measured 

bloom counts for several days, lacking the capability for 

flowering pattern analyses over a long flowering period. 

To overcome the aforementioned limitations, we need 

improvements and modifications in both technical 

and agronomic aspects. For the technical aspect, it is 
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necessary to explore the use of side-view proximal imag-

ing and CNN-based object detection to detect and count 

individual blooms over an entire flowering period. For the 

agronomic aspect, the planting scheme needs to be mod-

ified from the conventional plot-based layout to a single-

plant layout (SPL) where individual plants are treated as 

plots with a wide row spacing of 1.52 m. In such a plant-

ing scheme, flower occlusions due to dense plant cano-

pies can be minimized to increase the flower  visibility 

and therefore detection and counting accuracies. Based 

on our previous studies [22], SPL-based experiments 

could provide phenotypic data revealing significant dif-

ferences among genotypic categories or genotypes, show-

ing the great potential of studying flowering patterns for 

cotton in the field.

�e goal of our study was to develop a deep learning-

based approach to characterize flowering patterns of 

cotton plants in the field. Specific objectives were to (1) 

develop a multi-view imaging system that can acquire 

cotton plant images in a high throughput manner; (2) 

develop a deep learning-based approach (DeepFlower) 

to detect and count emerging blooms and to character-

ize flowering patterns for individual plants; and (3) evalu-

ate the accuracy and efficacy of the developed approach 

for the identification of differences in flowering patterns 

among genetic categories and genotypes.

Results
Representative detection results

Generally, the Faster RCNN model  (FrRCNN5-cls) could 

accurately detect plants and emerging blooms under dif-

ferent illumination, bloom load, and occlusion conditions 

(Fig. 1). If a proper viewing angle was used, the enclosure 

mostly provided uniform and bright illumination (e.g., 

Fig. 1a). �e illumination could be an issue as the enclo-

sure did not fully cover the imaging area. When the solar 

zenith angle was steep or the camera was configured to 

face the enclosure entrance, the field of view (FOV) of 

cameras could include both shaded and strongly illumi-

nated areas. Consequently, collected images could have 

very dark illumination for the shaded part, making it dif-

ficult to identify objects with low reflectance (e.g., the 

plant in Fig. 1b). �e  FrRCNN5-cls model learned feature 

representations to detect the plant, showing its capability 

to handle object variations because of extreme illumina-

tion changes. In addition to illumination, bloom load also 

varied dramatically during the entire flowering process. 

Plants would have fewer emerging blooms in early and 

late stages than the peak flowering time. �e  FrRCNN5-cls 

model provided accurate detection results for both cases, 

showing the efficacy of using a single model to process 

images of plants in different flowering stages. Occlu-

sion was another great challenge for detecting emerging 

blooms. Cotton plants were branchy and leafy during the 

flowering period, so blooms were frequently occluded 

by plant leaves and branches. Depending on the cultivar 

and development stages, the occlusions varied in direc-

tion and severity (see Fig. 1e, f ), which introduced issues 

for object detection (especially by using traditional image 

processing). �e  FrRCNN5-cls model learned effective fea-

tures to describe and detect occluded emerging blooms, 

especially some heavily occluded emerging blooms 

(Fig.  1f ). All of these successful cases demonstrated the 

capability of the  FrRCNN5-cls model to detect plants and 

emerging blooms in images with varied conditions.

�e FrRCNN5-cls model, however, could not process 

certain cases. �e abaxial surface of leaves has a higher 

reflectance than the adaxial surface (Cordon and Lagorio, 

2007), showing a similar contrast pattern with emerging 

blooms (brighter than adjacent areas). When the abaxial 

surface of leaves was exposed to the camera and sur-

rounded with bracts, these leaves could not be differen-

tiated easily from true emerging blooms by even human 

observation (Fig.  1g), thereby generating false positive 

detections of emerging blooms. In addition, because of 

a high reflectance, emerging blooms under strong illu-

mination lost the contrast with background and detailed 

textures, and thus became considerably more difficult 

to be identified in the images. In this situation, emerg-

ing bloom objects were not accurately detected by the 

FrRCNN5-cls model.

Results of ablation experiments

Labeling strategy

Two labeling strategies were used in this study: 3-class 

and 5-class labeling strategies. �e 3-class labeling strat-

egy included the classes of target plant, emerging bloom, 

and non-bloom objects, whereas the 5-class labeling 

strategy further split the non-bloom class into three 

classes, resulting in five classes of target plant, emerging 

bloom, region with specular reflectance, opened boll, and 

others.

(See figure on next page.)

Fig. 1 Representative results of plants and emerging blooms detected by the trained Faster RCNN (FrRCNN5-cls) model. The top three rows 

demonstrate successful detections under different illumination, bloom load, and occlusion conditions. The bottom row shows two failed cases of 

emerging bloom detection, one because back-sided leaves had higher reflectance and were identified incorrectly as emerging blooms, and the 

other because a lower contrast between emerging blooms and the background could lead to mis-detection
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Overall, the model  (FrRCNN5-cls) trained using the 

5-class labeling strategy had improved performance 

(mean average precision, mAP and average precision 

per class, AP) than that  (FrRCNN3-cls) trained using the 

3-class labeling strategy (Fig. 2). In particular, the AP of 

emerging bloom detection increased by 3% by using the 

5-class labeling strategy. Compared with 3-class labe-

ling, the 5-class labeling strategy could more efficiently 

split classes with similar appearance. Consequently, the 

variation within a class would become smaller than the 

differences between classes, providing benefits for train-

ing deep neural networks. For instance, there could be 

several types of non-bloom objects that had a distinct 

appearance. �ere were also some bright gaps between 

plant branches and leaves, which formed regions that had 

a similar appearance to emerging blooms, whereas there 

were some other objects (e.g., camera) that looked dis-

similar from emerging blooms (see “specular reflectance” 

and “others” objects in Additional file  1: Figure S1). If 

these regions/objects were labeled with different classes, 

it would be relatively easier for deep neural networks to 

learn features to form classification boundaries for sepa-

rating classes with similar appearance. Otherwise, deep 

neural networks might not learn effective features, result-

ing in misclassification between regions/objects with 

similar appearance.

It is noteworthy that the AP score of the bloom class 

was 0.72 even by using the 5-class labelling strategy, 

meaning that models could detect irrelevant regions as 

blooms and lead to the over-detection issue. �us, by 

using a high classification confidence score (0.7 in this 

study), we expect to mitigate this issue and provide accu-

rate detection results for bloom counting.

Counting strategy

Overall, for each image, the “plant-based counting” 

strategy provided improved accuracy over the “whole 

image-based counting” strategy (Fig.  3). Although the 

regression slope calculated using the “plant-based count-

ing” strategy was slightly higher than that calculated 

using the “whole image-based counting” strategy, a 

higher correlation and lower root mean squared errors 

(RMSE) were achieved by using the “plant-based count-

ing” strategy, indicating improved counting accuracy 

(Fig.  3a and d). �ese improvements were primarily 

because the “plant-based counting” strategy made more 

samples in the counting error range within ± 1, especially 

a 3% increase with no counting difference (Fig.  3b and 

e). As an absolute counting error of one bloom might be 

substantial when plants had very few emerging blooms 

(e.g., early and late flowering stages), relative counting 

errors were calculated for samples with counting errors 

less than one bloom (Fig. 3c and f ). Compared with the 

“whole image-based counting” strategy, the “plant-based 

counting” strategy increased the number of samples 

with no relative counting error by 5% and dramatically 

reduced the number of samples with relative counting 

errors over 20%. It is also noteworthy that the “plant-

based counting” strategy dramatically improved the 

counting accuracy for samples that had a zero count with 

the manual method but a non-zero count with the imag-

ing method (denoted by asterisks in Fig. 3c and f ).

Although the  FrRCNN5-cls and the “plant-based count-

ing” strategy demonstrated improved performance on 

emerging bloom detection and counting, respectively, 

significant counting errors were identified by jointly 

using the  FrRCNN5-cls and the “plant-based counting” 

strategy as a counting approach (Fig.  4). For absolute 

counting, the combination of the  FrRCNN5-cls model and 

the “plant-based counting” strategy provided accurate 

measurements (less than one bloom) for plants with zero 

to four emerging blooms per day (approximately 82% of 

cases). Absolute counting errors substantially increased, 

however, when plants had five or more emerging blooms 

Fig. 2 Detection accuracies (mean average precision and average precision per class) on the validation dataset by using models trained with 

datasets labeled by the 5-class  (FrRCNN5-cls) and 3-class  (FrRCNN3-cls) methods, respectively. The mean average precision (mAP) was calculated over 

the bloom and plant classes only
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(approximately 18% of cases). On average, the developed 

counting approach also reached a plateau of 6 blooms per 

plant per day. �us, when plants reached peak flowering 

time (over 10 emerging blooms per day), absolute count-

ing errors were over 4 blooms per plant per day, which 

was equivalent to about 50% relative counting errors. 

�is occurred primarily because of the assumption in the 

developed counting approach that a single image from 

a particular viewing angle would capture most (or even 

all) emerging blooms on a plant on one day, and thus the 

counting approach could obtain the maximum bloom 

count from one out of four images for a single plant. �is 

assumption generally held true in flowering stages when 

plants had a small number of emerging blooms per day, 

so the counting approach provided accurate counts for 

most plants. �is assumption, however, was invalid dur-

ing the peak flowering time when plants had a large num-

ber of emerging blooms per day. Furthermore, emerging 

blooms were distributed around plant canopies, so a sin-

gle image from any viewing angle would not be sufficient 

to capture all blooms on a plant, resulting in significant 

underestimation of absolute bloom counts.

�e significant underestimation of absolute bloom 

counts, however, showed a limited influence on the accu-

racy of calculating cumulative percentages of opened 

blooms. Errors in the cumulative percentage of emerging 

blooms were less than 2% irrespective of flowering stages. 

�ere were two possible reasons. First, images with sig-

nificant underestimation occupied only a small portion 

(~ 2.72%) of the entire dataset, meaning that on average, 

the large underestimation only affected individual plants 

on few days. �us, a limited influence was observed on 

cumulative percentage of opened blooms. Second, cumu-

lative percentage was the ratio of total opened blooms 

from the beginning of flowering to a specific day and 

total opened blooms over the flowering period. �e 

underestimation of absolute counts would be included in 

both the numerator and denominator of the cumulative 

percentage, and thus mitigated somewhat. �is would be 

particularly true if a genotype could intensively produce 

Fig. 3 Counting accuracies calculated using “plant-based counting” (top row) and “whole image-based counting” (bottom row) strategies, 

respectively, for individual plants on each of the 26 scanning dates (a total of 2834 data points). a and d are linear regression results between the 

imaging derived and manual counts. b and e are the histograms of counting errors. C and F are the histograms of relative counting errors for 

samples with an absolute counting error of less than 1. In c and f, the numbers on top of the bars indicate the relative improvement (over 5%) of 

using the “plant-based counting” strategy over the “whole image-based counting” strategy. The asterisk denotes samples that had a zero count with 

the manual method but a non-zero count with the imaging method
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blooms (more than 10 blooms daily) in a short time of 

period. In such a case, a relatively similar scaling factor 

was introduced to both the numerator and denominator 

of the cumulative percentage, which largely reduced the 

underestimation effect. �erefore, the use of cumulative 

percentage could reasonably address a concern in that 

the developed method might have different accuracies 

for genotypes with different flowering patterns. None-

theless, the high accuracy of the calculated cumulative 

percentage of opened blooms could hold great potential 

for flowering characterization.

Results of �owering characteristics and statistical analyses

Representative �owering curves

As the developed counting approach underestimated the 

number of emerging blooms on plants during the peak 

flowering time, the absolute bloom counting curves gen-

erated using imaging-derived counts also showed large 

Fig. 4 Errors of absolute counting (top chart) and cumulative percentage (bottom chart) for emerging blooms per plant by using the  FrRCNN5-cls 

and the “plant-based counting” strategy. For absolute counting, plants were grouped into 13 categories based on the number of emerging blooms 

(0 to 12) on those plants on a particular date. For cumulative percentage, plants were grouped into 10 categories (from 0–10% to 90–100%) 

of opened blooms on those plants on a particular date. The number on top of each grouped bar indicated the difference between counts (or 

cumulative percentage) calculated using the imaging and manual methods



Page 8 of 17Jiang et al. Plant Methods          (2020) 16:156 

differences from those generated using manual counts 

during that time (Additional file 1: Figure S2). �is sug-

gests that the curves should not be used for quantita-

tive analyses such as the maximal number of emerging 

blooms per plant over a growing season. �e flowering 

curves derived by the imaging method, however, gen-

erally showed a similar trend as the curves derived by 

the manual method, suggesting their utility for certain 

qualitative analyses. For instance, the field received pre-

cipitation (approximately 8 mm of rain) and experienced 

chilling temperatures (approximately 10  °C cooler than 

the monthly-average temperature) on 16 September 2018 

(95 DAPs) and 24 September 2018 (103 DAPs), respec-

tively. After the weather changed, the plants mostly had 

a reduced number of emerging blooms on the next sam-

pling day in flowering curves derived by both the manual 

and imaging methods. Certain genotypes (e.g. Exotic 

T0368BC3MDN GH196 and Elite DES 56), however, did 

not show such a pattern, perhaps indicating that they are 

more resistant to severe weather changes than other gen-

otypes. (Additional file 1: Figure S3).

Cumulative flowering curves generated using bloom 

counts derived by the imaging method were very simi-

lar to those generated using manual counts (Fig. 5). �e 

same correspondence was also observed for individual 

genotypes (Additional file  1: Figure S4). �is suggests 

that the curves derived using the imaging method could 

potentially be used for both qualitative and quantitative 

characterization of flowering patterns. Two distinctive 

patterns were observed from the curves. First, exotic G. 

hirsutum presented larger within-group variation than 

elite G. hirsutum and G. barbadense. �is was because 

the exotic group contained wild genotypes that are 

diverse in their flowering patterns, whereas elite G. hir-

sutum have been selected for flowering patterns that con-

ferred optimal yield. �ere was only one cultivar in the G. 

barbadense group, which should not present large varia-

tion. Second, both exotic and elite G. hirsutum showed a 

relatively steeper slope than G. barbadense, indicating a 

potential difference in flowering duration between vari-

ous species.

Statistical analysis results

Significant interaction effects were presented on 

extracted flowering characteristics (first bloom date, 

flowering start date, and flowering duration) between the 

genotype and transplanting date, suggesting the neces-

sity of analyzing flowering patterns for each transplant-

ing batch separately (see Additional file 1: Tables S1–S6 

for detailed ANOVA analysis tables). As only the much 

larger first transplanting batch showed statistical signifi-

cance among genetic categories or genotypes, successive 

sections focused on data of the first transplanting batch.

Flowering characteristics calculated using the flower-

ing curves derived by the imaging method showed the 

same statistical power in differentiating the three genetic 

categories as those calculated using the flowering curves 

derived by the manual method (Fig.  6). For the first 

bloom date and flowering start date, although G. bar-

badense showed the lowest values with the least stand-

ard deviation, it could not be statistically separated from 

the G. hirsutum groups for two reasons. First, exotic G. 

hirsutum contained diverse genotypes, presenting large 

variation that covered the other two groups. Second, 

G. barbadense had only two replicates in the first trans-

planting batch, which had limited statistical power to be 

differentiated from other groups. For flowering duration, 

however, G. barbadense was significantly longer than the 

G. hirsutum groups, which was an expected flowering 

pattern for G. barbadense (Pima cotton) in the study area.

While the order of individual genotypes was slightly 

different, flowering characteristics derived by the imag-

ing and manual methods showed very similar statistical 

patterns among genotypes (Fig. 7). Genotype T0368BC-

3MDN.GH196 had the first bloom (first bloom date) 

and entered into the flowering period (flowering start 

date) significantly later than other genotypes, suggest-

ing that it could be used for studying genes and gene 

regions controlling flowering time. In addition, geno-

type T0368BC3MDN.GH196 had a significantly shorter 

Fig. 5 Cumulative flowering curves derived using imaging and 

manual counts for three genetic categories (elite G. hirsutum, exotic 

G. hirsutum, and G. barbadense). Group mean values are drawn in 

lines (solid and dashed lines for results derived by the imaging and 

manual methods, respectively), and group standard deviations are 

indicated by shaded areas (magenta and blue for results derived by 

the imaging and manual methods, respectively)
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flowering duration than other genotypes. �is occurred 

likely because of environmental effects. Overall, air 

temperature decreased dramatically (more than 15  °C) 

after 120 DAPs, leading to a sudden drop of emerging 

blooms. Although several blooms opened after 120 DAPs 

(see Additional file  1: Figure S3), the freezing tempera-

ture might cause an early termination of flowering for 

T0368BC3MDN.GH196. Some other genotypes also pre-

sented significant differences in flowering duration, such 

as genotype T1046cBC1.GH212 for a longer duration 

and genotypes T0281aMDN.GH198 and T1046aBC1.

GH210 for a shorter duration. It should be noted that 

genotype Pima.S6.2011.3841 had a statistically longer 

flowering duration using the characteristic derived 

from manual counts but not by that derived from imag-

ing counts, which was the only difference in the statis-

tical patterns between the two methods. �is possibly 

occurred because manual counts would not miss any 

emerging blooms on a plant, having a relatively stronger 

capability to identify differences between genotypes with 

fewer replicates.

Based on the estimation, each genotype should have 

at least 2 replicates to ensure adequate statistical power 

to identify the significance of the first bloom date and 

flowering start date, or at least 3 replicates to ensure the 

statistical power to identify the significance of flower-

ing duration among the 23 genotypes (Table 1). As there 

were only 2 replicates per genotype Pima.S6.2011.3841, 

no significant difference in flowering duration was iden-

tified between Pima.S6.2011.3841 and other genotypes, 

which agreed with the experimental result. If the varia-

tion because of genotype remains the same as that in the 

first transplanting batch, using more genotypes (e.g., 200 

genotypes in a population) would slightly increase the 

statistical power for identifying significance among geno-

types. Flowering curves derived by the imaging method, 

Fig. 6 Boxplot of flowering characteristics (first bloom date, flowering start date, and flowering duration) among three genetic categories (elite 

G. hirsutum, exotic G. hirsutum, and G. barbadense) in the first transplanting batch. Groups with a statistically significant difference (p < 0.05) are 

denoted with different letters, and group mean values of each characteristic are sorted alphabetically
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Fig. 7 Boxplot of flowering characteristics (first bloom date, flowering start date, and flowering duration) among 23 genotypes in the first 

transplanting batch. Genotypes with statistically higher values are denoted by “ + ”, whereas genotypes with statistically lower values are denoted 

by “−”. Differences were inferred at the significance level of 0.05
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therefore, would remain effective for flowering pattern 

analyses in large-scale experiments.

Data collection frequency

Average differences between mean cumulative flower-

ing curves derived by the imaging and manual methods 

increased when data collection frequency was reduced 

(Table 2). Generally, the increase of average curve differ-

ence was inversely proportional to the reduction of data 

collection frequency. �is suggests that the temporal res-

olution of data (determined by data collection frequency) 

is also an important factor for the accuracy of cumula-

tive flowering curves. With a higher temporal resolution, 

daily bloom counts could be obtained more frequently, 

which could improve the accuracy of calculating the total 

number of opened blooms and cumulative percentages of 

opened blooms over a flowering period.

Statistical results showed that flowering characteristics 

extracted from the subset with the frequency of twice per 

week had the same statistical power in identification of 

genotypic groups as those extracted from the original 

dataset (see Additional file  1: Figure S5). �e statistical 

power, however, was lost when the data collection fre-

quency was further reduced to once per week (compare 

flowering duration in Additional file  1: Figure S6 and 

Fig. 6). �is suggests that an optimal data collection fre-

quency would be twice per week for the current study, 

which can provide adequate statistical power in genotype 

differentiation and dramatically reduce the workload of 

field data collection.

Discussion
�e DeepFlower approach demonstrated the  efficacy of 

detecting and counting emerging blooms in images to 

characterize flowering patterns for different genetic cat-

egories or genotypes. Flower characteristics derived by 

the imaging method showed an almost identical capa-

bility for identifying significance among genotypes with 

manual counts, which further validated the effectiveness 

of the DeepFlower approach for studying flowering pat-

terns. In particular, the DeepFlower approach success-

fully revealed flowering patterns for cotton plants that 

have a complex canopy architecture (and thus difficulties 

of emerging bloom detection and counting) and there-

fore should transfer well to other flowering plants that 

have the same or similar canopy architecture. �is sug-

gests that the combination of the image acquisition sys-

tem and DeepFlower approach can be an effective and 

efficient tool for characterization of flowering patterns 

for plants in the field, holding great potential for identify-

ing gene loci that control flowering behavior for different 

plant genotypes.

Although the DeepFlower approach showed promis-

ing results for extracting flowering characteristics, sev-

eral aspects can be further improved or explored. First, 

the scanning throughput is relatively low for the cur-

rent configuration. �e platform ran at approximately 

0.25 m/s and took around 25 min to complete the scan-

ning of the present experimental field (approximately 

0.05 ha), resulting in a scanning throughput of 0.12 ha/h. 

�is throughput might not be adequate for extremely 

large experiments, e.g., that involves up to several thou-

sand genotypes with at least two replicates per genotype 

(up to a couple of hectares). Challenges, however, would 

need to be identified to balance the platform cost (cam-

era with high resolution and fast frame rate), image qual-

ity (blurry), and scanning throughput (platform moving 

speed). Second, the present DeepFlower approach over-

simplifies the counting task by using only one single 

image with the maximum count among the four view-

ing images. �e approach depends upon the assump-

tion that most or all emerging blooms can be seen from 

a single one of these four viewing angles. Experimental 

Table 1 Estimated number of  replications per  genotype 

at the signi�cance level of 0.05 and power of 0.95

FBD shorts for �rst bloom date, FSD shorts for �owering start date, and FD shorts 

for �owering duration. The asterisk denotes the estimation for one population 

in a NAM study

Trait Batch E�ect size F Number 
of genotypes

Estimated 
number 
of replications

FBD 1 1.18 22 2

FBD* 1 1.18 200 2

FSD 1 1.52 22 2

FSD* 1 1.52 200 2

FD 1 0.88 22 3

FD* 1 0.88 200 2

Table 2 Average di�erences between cumulative �owering curves derived by the imaging and manual methods

Data collection frequency Exotic G. hirsutum Elite G. hirsutum G. barbadense

Once per week (10 dates) 10.96% 9.92% 12.01%

Twice per week (20 dates) 3.79% 3.85% 4.23%

Three times per week (26 dates) 1.03% 1.21% 1.27%
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results, however, showed that this assumption is invalid 

when plants enter into peak flowering time, leading to 

a significant underestimation of bloom counts. Conse-

quently, absolute bloom counting curves cannot be used 

for quantitative analysis of flowering patterns. A viable 

solution is to integrate 3D imaging so that 2D detections 

can be projected onto a global 3D space for counting. For 

instance, photogrammetric methods (e.g., structure from 

motion) can be used to reconstruct 3D point clouds using 

images from multiple viewing angles, so that for a single 

plant emerging bloom detections can be projected from 

different 2D images onto a global 3D space to remove 

duplicated detections (and thus counts). In the present 

study, preliminary tests using the collected images sug-

gested that images from four viewing angles (approxi-

mately 90° apart from each neighboring angle) could not 

provide adequate image overlap to reconstruct 3D point 

clouds of a single plant, and thus the 2D to 3D projection. 

It is therefore necessary to conduct successive studies to 

explore the optimal image collection configuration (e.g., 

viewing angles and number of images) for 3D reconstruc-

tion using photogrammetric methods. Another way is to 

fuse 2D images with 3D point clouds acquired using sep-

arate instruments (e.g., LiDARs), which enables the 2D to 

3D projection. �is will also require considerable efforts 

to develop new sensing systems for data collection and 

algorithms for data fusion (especially multi-source het-

erogeneous data fusion). Last, although the DeepFlower 

approach demonstrated great performance for the SPL-

based experiment, it could not fully address the flower 

counting problem in plot-based layouts (either single- or 

double-plot per row) that have been widely used in cot-

ton research and production. �is could raise particular 

concerns on transferring findings and knowledge from 

the SPL-based experiments to practical production sys-

tems. �us, in the future, it would be necessary to fur-

ther explore the possibility of combining engineering, 

agronomy, genetics/genomics, and statistics approaches 

for an interdisciplinary solution that can fully address 

the flower counting problem in an environment closer to 

practical situations.

Conclusions
�e developed imaging approach (combination of the 

image acquisition system and DeepFlower approach) can 

be an efficient and effective tool for detecting and count-

ing blooms on plants in the field, demonstrating promis-

ing results for the characterization of flowering patterns. 

In particular, the developed approach can potentially be 

used for many other flowering plants that have a simpler 

or similar canopy architecture, providing potential for 

deepening the understanding of the flowering process in 

general. Future studies will be focused on the integration 

of 3D imaging to further improve the counting accuracy 

and expand the capability of mapping bloom positions on 

plants. Moreover, it is needed to incorporate the devel-

oped approach with advanced statistics methods and 

experimental designs for the cotton flower counting in 

conditions closer to practical scenarios such as plot-

based layouts.

Materials and methods
Image acquisition

High throughput imaging system and experimental design

A previously developed ground mobile imaging system 

(“GPhenoVision” by Jiang et  al. [22]) was modified with 

a multi-view color imaging module for data acquisition 

(Fig. 8a). �e multi-view color imaging module consisted 

of four consumer grade mirror-less cameras (X-A10, 

Fujifilm Holdings Corporation, Tokyo, Japan) that faced 

towards the center of the system enclosure approximately 

90° apart from neighboring cameras. To avoid potential 

issues of image quality (e.g., blurry images) because of 

high-frequency vibration, an inexpensive camera mount 

was manufactured by combining a camera ball mount 

and a vibration isolator, providing the flexibility of view-

ing angle configuration and the capability of isolating 

high-frequency vibrations (Fig.  8b). A custom trigger 

device was developed to synchronize triggering signals 

to all four cameras. �e trigger device and an RTK-GPS 

(Cruizer II, Raven Industries Inc., Sioux Falls, SD, USA) 

were connected to a laptop computer in which a custom 

LabVIEW program ran to automatically save timestamps 

of triggering signals and RTK-GPS records. �e devel-

oped data acquisition system acquired four color images 

at a time with RTK-GPS information.

Cotton seeds of 24 genotypes (from 3 genetic catego-

ries including Gossypium hirsutum, Gossypium hirsutum, 

and Gossypium barbadense) were planted in pots in a 

greenhouse on 13 June 2018 to obtain cotton seedlings. 

An experimental field was transplanted with 132 cotton 

seedlings (12 plants per row × 11 rows) in a SPL where 

individual plants (treated as one plot) had an in-row and 

across-row width of 1.52  m (Fig.  8c). Two batches of 

transplanting were conducted. �e first batch of trans-

planting was conducted on 26 June 2018 (13  days after 

planting, DAPs), yielding 75 (out of 89 survived seed-

lings) healthy plants over the growing season. �e sec-

ond batch of transplanting was conducted on 5 July 2018 

(22 DAPs), yielding additional 41 (out of 43 survived 

seedlings) healthy plants. A total of 116 plants from 23 

genotypes, therefore, were used in the present study. �e 

modified GPhenoVision system imaged the field in a con-

tinuous scanning mode every 2  days (or 3  days if over 

weekends) during the flowering period from 20 August 

2018 (68 DAPs) to 24 October 2018 (133 DAPs).
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DeepFlower for characterization of �owering patterns

Image preprocessing and labeling

Collected images were segregated to individual plants 

based on the collection location information, generating 

a dataset containing 8666 images collected for 116 plants 

on 26 dates. A total of 7 plants were randomly identified 

and all 475 images of those 7 plants were used for man-

ual annotation with bounding boxes of five classes (see 

Additional file 1: Figure S1). �e five classes included the 

target plant, emerging bloom, opened cotton boll, region 

with specular reflectance, and others (objects other than 

the four classes). �is labeling strategy was named as the 

5-class labeling strategy. �e 475 images were randomly 

shuffled to form training (380 images) and testing (95 

images) datasets for training and evaluating object detec-

tion models. It should be noted that the 475 annotated 

images were exclusively used for training and validating 

the detection models. Analyses for the counting  perfor-

mance of the DeepFlower approach would not use the 

475 images to avoid potential biases in the results. For 

the flowering pattern analyses, flowering curves of the 7 

plants derived from the DeepFlower approach were still 

used to ensure adequate replicates in statistical analysis.

Bloom detection

A deep learning-based approach (DeepFlower) was 

developed to detect and count emerging blooms in the 

collected images (Fig. 9). �e approach consisted of three 

major sections including object detection, emerging 

bloom counting, and flowering characterization.

Object detection was the key of the DeepFlower 

approach. Because of the success of many object detec-

tion applications [23], the Faster RCNN model was used 

as the object detector in the present study (see Object 

detector in Fig.  9). �e architecture contains a feature 

extractor, a region proposal network (RPN), and a clas-

sification and regressor module. �e feature extractor is 

usually a deep CNN network, which extracts informative 

feature representations from the raw input images in a 

hierarchical fashion. �e RPN uses the extracted features 

to generate potential regions of interest (ROIs), and the 

classification and regressor module uses the features in 

each ROI to identify the ROI class and refine the coordi-

nates of ROI bounding box. As images contained diverse 

object classes with a similar appearance, the Incep-

tion ResNet v2 was used as a feature extractor due to its 

strong capability of learning adequate features to differ-

entiate similar object classes.

As a limited number of labeled images were available, 

a transfer learning technique was used to facilitate model 

training. A Faster RCNN model was initialized using 

weights pretrained on the Common Objects in Context 

dataset (aka. COCO dataset, a large annotated image data-

set open to the public) and fine-tuned on the training data-

set for bloom detection. As the Faster RCNN model was 

trained using images labeled by the 5-class labeling strat-

egy, the model was named as  FrRCNN5-cls for conciseness. 

Model training was performed using a mini-batch stochas-

tic gradient descent (SGD, batch size was 2) by the Adam 

optimizer with an initial learning rate of 5 × 10–5, a dropout 

Fig. 8 Diagram of the data acquisition system and field layout. a GPhenoVision system with the color imaging module for acquiring four-view 

images of plants. b Implementation of a specially designed camera mount for isolating high frequency vibration. c The single plant layout (SPL) field 

used in the present study
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rate of 0.5 for the RPN and classification and regressor 

modules, and a weight decay of 1 × 10–3. Based on prelimi-

nary experiments, a total 50,000 training steps (equivalent 

to 167 epochs) were used to ensure the model convergence 

for the bloom detection task. Model checkpoints were 

saved after every 5,000 training iterations. Checkpoints 

with the best validation performance were selected for suc-

cessive bloom counting analyses, which mimics the early 

Fig. 9 DeepFlower processing pipeline for detection, counting, and characterization of flowering patterns using deep learning method and color 

images



Page 15 of 17Jiang et al. Plant Methods          (2020) 16:156  

stopping strategy to avoid potential overfitting issues. Two 

computing nodes (14 2.8 GHz CPU cores, 120 GB RAM, 

and Tesla V100 16 GB GPU memory) hosted by the Geor-

gia Advanced Computing Resource Center (GACRC) were 

used for model training under the operating system of Cen-

tOS 7.5 with Tensorflow 1.12.0.

�e trained Faster RCNN model could detect up to 100 

bounding boxes of target plant and emerging blooms with 

classification confidence scores in a given image. If the 

confidence score was less than an arbitrary threshold (0.7 

in the present study), a detection was removed from the 

detection result. Consequently, the final detection results 

contained only detections with a high classification confi-

dence, which were used for bloom counting.

Bloom counting

A counting strategy was developed to use detection results 

from the Faster RCNN model to count the number of 

emerging blooms for a plant on one day (see Counting 

in Fig.  9). �e strategy counted the number of emerging 

blooms for a plant in two steps. In the first step, emerg-

ing bloom detections were treated as blooms within the 

target plant if the centroids of their bounding boxes were 

within the bounding box of the target plant detection. Sub-

sequently, the number of emerging blooms on the target 

plant was obtained for each of the four images acquired for 

a plant on one day. �is provided an accurate bloom count 

for a plant from each of the four viewing angles. In the 

second step, we hypothesized that most (or all) emerging 

blooms should be seen from one of the four viewing angles, 

and thus the strategy selected the image (viewing angle) 

that provided the maximum bloom count from the four 

images as the number of emerging blooms for a plant on 

that day. Based on preliminary experiments, the maximum 

bloom count substantially outperformed the total bloom 

count and the average bloom count from the four images of 

a plant. As the first step only considered emerging blooms 

within a target plant, this counting strategy was summa-

rized as the “plant-based counting” strategy.

Flowering characterization

�e numbers of emerging blooms per plant per day over 

the flowering period were used to derive flowering curves 

for individual plants (see Characterization in Fig.  9). A 

flowering curve was defined as the cumulative percentage 

of opened blooms over the growing time (in DAPs). Cumu-

lative percentage of opened blooms on individual days was 

calculated using Eq. 1.

(1)Pk =

∑
k

i=0
Ci

∑
N

i=0
Ci

where Pk is the cumulative percentage of opened 

blooms for a plant on the kth DAPs, Ci is the count of 

emerging blooms for that plant on the ith DAPs, and N 

is the end day of the flowering period.

�ree critical points were defined on a flowering 

curve, including first bloom date (FBD) when the first 

bloom was identified, flowering start date (FSD) when 

at least 5% of emerging blooms occurred on a plant, and 

flowering end date (FED) when at least 95% of emerg-

ing blooms occurred on a plant. �ree flowering char-

acteristics were derived from the three critical points. 

FBD and FSD were directly used as flowering charac-

teristics, whereas FSD and FED were used to calculate 

flowering duration (FD), which was important for many 

applications related to improvements of environment 

adaptability.

Ablation experiments

Labeling strategy

While image labeling seems straightforward, it could sig-

nificantly affect the performance of trained deep neural 

networks. For the bloom detection task, a simple class 

definition was used to label images for training, including 

only three classes i.e., target plant, emerging bloom, and 

non-bloom. �e non-bloom class contained all regions 

that were labeled other than plant and emerging bloom 

classes. �is labeling strategy has been mostly used by 

many deep learning applications, which annotated only 

objects of interest. For brevity, this labeling strategy was 

named as the 3-class labeling strategy. Accordingly, the 

same training process was applied to train another Faster 

RCNN model  (FrRCNN3-cls) using images labeled by the 

3-class labeling strategy. �is model was compared with 

the  FrRCNN5-cls model in terms of detection accuracy.

Counting strategy

�e “plant-based counting” strategy would provide an 

accurate count of emerging blooms on a target plant in 

an image, but it required additional efforts on labeling 

(e.g., annotating target plants in images) and computing 

(e.g., judgement of emerging bloom location within or 

outside of a target plant). A simplified counting strategy 

was to directly use the number of emerging bloom detec-

tions as the count for a plant in an image, which might 

save those labeling and computing efforts. �is simplified 

strategy could be valid, because images were captured 

for a single plant and might not contain much informa-

tion of neighboring plants. As this strategy would use all 

emerging bloom detections in an image, it was named as 

the “whole image-based counting” strategy. An ablation 
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experiment was conducted to compare the two counting 

strategies in terms of counting accuracy.

Statistical analysis

For detection and counting accuracies, simple linear 

regression analyses were performed between imag-

ing derived and manual counts for the 116 plants on 26 

dates. No interception term was used for those analyses. 

�e slope of regression equation, coefficient of determi-

nation  (R2), and root mean squared error (RMSE) were 

used as indicators to evaluate performance. In addition, 

error analyses were conducted for the optimal counting 

approach (the combination of the best detection model 

and counting strategy) for both absolute counting and 

cumulative percentage calculation.

For flowering characteristics, analysis of variance 

(ANOVA) analyses were performed on the three flow-

ering characteristics (FBD, FSD, and FD) among three 

genetic categories and genotypes, respectively, exploring 

differences in flowering patterns between various culti-

vated and exotic species. All tests were performed in R 

using a significance level of 0.05.

An important aspect of the present study is to guide 

the design of future large-scale experiments. �e mini-

mum replication number, therefore, was estimated for 

each flowering characteristic for experiments that are 

likely to include at least 200 genotypes from one popu-

lation in a nested association mapping (NAM) study for 

cotton. Estimation was performed using the one-way 

ANOVA model with an effect size calculated using the 

present study data, a significance level of 0.05, and a sta-

tistical power of 0.95 in the G*Power software [24].

Data collection frequency

Data collection frequency is an important factor in stud-

ies related to plant flowering patterns because it deter-

mines the temporal resolution of data and the cost of data 

acquisition. An optimal frequency would provide ade-

quate information to discern flowering patterns among 

groups and reduce investments in data collection and 

management. To investigate this factor, the data collec-

tion frequency of the original dataset was reduced from 

three times per week (approximately 2–3  days between 

two sampling dates) to twice per week (approximately 

3–4 days) and once per week (7 days), which formed two 

subsets. �e two subsets were analyzed using the opti-

mal processing approach to derive cumulative flowering 

curves and flowering characteristics. Average differences 

were calculated between the cumulative flowering curves 

derived by the imaging method and manual method with 

different data collection frequencies, evaluating effects 

caused by the difference in data collection frequency. In 

addition, extracted flowering characteristics were used in 

statistical analyses to examine the statistical power of dif-

ferent data collection frequencies. �rough these efforts, 

the optimal data collection frequency would be deter-

mined and can be used to guide data collection in future 

studies.
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