
DeepGCNs: Can GCNs Go as Deep as CNNs?
https://sites.google.com/view/deep-gcns

Guohao Li∗ Matthias Müller∗ Ali Thabet Bernard Ghanem

Visual Computing Center, KAUST, Thuwal, Saudi Arabia

{guohao.li, matthias.mueller.2, ali.thabet, bernard.ghanem}@kaust.edu.sa

Abstract

Convolutional Neural Networks (CNNs) achieve impres-

sive performance in a wide variety of fields. Their success

benefited from a massive boost when very deep CNN models

were able to be reliably trained. Despite their merits, CNNs

fail to properly address problems with non-Euclidean data.

To overcome this challenge, Graph Convolutional Networks

(GCNs) build graphs to represent non-Euclidean data, bor-

row concepts from CNNs, and apply them in training. GCNs

show promising results, but they are usually limited to very

shallow models due to the vanishing gradient problem (see

Figure 1). As a result, most state-of-the-art GCN models are

no deeper than 3 or 4 layers. In this work, we present new

ways to successfully train very deep GCNs. We do this by

borrowing concepts from CNNs, specifically residual/dense

connections and dilated convolutions, and adapting them to

GCN architectures. Extensive experiments show the posi-

tive effect of these deep GCN frameworks. Finally, we use

these new concepts to build a very deep 56-layer GCN, and

show how it significantly boosts performance (+3.7% mIoU

over state-of-the-art) in the task of point cloud semantic seg-

mentation. We believe that the community can greatly ben-

efit from this work, as it opens up many opportunities for

advancing GCN-based research.

1. Introduction

GCNs have been gaining a lot of momentum in the last

few years. This increased interest is attributed to two main

factors: the increasing proliferation of non-Euclidean data

in real-world applications, and the limited performance of

CNNs when dealing with such data. GCNs operate directly

on non-Euclidean data and are very promising for applica-

tions that depend on this information modality. GCNs are

currently used to predict individual relations in social net-

works [36], model proteins for drug discovery [53, 40], en-

hance predictions of recommendation engines [24, 49], effi-

ciently segment large point clouds [42], among other fields.

∗equal contribution

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 7 layers w/o residual
14 layers w/o residual
28 layers w/o residual
56 layers w/o residual

0 20 40 60 80 100

7 layers w/ residual
14 layers w/ residual
28 layers w/ residual
56 layers w/ residual

Figure 1. Training Deep GCNs. (left) We show the training loss

for GCNs with 7, 14, 28, and 56 layers, with and without residual

connections. We note how adding more layers without residual

connections translates to substantially higher loss. (right) In con-

trast, training GCNs with residual connections results in consistent

stability across all depths.

A key reason behind the success of CNNs is the abil-

ity to design and reliably train very deep CNN models. In

contrast, it is not yet clear how to properly train deep GCN

architectures, where several works have studied their limi-

tations [19, 43, 52]. Stacking more layers into a GCN leads

to the common vanishing gradient problem. This means

that back-propagating through these networks causes over-

smoothing, eventually leading to features of graph vertices

converging to the same value [19]. Due to these limitations,

most state-of-the-art GCNs are no deeper than 4 layers [52].

Vanishing gradients is not a foreign phenomenon in the

world of CNNs. It also posed limitations on the depth

growth of these types of networks. ResNet [11] provided

a big step forward in the pursuit of very deep CNNs when

it introduced residual connections between input and output

layers. These connections massively alleviated the vanish-

ing gradient problem. Today, ResNets can reach 152 layers

and beyond. Further extension came with DenseNet [13],

where more connections are introduced across layers. More

layers could potentially mean more spatial information loss

due to pooling. This issue was also addressed, with Dilated

Convolutions [50]. The introductions of these key concepts

had substantial impact on the progress of CNNs, and we be-

lieve they can have a similar effect if well adapted to GCNs.

9267



In this work, we present an extensive study of method-

ologies that allow for training very deep GCNs. We

adapt concepts that were successful in training deep CNNs,

mainly residual connections, dense connections, and dilated

convolutions. We show how we can incorporate these layers

into a graph framework, and present an extensive analysis

of the effect of these additions to the accuracy and stabil-

ity of deep GCNs. To showcase these layer adaptations, we

apply them to the popular task of point cloud semantic seg-

mentation. We show that adding a combination of residual

and dense connections, and dilated convolutions, enables

successful training of GCNs up to 56 layers deep (refer to

Figure 1). This very deep GCN improves the state-of-the-art

on the challenging S3DIS [1] point cloud dataset by 3.7%.

Contributions. We summarize our contributions as three

fold. (1) We adapt residual/dense connections, and dilated

convolutions to GCNs. (2) We present extensive experi-

ments on point cloud data, showing the effect of each of

these new layers to the stability and performance of train-

ing deep GCNs. We use point cloud semantic segmentation

as our experimental testbed. (3) We show how these new

concepts help build a 56-layer GCN, the deepest GCN ar-

chitecture by a large margin, and achieve close to 4% boost

in state-of-the-art performance on the S3DIS dataset [1].

2. Related Work

A large number of real-world applications deal with non-

Euclidean data, which cannot be systematically and reliably

processed by CNNs in general. To overcome the shortcom-

ings of CNNs, GCNs provide well-suited solutions for non-

Euclidean data processing, leading to greatly increasing in-

terest in using GCNs for a variety of applications. In social

networks [36], graphs represent connections between indi-

viduals based on mutual interests/relations. These connec-

tions are non-Euclidean and highly irregular. GCNs help

better estimate edge strengths between the vertices of social

network graphs, thus leading to more accurate connections

between individuals. Graphs are also used to model chem-

ical molecule structures [53, 40]. Understanding the bio-

activities of these molecules can have substantial impact on

drug discovery. Another popular use of graphs is in rec-

ommendation engines [24, 49], where accurate modelling

of user interactions leads to improved product recommen-

dations. Graphs are also popular modes of representation in

natural language processing [2, 23], where they are used to

represent complex relations between large text units.

GCNs also find many applications in computer vision.

In scene graph generation, semantic relations between ob-

jects are modelled using a graph. This graph is used to

detect and segment objects in images, and also to predict

semantic relations between object pairs [30, 44, 47, 20].

Scene graphs also facilitate the inverse process, where an

image is reconstructed given a graph representation of the

scene [17]. Graphs are also used to model human joints

for action recognition in video [46, 16]. GCNs are a per-

fect candidate for 3D point cloud processing, especially

since the unstructured nature of point clouds poses a rep-

resentational challenge for systematic research. Several at-

tempts in creating structure from 3D data exist by either

representing it with multiple 2D views [35, 9, 3, 22], or by

voxelization [5, 28, 32, 37]. More recent work focuses on

directly processing unordered point cloud representations

[27, 29, 8, 14, 48]. The recent EdgeConv method by Wang

et al. [42] applies GCNs to point clouds. In particular, they

propose a dynamic edge convolution algorithm for semantic

segmentation of point clouds. The algorithm dynamically

computes node adjacency at each graph layer using the dis-

tance between point features. This work demonstrates the

potential of GCNs for point cloud related applications and

beats the state-of-the-art in the task of point cloud segmen-

tation. Unlike most other works, EdgeConv does not rely on

RNNs or complex point aggregation methods.

Current GCN algorithms including EdgeConv are lim-

ited to shallow depths. Recent works attempt to train deeper

GCNs. For instance, Kipf et al. trained a semi-supervised

GCN model for node classification and showed how perfor-

mance degrades when using more than 3 layers [18]. Pham

et al. [26] proposed Column Network (CLN) for collective

classification in relational learning and showed peak perfor-

mance with 10 layers with the performance degrading for

deeper graphs. Rahimi et al. [31] developed a Highway

GCN for user geo-location in social media graphs, where

they add “highway” gates between layers to facilitate gra-

dient flow. Even with these gates, the authors demonstrate

performance degradation after 6 layers of depth. Xu et al.

[45] developed a Jump Knowledge Network for represen-

tation learning and devised an alternative strategy to select

graph neighbors for each node based on graph structure. As

with other works, their network is limited to a small num-

ber of layers (6). Recently, Li et al. [19] studied the depth

limitations of GCNs and showed that deep GCNs can cause

over-smoothing, which results in features at vertices within

each connected component converging to the same value.

Other works [43, 52] also show the limitations of stacking

multiple GCN layers, which lead to highly complex back-

propagation and the common vanishing gradient problem.

Many difficulties facing GCNs nowadays (e.g. vanishing

gradients and limited receptive field) were also present in

the early days of CNNs [11, 50]. We bridge this gap and

show that the majority of these drawbacks can be remedied

by borrowing several orthogonal tricks from CNNs. Deep

CNNs achieved a huge boost in performance with the in-

troduction of ResNet [11]. By adding residual connections

between inputs and outputs of layers, ResNet tends to alle-

viate the vanishing gradient problem. DenseNet [13] takes

9268



this idea a step further and adds connections across layers as

well. Dilated Convolutions [50] are a more recent approach

that has lead to significant performance gains, specifically

in image-to-image translation tasks such as semantic seg-

mentation [50], by increasing the receptive field without

loss of resolution. In this work, we show how one can

benefit from concepts introduced for CNNs, mainly resid-

ual/dense connections and dilated convolutions, to train

very deep GCNs. We support our claim by extending the

work of Wang et al. [42] to a much deeper GCN, and there-

fore significantly increasing its performance. Extensive ex-

periments on the task of point cloud semantic segmentation

validate these ideas for general graph scenarios.

3. Methodology

3.1. Representation Learning on Graphs

Graph Definition. A graph G is represented by a tuple G =
(V, E) where V is the set of unordered vertices and E is the

set of edges representing the connectivity between vertices

v ∈ V . If ei,j ∈ E , then vertices vi and vj are connected to

each other with an edge ei,j .

Graph Convolution Networks. Inspired by CNNs, GCNs

intend to extract richer features at a vertex by aggregating

features of vertices from its neighborhood. GCNs represent

vertices by associating each vertex v with a feature vec-

tor hv ∈ R
D, where D is the feature dimension. There-

fore, the graph G as a whole can be represented by con-

catenating the features of all the unordered vertices, i.e.

hG = [hv1 ,hv2 , ...,hvN
]⊤ ∈ R

N×D, where N is the car-

dinality of set V . A general graph convolution operation F
at the l-th layer can be formulated as the following aggre-

gation and update operations,

Gl+1 = F(Gl,Wl)

= Update(Aggregate(Gl,W
agg
l ),Wupdate

l ).
(1)

Gl = (Vl, El) and Gl+1 = (Vl+1, El+1) are the input and

output graphs at the l-th layer, respectively. Wagg
l and

Wupdate
l are the learnable weights of the aggregation and

update functions respectively, and they are the essential

components of GCNs. In most GCN frameworks, aggre-

gation functions are used to compile information from the

neighborhood of vertices, while update functions perform a

non-linear transform on the aggregated information to com-

pute new vertex representations. There are different variants

of those two functions. For example, the aggregation func-

tion can be a mean aggregator [18], a max-pooling aggre-

gator [27, 10, 42], an attention aggregator [39] or an LSTM

aggregator [25]. The update function can be a multi-layer

perceptron [10, 7], a gated network [21], etc. More con-

cretely, the representation of vertices is computed at each

layer by aggregating features of neighbor vertices for all

vl+1 ∈ Vl+1 as follows,

hvl+1
= φ (hvl

, ρ({hul
|ul ∈ N (vl)},hvl

,Wρ),Wφ), (2)

where ρ is a vertex feature aggregation function and φ is a

vertex feature update function, hvl
and hvl+1

are the ver-

tex features at the l-th layer and l + 1-th layer respec-

tively. N (vl) is the set of neighbor vertices of v at the

l-th layer, and hul
is the feature of those neighbor ver-

tices parametrized by Wρ. Wφ contains the learnable pa-

rameters of these functions. For simplicity and without

loss of generality, we use a max-pooling vertex feature ag-

gregator, without learnable parameters, to pool the differ-

ence of features between vertex vl and all of its neighbors:

ρ(.) = max(hul
− hvl

| ul ∈ N (vl)). We then model the

vertex feature updater φ as a multi-layer perceptron (MLP)

with batch normalization [15] and a ReLU as an activation

function. This MLP concatenates hvl
with its aggregate fea-

tures from ρ(.) to form its input.

Dynamic Edges. As mentioned earlier, most GCNs have

fixed graph structures and only update the vertex features

at each iteration. Recent work [34, 42, 38] demonstrates

that dynamic graph convolution, where the graph structure

is allowed to change in each layer, can learn better graph

representations compared to GCNs with fixed graph struc-

ture. For instance, ECC (Edge-Conditioned Convolution)

[34] uses dynamic edge-conditional filters to learn an edge-

specific weight matrix. Moreover, EdgeConv [42] finds

the nearest neighbors in the current feature space to re-

construct the graph after every EdgeConv layer. In order

to learn to generate point clouds, Graph-Convolution GAN

(Generative Adversarial Network) [38] also applies k-NN

graphs to construct the neighbourhood of each vertex in ev-

ery layer. We find that dynamically changing neighbors in

GCNs helps alleviate the over-smoothing problem and re-

sults in an effectively larger receptive field, when deeper

GCNs are considered. In our framework, we propose to re-

compute edges between vertices via a Dilated k-NN func-

tion in the feature space of each layer to further increase

the receptive field. In what follows, we provide detailed de-

scription of three operations that can enable much deeper

GCNs to be trained: residual connections, dense connec-

tions, and dilated aggregation.

3.2. Residual Learning for GCNs

Designing deep GCN architectures [43, 52] is an open

problem in the graph learning space. Recent work [19,

43, 52] suggests that GCNs do not scale well to deep ar-

chitectures, since stacking multiple layers of graph convo-

lutions leads to high complexity in back-propagation. As

such, most state-of-the-art GCN models are usually no more

than 3 layers deep [52]. Inspired by the huge success of

ResNet [11], DenseNet [13] and Dilated Convolutions [50],

9269



Input 1
x
1

 C
o

n
v

f=
1

0
2

4

1
x
1

 C
o

n
v

f=
5

1
2

1
x
1

 C
o

n
v

f=
2

5
6

1
x
1

 C
o

n
v

f=
1

3

G
lo

b
a

l

M
a
x
 P

o
o
lin

g

GCN 

Backbone 

Block Fusion Block

MLP 

Prediction 

Block

Output

Add

Concat

k = # of nearest neighbors

f = # of filters or hidden units

d = dilation rate

InputInputInput

PlainGCN

k=16 f=64

PlainGCN

k=16 f=64

PlainGCN

k=16 f=64

PlainGCN

k=16 f=64

PlainGCN

k=16 f=64

ResGCN

k=16 f=64 d=1

ResGCN

k=16 f=64 d=1

ResGCN

k=16 f=64 d=2

ResGCN

k=16 f=64 d=26

ResGCN

k=16 f=64 d=27

DenseGCN

k=16 f=64 d=1

DenseGCN

k=16 f=32 d=1

DenseGCN

k=16 f=32 d=2

DenseGCN

k=16 f=32 d=26

DenseGCN

k=16 f=32 d=27

PlainGCN 

Backbone

ResGCN 

Backbone

DenseGCN 

Backbone

Figure 2. Proposed GCN architecture for point cloud semantic segmentation. (left) Our framework consists of three blocks: a GCN

Backbone Block (feature transformation of input point cloud), a Fusion Block (global feature generation and fusion), and an MLP Predic-

tion Block (point-wise label prediction). (right) We study three types of GCN Backbone Block (PlainGCN, ResGCN and DenseGCN) and

use two kinds of layer connection (vertex-wise addition used in ResGCN or vertex-wise concatenation used in DenseGCN).

we transfer these ideas to GCNs to unleash their full poten-

tial. This enables much deeper GCNs that reliably converge

in training and achieve superior performance in inference.

In the original graph learning framework, the underlying

mapping F , which takes a graph as an input and outputs

a new graph representation (see Equation (1)), is learned.

Here, we propose a graph residual learning framework that

learns an underlying mapping H by fitting another mapping

F . After Gl is transformed by F , vertex-wise addition is

performed to obtain Gl+1. The residual mapping F learns

to take a graph as input and outputs a residual graph repre-

sentation Gres
l+1 for the next layer. Wl is the set of learnable

parameters at layer l. In our experiments, we refer to our

residual model as ResGCN.

Gl+1 = H(Gl,Wl)

= F(Gl,Wl) + Gl = Gres
l+1 + Gl.

(3)

3.3. Dense Connections in GCNs

DenseNet [13] was proposed to exploit dense connectiv-

ity among layers, which improves information flow in the

network and enables efficient reuse of features among lay-

ers. Inspired by DenseNet, we adapt a similar idea to GCNs

so as to exploit information flow from different GCN layers.

In particular, we have:

Gl+1 = H(Gl,Wl)

= T (F(Gl,Wl),Gl)

= T (F(Gl,Wl), ...,F(G0,W0),G0).

(4)

The operator T is a vertex-wise concatenation function that

densely fuses the input graph G0 with all the intermedi-

ate GCN layer outputs. To this end, Gl+1 consists of all

the GCN transitions from previous layers. Since we fuse

GCN representations densely, we refer to our dense model

as DenseGCN. The growth rate of DenseGCN is equal to

the dimension D of the output graph (similar to DenseNet

for CNNs [13]). For example, if F produces a D dimen-

sional vertex feature, where the vertices of the input graph

G0 are D0 dimensional, the dimension of each vertex fea-

ture of Gl+1 is D0 +D × (l + 1).

3.4. Dilated Aggregation in GCNs

Dilated wavelet convolution is an algorithm originating

from the wavelet processing domain [12, 33]. To allevi-

ate spatial information loss caused by pooling operations,

Yu et al. [50] propose dilated convolutions as an alternative

to applying consecutive pooling layers for dense prediction

tasks, e.g. semantic image segmentation. Their experiments

demonstrate that aggregating multi-scale contextual infor-

mation using dilated convolutions can significantly increase

the accuracy of semantic segmentation tasks. The reason

behind this is the fact that dilation enlarges the receptive

field without loss of resolution. We believe that dilation can

also help with the receptive fields of deep GCNs. Therefore,

we introduce dilated aggregation to GCNs. There are many

possible ways to construct a dilated neighborhood. We use

a Dilated k-NN to find dilated neighbors after every GCN

layer and construct a Dilated Graph. In particular, for an

input graph G = (V, E) with Dilated k-NN and d as the di-

lation rate, the Dilated k-NN returns the k nearest neighbors

within the k × d neighborhood region by skipping every d

neighbors. The nearest neighbors are determined based on

a pre-defined distance metric. In our experiments, we use

the ℓ2 distance in the feature space of the current layer.

Let N (d)(v) denote the d-dilated neighborhood of vertex

v. If (u1, u2, ..., uk×d) are the first sorted k × d nearest

neighbors, vertices (u1, u1+d, u1+2d, ..., u1+(k−1)d) are the

d-dilated neighbors of vertex v (see Figure 3), i.e.

N (d)(v) = {u1, u1+d, u1+2d, ..., u1+(k−1)d}.

9270



1

4

3

2

6

7

5

8

9

11 12

10
13

14
15

16

1

4

3

2

6

7

5

8

9

11 12

10
13

14
15

16

1

4

3

2

6

7

5

8

9

11 12

10
13

14
15

16

Figure 3. Dilated Convolution in GCNs. Visualization of dilated

convolution on a structured graph arranged in a grid (e.g. 2D im-

age) and on a general structured graph. (top) 2D convolution with

kernel size 3 and dilation rate 1, 2, 4 (left to right). (bottom) Dy-

namic graph convolution with dilation rate 1, 2, 4 (left to right).

Therefore, the edges E(d) of the output graph are defined

on the set of d-dilated vertex neighbors N (d)(v). Specifi-

cally, there exists a directed edge e ∈ E(d) from vertex v to

every vertex u ∈ N (d)(v). The GCN aggregation and up-

date functions are applied, as in Equation (1), by using the

edges E(d) created by the Dilated k-NN, so as to generate

the feature h
(d)
v of each output vertex in V(d). We denote

this layer operation as a dilated graph convolution with di-

lation rate d, or more formally: G(d) = (V(d), E(d)). To

improve generalization, we use stochastic dilation in prac-

tice. During training, we perform the aforementioned di-

lated aggregations with a high probability (1− ǫ) leaving a

small probability ǫ to perform random aggregation by uni-

formly sampling k neighbors from the set of k×d neighbors

{u1, u2, ..., uk×d}. At inference time, we perform deter-

ministic dilated aggregation without stochasticity.

4. Experiments

We propose ResGCN and DenseGCN to handle the van-

ishing gradient problem of GCNs. To enlarge the receptive

field, we define a dilated graph convolution operator for

GCNs. To evaluate our framework, we conduct extensive

experiments on the task of large-scale point cloud segmen-

tation and demonstrate that our methods significantly im-

prove performance. In addition, we also perform a compre-

hensive ablation study to show the effect of different com-

ponents of our framework.

4.1. Graph Learning on 3D Point Clouds

Point cloud segmentation is a challenging task because

of the unordered and irregular structure of 3D point clouds.

Normally, each point in a point cloud is represented by its

3D spatial coordinates and possibly auxiliary features such

as color and surface normal. We treat each point as a vertex

v in a directed graph G and we use k-NN to construct the

directed dynamic edges between points at every GCN layer

(refer to Section 3.1). In the first layer, we construct the

input graph G0 by executing a dilated k-NN search to find

the nearest neighbor in 3D coordinate space. At subsequent

layers, we dynamically build the edges using dilated k-NN

in feature space. For the segmentation task, we predict the

categories of all the vertices at the output layer.

4.2. Experimental Setup

We use the overall accuracy (OA) and mean intersection

over union (mIoU) across all classes as evaluation metrics.

For each class, the IoU is computed as TP
TP+T−P

, where

TP is the number of true positive points, T is the number of

ground truth points of that class, and P is the number of pre-

dicted positive points. To motivate the use of deep GCNs,

we do a thorough ablation study on area 5 to analyze each

component and provide insights. We then evaluate our pro-

posed reference model (backbone of 28 layers with resid-

ual graph connections and stochastic dilated graph convolu-

tions) on all 6 areas and compare it to the shallow DGCNN

baseline [42] and other state-of-the-art methods.

4.3. Network Architectures

As shown in Figure 2, all the network architectures in

our experiments have three blocks: a GCN backbone block,

a fusion block and an MLP prediction block. The GCN

backbone block is the only part that differs between experi-

ments. For example, the only difference between PlainGCN

and ResGCN is the use of residual skip connections for

all GCN layers in ResGCN. Both have the same number

of parameters. We linearly increase the dilation rate d of

dilated k-NN with network depth. For fair comparison,

we keep the fusion and MLP prediction blocks the same

for all architectures. In the S3DIS semantic segmentation

task, the GCN backbone block takes as input a point cloud

with 4096 points, extracts features by applying consecutive

GCN layers to aggregate local information, and outputs a

learned graph representation with 4096 vertices. The fusion

and MLP prediction blocks follow a similar architecture as

PointNet [27] and DGCNN [42]. The fusion block is used

to fuse the global and multi-scale local features. It takes as

input the extracted vertex features from the GCN backbone

block at every GCN layer and concatenates those features,

then passes them through a 1×1 convolution layer followed

by max pooling. The latter layer aggregates the vertex fea-

tures of the whole graph into a single global feature vector,

which in return is concatenated with the feature of each ver-

tex from all previous GCN layers (fusion of global and local

information). The MLP prediction block applies three MLP

layers to the fused features of each vertex/point to predict

its category. In practice, these layers are 1×1 convolutions.

9271



PlainGCN. This baseline model consists of a PlainGCN

backbone block, a fusion block, and a MLP prediction

block. The backbone stacks 28 EdgeConv [42] layers with

dynamic k-NN, each of which is similar to the one used in

DGCNN [42]. No skip connections are used here.

ResGCN. We construct ResGCN by adding dynamic di-

lated k-NN and residual graph connections to PlainGCN.

These connections between all GCN layers in the GCN

backbone block do not increase the number of parameters.

DenseGCN. Similarly, DenseGCN is built by adding dy-

namic dilated k-NN and dense graph connections to the

PlainGCN. As described in Section 3.3, dense graph con-

nections are created by concatenating all the intermediate

graph representations from previous layers. The dilation

rate schedule of our DenseGCN is the same as ResGCN.

4.4. Implementation

We implement all our models using Tensorflow. For fair

comparison, we use the Adam optimizer with the same ini-

tial learning rate 0.001 and the same learning rate schedule;

the learning rate decays 50% every 3× 105 gradient decent

steps. The networks are trained with two NVIDIA Tesla

V100 GPUs using data parallelism. The batch size is set

to 8 for each GPU. Batch Normalization is applied to every

layer. Dropout with a rate of 0.3 is used at the second MLP

layer of the MLP prediction block. As mentioned in Section

3.4, we use dilated k-NN with a random uniform sampling

probability ǫ = 0.2 for GCNs with dilations. In order to iso-

late the effect of the proposed deep GCN architectures, we

do not use any data augmentation or post processing tech-

niques. We train our models end-to-end from scratch.

4.5. Results

For convenient referencing, we use the naming conven-

tion BackboneBlock-#Layers to denote the key models in

our analysis and we provide all names in Table 1. We fo-

cus on residual graph connections for our analysis, since

ResGCN-28 is easier and faster to train, but we expect that

our observations also hold for dense graph connections.

We investigate the performance of different ResGCN ar-

chitectures, e.g. with dynamic dilated k-NN, with regular

dynamic k-NN (without dilation), and with fixed edges. We

also study the effect of different parameters, e.g. number of

k-NN neighbors (4, 8, 16, 32), number of filters (32, 64,

128), and number of layers (7, 14, 28, 56). Overall, we

conduct 20 experiments and show their results in Table 1.

Effect of residual graph connections. Our experiments in

Table 1 (Reference) show that residual graph connections

play an essential role in training deeper networks, as they

tend to result in more stable gradients. This is analogous to

the insight from CNNs [11]. When the residual graph con-

nections between layers are removed (i.e. in PlainGCN-28),

performance dramatically degrades (-12% mIoU). In the

supplement, we show similar performance gains by com-

bining residual graph connections and dilated graph convo-

lutions with other types of GCN layers.

Effect of dilation. Results in Table 1 (Dilation) [50] show

that dilated graph convolutions account for a 2.85% im-

provement in mean IoU (row 3), motivated primarily by

the expansion of the network’s receptive field. We find that

adding stochasticity to the dilated k-NN does help perfor-

mance but not to a significant extent. Interestingly, our re-

sults in Table 1 also indicate that dilation especially helps

deep networks when combined with residual graph connec-

tions (rows 1,8). Without such connections, performance

can actually degrade with dilated graph convolutions. The

reason for this is probably that these varying neighbors re-

sult in ‘worse’ gradients, which further hinder convergence

when residual graph connections are not used.

Effect of dynamic k-NN. While we observe an improve-

ment when updating the k nearest neighbors after every

layer, we would also like to point out that it comes at a rel-

atively high computational cost. We show different variants

without dynamic edges in Table 1 (Fixed k-NN).

Effect of dense graph connections. We observe sim-

ilar performance gains with dense graph connections

(DenseGCN-28) in Table 1 (Connections). However, with

a naive implementation, the memory cost is prohibitive.

Hence, the largest model we can fit into GPU memory uses

only 32 filters and 8 nearest neighbors, as compared to 64
filters and 16 neighbors in the case of its residual counter-

part ResGCN-28. Since the performance of these two deep

GCN variants is similar, residual connections are more prac-

tical for most use cases and, hence we focus on them in our

ablation study. Yet, we do expect the same insights to trans-

fer to the case of dense graph connections.

Effect of nearest neighbors. Results in Table 1 (Neigh-

bors) show that a larger number of neighbors helps in gen-

eral. As the number of neighbors is decreased by a factor of

2 and 4, the performance drops by 2.5% and 3.3% respec-

tively. However, a large number of neighbors only results in

a performance boost, if the network capacity is sufficiently

large. This becomes apparent when we increase the number

of neighbors by a factor of 2 and decrease the number of

filters by a factor of 2.

Effect of network depth. Table 1 (Depth) shows that in-

creasing the number of layers improves network perfor-

mance, but only if residual graph connections and dilated

graph convolutions are used, as in Table 1 (Connections).

Effect of network width. Results in Table 1 (Width) show

that increasing the number of filters leads to a similar in-

crease in performance as increasing the number of layers.

In general, a higher network capacity enables learning nu-

ances necessary for succeeding in corner cases.

9272



Ablation Model mIoU ∆mIoU dynamic connection dilation stochastic # NNs # filters # layers

Reference ResGCN-28 52.49 0.00 X ⊕ X X 16 64 28

Dilation

51.98 -0.51 X ⊕ X 16 64 28

49.64 -2.85 X ⊕ 16 64 28

PlainGCN-28 40.31 -12.18 X 16 64 28

Fixed k-NN
48.38 -4.11 ⊕ 16 64 28

43.43 -9.06 16 64 28

Connections

DenseGCN-28 51.27 -1.22 X ⊲⊳ X X 8 32 28

40.47 -12.02 X X X 16 64 28

38.79 -13.70 X X X 8 64 56

49.23 -3.26 X X X 16 64 14

47.92 -4.57 X X X 16 64 7

Neighbors
49.98 -2.51 X ⊕ X X 8 64 28

49.22 -3.27 X ⊕ X X 4 64 28

Depth

ResGCN-56 53.64 1.15 X ⊕ X X 8 64 56

ResGCN-14 49.90 -2.59 X ⊕ X X 16 64 14

ResGCN-7 48.95 -3.53 X ⊕ X X 16 64 7

Width

ResGCN-28W 53.78 1.29 X ⊕ X X 8 128 28

49.18 -3.31 X ⊕ X X 32 32 28

48.80 -3.69 X ⊕ X X 16 32 28

45.62 -6.87 X ⊕ X X 16 16 28

Table 1. Ablation study on area 5 of S3DIS. We compare our reference network (ResGCN-28) with 28 layers, residual graph connections,

and dilated graph convolutions to several ablated variants. All models were trained with the same hyper-parameters for 100 epochs on all

areas except for area 5, which is used for evaluation. We denote residual and dense connections with the ⊕ and ⊲⊳ symbols respectively.

We highlight the most important results in bold. ∆mIoU denotes the difference in mIoU with respect to the reference model ResGCN-28.

Qualitative Results. Figure 4 shows qualitative results on

area 5 of S3DIS [1]. As expected from the results in Ta-

ble 1, our ResGCN-28 and DenseGCN-28 perform partic-

ularly well on difficult classes such as board, beam, book-

case and door. Rows 1-4 clearly show how ResGCN-28 and

DenseGCN-28 are able to segment the board, beam, book-

case and door respectively, while PlainGCN-28 completely

fails. Please refer to the supplement for more qualitative

results and other ablation studies.

Comparison to state-of-the-art. Finally, we compare our

reference network (ResGCN-28), which incorporates the

ideas put forward in the methodology, to several state-of-

the-art baselines in Table 2. The results clearly show the

effectiveness of deeper models with residual graph connec-

tions and dilated graph convolutions. ResGCN-28 outper-

forms DGCNN [42] by 3.9% (absolute) in mean IoU, even

though DGCNN has the same fusion and MLP prediction

blocks as ResGCN-28 but with a shallower PlainGCN back-

bone block. Furthermore, we outperform all baselines in 9

out of 13 classes. We perform particularly well in the diffi-

cult object classes such as board, where we achieve 51.1%,

and sofa, where we improve state-of-the-art by about 10%.

This significant performance improvement on the diffi-

cult classes is probably due to the increased network capac-

ity, which allows the network to learn subtle details neces-

sary to distinguish between a board and a wall for exam-

ple. The first row in Figure 4 is a representative example

for this occurrence. Our performance gains are solely due

to our innovation in the network architecture, since we use

the same hyper-parameters and even learning rate schedule

as the baseline DGCNN [42] and only decrease the num-

ber of nearest neighbors from 20 to 16 and the batch size

from 24 to 16 due to memory constraints. We outperform

state-of-the art methods by a significant margin and expect

further improvement from tweaking the hyper-parameters,

especially the learning schedule.

5. Conclusion and Future Work

In this work, we investigate how to bring proven use-

ful concepts (residual connections, dense connections and

dilated convolutions) from CNNs to GCNs and answer the

question: how can GCNs be made deeper? Extensive exper-

iments show that by adding skip connections to GCNs, we

can alleviate the difficulty of training, which is the primary

problem impeding GCNs to go deeper. Moreover, dilated

graph convolutions help to gain a larger receptive field with-

out loss of resolution. Even with a small amount of near-

est neighbors, deep GCNs can achieve high performance on

point cloud semantic segmentation. ResGCN-56 performs

very well on this task, although it uses only 8 nearest neigh-

bors compared to 16 for ResGCN-28. We were also able

to train ResGCN-151 for 80 epochs; the network converged

very well and achieved similar results as ResGCN-28 and

ResGCN-56 but with only 3 nearest neighbors. Due to com-

9273



Original Ground Truth PlainGCN-28 DenseGCN-28ResGCN-28

Figure 4. Qualitative Results on S3DIS Semantic Segmentation. We show here the effect of adding residual and dense graph connections

to deep GCNs. PlainGCN-28, ResGCN-28, and DenseGCN-28 are identical except for the presence of residual graph connections in

ResGCN-28 and dense graph connections in DenseGCN-28. We note how both residual and dense graph connections have a substantial

effect on hard classes like board, bookcase, and sofa. These are lost in the results of PlainGCN-28.

Method OA mIOU ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet [27] 78.5 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2

MS+CU [8] 79.2 47.8 88.6 95.8 67.3 36.9 24.9 48.6 52.3 51.9 45.1 10.6 36.8 24.7 37.5

G+RCU [8] 81.1 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 58.1 47.4 6.9 39.0 30.0 41.9

PointNet++ [29] - 53.2 90.2 91.7 73.1 42.7 21.2 49.7 42.3 62.7 59.0 19.6 45.8 48.2 45.6

3DRNN+CF [48] 86.9 56.3 92.9 93.8 73.1 42.5 25.9 47.6 59.2 60.4 66.7 24.8 57.0 36.7 51.6

DGCNN [42] 84.1 56.1 - - - - - - - - - - - - -

ResGCN-28 (Ours) 85.9 60.0 93.1 95.3 78.2 33.9 37.4 56.1 68.2 64.9 61.0 34.6 51.5 51.1 54.4

Table 2. Comparison of ResGCN-28 with state-of-the-art on S3DIS Semantic Segmentation. We report average per-class results across

all areas for our reference model ResGCN-28, which has 28 GCN layers, residual graph connections, and dilated graph convolutions, and

state-of-the-art baselines. ResGCN-28 outperforms state-of-the-art by almost 4%. It also outperforms all baselines in 9 out of 13 classes.

The metrics shown are overall point accuracy (OA) and mean IoU (mIoU). ’-’ denotes not reported and bold denotes best performance.

putational constraints, we were unable to investigate such

deep architectures in detail and leave it for future work.

Our results show that after solving the vanishing gradient

problem plaguing deep GCNs, we can either make GCNs

deeper or wider (e.g. ResGCN-28W) to get better perfor-

mance. We expect GCNs to become a powerful tool for

processing non-Euclidean data in computer vision, natural

language processing, and data mining. We show success-

ful cases for adapting concepts from CNNs to GCNs. In

the future, it will be worthwhile to explore how to transfer

other operators, e.g. deformable convolutions [6], other ar-

chitectures, e.g. feature pyramid architectures [51], etc. It

will also be interesting to study different distance measures

to compute dilated k-NN, constructing graphs with differ-

ent k at each layer, better dilation rate schedules [4, 41] for

GCNs, and combining residual and dense connections.

We also point out that, for the specific task of point cloud

semantic segmentation, the common approach of process-

ing the data in 1m × 1m columns is sub-optimal for graph

representation. A more suitable sampling approach should

lead to further performance gains on this task.

Acknowledgments. The authors thank Adel Bibi and

Guocheng Qian for their help with the project. This work

was supported by the King Abdullah University of Science

and Technology (KAUST) Office of Sponsored Research

through the Visual Computing Center (VCC) funding.

9274



References

[1] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese.

Joint 2D-3D-Semantic Data for Indoor Scene Understand-

ing. ArXiv e-prints, Feb. 2017.

[2] Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheg-

giani, and Khalil Simaan. Graph convolutional encoders for

syntax-aware neural machine translation. In Proceedings of

the 2017 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 1957–1967, 2017.

[3] Alexandre Boulch, Bertrand Le Saux, and Nicolas Audebert.

Unstructured point cloud semantic labeling using deep seg-

mentation networks. In 3DOR, 2017.

[4] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for seman-

tic image segmentation. arXiv preprint arXiv:1706.05587,

2017.

[5] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas A Funkhouser, and Matthias Nießner. Scan-

net: Richly-annotated 3d reconstructions of indoor scenes.

In CVPR, volume 2, page 10, 2017.

[6] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In Proceedings of the IEEE international confer-

ence on computer vision, pages 764–773, 2017.

[7] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre,

Rafael Bombarell, Timothy Hirzel, Alán Aspuru-Guzik, and

Ryan P Adams. Convolutional networks on graphs for learn-

ing molecular fingerprints. In Advances in neural informa-

tion processing systems, pages 2224–2232, 2015.

[8] Francis Engelmann, Theodora Kontogianni, Alexander Her-

mans, and Bastian Leibe. Exploring spatial context for 3d se-

mantic segmentation of point clouds. In IEEE International

Conference on Computer Vision, 3DRMS Workshop, ICCV,

2017.

[9] Joris Guerry, Alexandre Boulch, Bertrand Le Saux, Julien

Moras, Aurélien Plyer, and David Filliat. Snapnet-r: Con-

sistent 3d multi-view semantic labeling for robotics. In 2017

IEEE International Conference on Computer Vision Work-

shops (ICCVW), pages 669–678, 2017.

[10] Will Hamilton, Zhitao Ying, and Jure Leskovec. Induc-

tive representation learning on large graphs. In Advances in

Neural Information Processing Systems, pages 1024–1034,

2017.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[12] Matthias Holschneider, Richard Kronland-Martinet, Jean

Morlet, and Ph Tchamitchian. A real-time algorithm for

signal analysis with the help of the wavelet transform. In

Wavelets, pages 286–297. Springer, 1990.

[13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017.

[14] Qiangui Huang, Weiyue Wang, and Ulrich Neumann. Re-

current slice networks for 3d segmentation of point clouds.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2626–2635, 2018.

[15] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[16] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh

Saxena. Structural-rnn: Deep learning on spatio-temporal

graphs. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5308–5317, 2016.

[17] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image gener-

ation from scene graphs. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1219–1228, 2018.

[18] Thomas N Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016.

[19] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights

into graph convolutional networks for semi-supervised learn-

ing. In Thirty-Second AAAI Conference on Artificial Intelli-

gence, 2018.

[20] Yikang Li, Wanli Ouyang, Bolei Zhou, Jianping Shi, Chao

Zhang, and Xiaogang Wang. Factorizable net: an efficient

subgraph-based framework for scene graph generation. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 335–351, 2018.

[21] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard

Zemel. Gated graph sequence neural networks. arXiv

preprint arXiv:1511.05493, 2015.

[22] Zhen Li, Yukang Gan, Xiaodan Liang, Yizhou Yu, Hui

Cheng, and Liang Lin. Lstm-cf: Unifying context modeling

and fusion with lstms for rgb-d scene labeling. In European

Conference on Computer Vision, pages 541–557. Springer,

2016.

[23] Diego Marcheggiani and Ivan Titov. Encoding sentences

with graph convolutional networks for semantic role label-

ing. In Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, pages 1506–1515,

2017.

[24] Federico Monti, Michael Bronstein, and Xavier Bresson. Ge-

ometric matrix completion with recurrent multi-graph neural

networks. In Advances in Neural Information Processing

Systems, pages 3697–3707, 2017.

[25] Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina

Toutanova, and Wen-tau Yih. Cross-sentence n-ary relation

extraction with graph lstms. Transactions of the Association

for Computational Linguistics, 5:101–115, 2017.

[26] Trang Pham, Truyen Tran, Dinh Phung, and Svetha

Venkatesh. Column networks for collective classification.

In Thirty-First AAAI Conference on Artificial Intelligence,

2017.

[27] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classifica-

tion and segmentation. Proc. Computer Vision and Pattern

Recognition (CVPR), IEEE, 1(2):4, 2017.

[28] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai,

Mengyuan Yan, and Leonidas J Guibas. Volumetric and

9275



multi-view cnns for object classification on 3d data. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 5648–5656, 2016.

[29] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in Neural Informa-

tion Processing Systems, pages 5099–5108, 2017.

[30] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel

Urtasun. 3d graph neural networks for rgbd semantic seg-

mentation. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 5199–5208, 2017.

[31] Afshin Rahimi, Trevor Cohn, and Tim Baldwin. Semi-

supervised user geolocation via graph convolutional net-

works. arXiv preprint arXiv:1804.08049, 2018.

[32] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.

Octnet: Learning deep 3d representations at high resolutions.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, volume 3, 2017.

[33] Mark J Shensa. The discrete wavelet transform: wedding the

a trous and mallat algorithms. IEEE Transactions on signal

processing, 40(10):2464–2482, 1992.

[34] Martin Simonovsky and Nikos Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3693–3702, 2017.

[35] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik

Learned-Miller. Multi-view convolutional neural networks

for 3d shape recognition. In Proceedings of the IEEE in-

ternational conference on computer vision, pages 945–953,

2015.

[36] Lei Tang and Huan Liu. Relational learning via latent so-

cial dimensions. In Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data

mining, pages 817–826. ACM, 2009.

[37] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung

Gwak, and Silvio Savarese. Segcloud: Semantic segmen-

tation of 3d point clouds. In 3D Vision (3DV), 2017 Interna-

tional Conference on, pages 537–547. IEEE, 2017.

[38] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learn-

ing localized generative models for 3d point clouds via graph

convolution. 2018.

[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova,

Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-

tention networks. arXiv preprint arXiv:1710.10903, 2017.

[40] Nikil Wale, Ian A Watson, and George Karypis. Compar-

ison of descriptor spaces for chemical compound retrieval

and classification. Knowledge and Information Systems,

14(3):347–375, 2008.

[41] Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua

Huang, Xiaodi Hou, and Garrison Cottrell. Understanding

convolution for semantic segmentation. In 2018 IEEE Win-

ter Conference on Applications of Computer Vision (WACV),

pages 1451–1460. IEEE, 2018.

[42] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. arXiv preprint

arXiv:1801.07829, 2018.

[43] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,

Chengqi Zhang, and Philip S Yu. A comprehensive survey

on graph neural networks. arXiv preprint arXiv:1901.00596,

2019.

[44] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei.

Scene graph generation by iterative message passing. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 5410–5419, 2017.

[45] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe,

Ken-ichi Kawarabayashi, and Stefanie Jegelka. Representa-

tion learning on graphs with jumping knowledge networks.

arXiv preprint arXiv:1806.03536, 2018.

[46] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-

ral graph convolutional networks for skeleton-based action

recognition. In Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[47] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi

Parikh. Graph r-cnn for scene graph generation. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 670–685, 2018.

[48] Xiaoqing Ye, Jiamao Li, Hexiao Huang, Liang Du, and Xi-

aolin Zhang. 3d recurrent neural networks with context fu-

sion for point cloud semantic segmentation. In European

Conference on Computer Vision, pages 415–430. Springer,

2018.

[49] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai,

William L Hamilton, and Jure Leskovec. Graph convo-

lutional neural networks for web-scale recommender sys-

tems. In Proceedings of the 24th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery & Data Mining,

pages 974–983. ACM, 2018.

[50] Fisher Yu and Vladlen Koltun. Multi-scale context

aggregation by dilated convolutions. arXiv preprint

arXiv:1511.07122, 2015.

[51] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2881–2890, 2017.

[52] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,

Zhiyuan Liu, and Maosong Sun. Graph neural networks:

A review of methods and applications. arXiv preprint

arXiv:1812.08434, 2018.

[53] Marinka Zitnik and Jure Leskovec. Predicting multicellular

function through multi-layer tissue networks. Bioinformat-

ics, 33(14):i190–i198, 2017.

9276


