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RESEARCH ARTICLE

DeepGraphMolGen, a multi-objective, 
computational strategy for generating 
molecules with desirable properties: a graph 
convolution and reinforcement learning 
approach
Yash Khemchandani1,2, Stephen O’Hagan3, Soumitra Samanta1, Neil Swainston1, Timothy J. Roberts1, 

Danushka Bollegala4 and Douglas B. Kell1,5* 

Abstract 

We address the problem of generating novel molecules with desired interaction properties as a multi-objective 

optimization problem. Interaction binding models are learned from binding data using graph convolution networks 

(GCNs). Since the experimentally obtained property scores are recognised as having potentially gross errors, we 

adopted a robust loss for the model. Combinations of these terms, including drug likeness and synthetic accessibil-

ity, are then optimized using reinforcement learning based on a graph convolution policy approach. Some of the 

molecules generated, while legitimate chemically, can have excellent drug-likeness scores but appear unusual. We 

provide an example based on the binding potency of small molecules to dopamine transporters. We extend our 

method successfully to use a multi-objective reward function, in this case for generating novel molecules that bind 

with dopamine transporters but not with those for norepinephrine. Our method should be generally applicable to 

the generation in silico of molecules with desirable properties.

Keywords: Cheminformatics, Deep learning, Generative methods, QSAR, Reinforcement learning
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Introduction
The in silico (and experimental) generation of mole-

cules or materials with desirable properties is an area of 

immense current interest (e.g. [1–28]). However, difficul-

ties in producing novel molecules by current generative 

methods arise because of the discrete nature of chemi-

cal space, as well as the large number of molecules [29]. 

For example, the number of drug-like molecules has been 

estimated to be between  1023 and  1060 [30–34]. Moreo-

ver, a slight change in molecular structure can lead to a 

drastic change in a molecular property such as binding 

potency (so-called activity cliffs [35–37]).

Earlier approaches to understanding the relation-

ship between molecular structure and properties used 

methods such as random forests [38, 39], shallow neural 

networks [40, 41], Support Vector Machines [42], and 

Genetic Programming [43]. However, with the recent 

developments in Deep Learning [44, 45], deep neural 

networks have come to the fore for property prediction 

tasks [3, 46–48]. Notably, Coley et  al. [49] used Graph 

convolutional networks effectively as a feature encoder 

for input to the neural network.
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In the past few years, there have been many approaches 

to applying Deep Learning for molecule generation. Most 

papers use the Simplified Molecular-Input Line-Entry 

System (SMILES) strings as inputs [50], and many use a 

Variational AutoEncoder architecture (e.g. [3, 17, 51]), 

with Bayesian Optimization in the latent space to gen-

erate novel molecules. However, the use of a sequence-

based representational model has a specific difficulty, as 

any method using them has to learn the inherent rules, 

in this case of SMILES strings. More recent approaches, 

such as Grammar Variational AutoEncoders [52, 53] have 

been developed in attempts to overcome this problem 

but still the molecules generated are not always valid. 

Some other approaches try to use Reinforcement Learn-

ing for generating optimized molecule [54]. However, 

they too make use of SMILES strings which as indicated 

poses a significant problem. In particular, the SMILES 

grammar is entirely context-sensitive: the addition of an 

extra atom or bracket can change the structure of the 

encoded molecule dramatically, and not just ‘locally’ [55].

Earlier approaches have tended to choose a specific 

encoding for the molecules to be used as an input to the 

model, such as one hot encoding [56, 57], Extended Con-

nectivity Fingerprints [58, 59] and Generative Examina-

tion Networks [60] use SMILES strings directly. We note 

that these encodings do not necessarily capture the fea-

tures that need to be obtained for prediction of a specific 

property (and all encodings extract quite different and 

orthogonal features [61]).

In contrast, the most recent state-of-the-art methods, 

including hypergraph grammars [62], Junction Tree Vari-

ational Auto Encoders [63] and Graph Convolutional 

Policy Networks [34], use a graphical representation of 

molecules rather than SMILES strings and have achieved 

100% validity in molecular generation. Graph-based 

methods have considerable utility (e.g. [64–70] and can 

be seen as a more natural representation of molecules 

as substructures map directly to subgraphs, but subse-

quences are usually meaningless. However, these have 

only been used to compare the models on deterministic 

properties such as the Quantitative Estimate of Drug-

likeness (QED) [71], logP, etc. that can be calculated 

directly from molecular structures (e.g. Using RDKit, 

http://www.rdkit .org/). For many other applications, 

molecules having a higher score for a specific measured 

property are more useful. We here try to tackle this prob-

lem (Fig. 1).

Fig. 1 Block diagram of our basic system. A molecule is generated by the Reinforcement Learning (RL) pathway using a Graph Convolutional Policy 

Networks. This molecule is then used as an input for the property prediction module which outputs the property score as predicted by the module. 

This score is then used as the reward feedback for the RL pathway and the cycle restarts

http://www.rdkit.org/
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Methods
Our system (Fig. 1) consists of two parts: Property Pre-

diction and Molecular Generation. For both the parts, 

we represent the molecules as graphs [72] since they are 

a more natural representation than are SMILES strings, 

and substructures are simply subgraphs. We train a 

model to predict the property scores of the molecules, 

specifically the binding constant of various molecules at 

the dopamine and norepinephrine transporters (using a 

dataset from BindingDB). The first part, used for (train-

ing) the property prediction part, is a Graph Convolu-

tional Network as a feature encoder together with a Feed 

Forward Network. We also use an Adaptive Robust Loss 

Function (as suggested by [73]) since the experimen-

tal data are bound to be error prone. For the Molecular 

Generation task, we use the method proposed by You 

and colleagues [34]. In particular, we (and they) use 

Reinforcement Learning for this task since it allows us 

to incorporate both the molecular constraints and the 

desired properties using reward functions. This part uses 

graph convolution policy networks (GCPNs), a model 

consisting of a GCN that predicts the next action (policy) 

given the molecule state. It is further guided by expert 

pretraining and adversarial loss for generating valid 

molecules. Our code (https ://githu b.com/dbkgr oup/

prop_gen) is essentially an integration of the property 

prediction code of Yang and colleagues [74, 75] (https ://

githu b.com/swans onk14 /chemp rop) and the reinforce-

ment learning code provided by You and colleagues [34].

Molecular property prediction

As noted, the supervised property prediction model con-

sists of a graph-convolution network for feature extrac-

tion followed by a fully interconnected feedforward 

network for property prediction.

Feature extraction

We represent the molecules as directed graphs, with 

each atom ( i ) having a feature vector Fi(R
133 ) and each 

bond (between atom i & j ) having feature vector Fij(R
14 ). 

For each incoming bond a feature vector is obtained by 

concatenating the feature vector of the atom to which 

the bond is incoming and the feature vector of the bond. 

Thus the input tensor is of the size Nbonds × R
147 . The 

Graph Convolution approach allows the message (feature 

vector) for a bond to be passed around the entire graph 

using the approach described below.

The initial atom-bond feature vector that we use incor-

porates important molecular information that the GCN 

encoder can then incorporate in later layers. The initial 

representations for the atom and bond features are taken 

from https ://githu b.com/swans onk14 /chemp rop and 

summarized in Table 1, below. Each descriptor is a one-

hot vector covering the index-range represented by it 

(except the Atomic Mass). For Atomic Number, Degree, 

Formal Charge, Chiral Tag, Number of Hydrogens and 

Hybridization, the feature vector contains one additional 

dimension to allow uncommon values (values not in the 

specified range).

The initial atom-bond feature vector is then passed 

through a linear layer followed by ReLU Activation [76, 

77] to get the Depth-0 message vector for each bond. 

For each bond, the message vectors for the neighbour-

ing bonds are summed up (Convolution step) and passed 

through a linear layer followed by ReLU and a Dropout 

layer to get the Depth-1 message vectors. This process 

is continued up to a specified Depth-(N-1) message vec-

tors. To get the Depth-N message vectors, the Depth-

(N-1) vectors of all the incoming bonds for an atom are 

summed and then passed through a dense layer followed 

by ReLU and Dropout. The final graph embedding for 

the molecule is obtained by averaging the depth-N mes-

sage vectors over all the atoms. The exact details for this 

model can be found in Sect. “Hyperparameter optimiza-

tion” (Fig. 2).

Regression

To perform property prediction the embedding extracted 

by the GCN is fed into a fully connected network. Each 

intermediate layer consists of a Linear Layer followed by 

ReLU activation and Dropout that map the hidden vec-

tor to another vector of the same size. Finally the penulti-

mate nodes are passed through a Linear Layer to output 

Table 1 Atom and bond features used in the present work

Indices Atom description

0–100 Atomic number (1 to 100)

101–107 Degree (1 to 5)

108–113 Formal charge (− 2 to + 2)

114–118 Chiral tag (0 to 4)

119–124 Number of hydrogens (0 to 4)

125–130 Hybridization (SP, SP2, SP3, SP3D, SP3D2)

131 Aromatic atom

132 Atomic mass * 0.01

Indices Bond description

133 Bond present

134–136 Bond type (single, double, triple)

137 Aromatic bond

138 Conjugated bond

139 Bond present in ring

140–146 Bond stereo code (RdKit)

https://github.com/dbkgroup/prop_gen
https://github.com/dbkgroup/prop_gen
https://github.com/swansonk14/chemprop
https://github.com/swansonk14/chemprop
https://github.com/swansonk14/chemprop
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the predicted property score. The  Ki values present in the 

dataset were obtained experimentally so might contain 

experimental errors. If we were to train our model with 

a simple loss function such as root mean square (RMS) 

error loss, it would not be able to generalize well because 

of the presence of outliers in the training set. Overcoming 

this problem requires training the data with the help of a 

robust loss function that takes care of the outliers present 

in the training data. There are several types of robust loss 

functions such as Pseudo-Huber loss [78], Cauchy loss, 

etc., but each of them has an additional hyperparameter 

value (for example δ in Huber Loss) which is treated as a 

constant while training. This means that we have to man-

ually tune the hyperparameter each time we train to get 

the optimum value which may result in extensive train-

ing time. To overcome this problem, as proposed by [73], 

we have used a general robust loss function that has the 

hyperparameters as shape parameter (α) which controls 

the robustness of the loss, and the scale parameter (c) 

which controls the size of the loss’s quadratic bowl near 

x = 0. This loss is dubbed as a “general” loss since it takes 

the form of other loss functions for particular values of α 

(e.g. L2 loss for α = 2, Charbonnier loss for α = 1, Cauchy 

loss for α = 0). The authors also propose that “by viewing 

the loss function as the negative log likelihood of a prob-

ability distribution, and by treating robustness of the dis-

tribution as a latent variable” we can use gradient-based 

methods to maximize the likelihood without manual 

parameter tuning. In other words, we can now train the 

hyperparameters α and c rather which overcomes the 

earlier problem of manually tuning the hyperparameters. 

The loss function and the corresponding probability dis-

tribution are described in Eq. 1 and  2 respectively.

(1)f (x,α, c) =
|α − 2|

α





�

(x/c)2

|α − 2|
+ 1

�α/2

− 1





(2)

p(x|α, c) =
1

cZ(α)
exp

(

−f (x,α, c)
)

Z(α) =
∞

∫
−∞

exp(−f (x,α, 1)

Fig. 2 The property prediction pipeline for our method. The steps in green represent the feature extraction using Graph Convolution and the steps 

in orange represent regression of property scores. a The molecule is represented is a feature vector with features described as in Sect. “Molecular 

property prediction”. b The feature vector is passed through a linear layer to get Depth-0 message. c Through repeated graph convolution (message 

passing) followed by Linear Layer, we get Depth N-1 message. d Each atom’s final message is calculated by summing up the messages (also Graph 

Convolution) of the neighbouring atoms. e The resultant message is passed through a Linear Layer and the mean of all the atoms is taken to get the 

final embedding. f The property score is regressed from the graph embedding by a Feed Forward Neural Network. g The loss between predicted 

property and ground truth property is then backpropagated to change the weights
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Reinforcement learning for molecular generation

We follow the method described by the GCPN paper 

[34] for the molecular generation task, with the differ-

ence being that the final property reward is the value 

calculated by the previously trained model for the newly 

generated molecules. GCPN is a state-of-the-art mol-

ecule generator that utilizes Proximal Policy Optimiza-

tion (PPO) as a Reinforcement Learning paradigm for 

generating molecules. A comparison of GCPN with other 

generative approaches can be found in Tables  2 and  3 

which compare the ability of generators to produce mol-

ecules having higher property scores and targeted prop-

erty scores, respectively. Note that even though we have 

chosen GCPN for the molecule generation pipeline, our 

strategy can be implemented using any graph-based 

Reinforcement Learning generator since we just need to 

use the predicted property score as the reward function.

Molecular representation

As in the previous part, we represent the molecules as 

graphs, more specifically as ( A,E, F  ) where A ∈ {0, 1}n×n 

is the adjacency matrix, F  ∈ Rn×d is the node (atom) fea-

ture matrix and E ∈ {0, 1}3×n×n is the edge-conditioned 

adjacency tensor (since the number of bond-types is 3, 

namely single, double and triple bond), with n being the 

number of atoms and d being the length of feature vector 

for each atom. More specifically, Ei,j,k = 1 if there exists a 

bond of type i between atoms j and, and Aj,k = 1 if there 

exists any bond between atoms j and k.

Reinforcement learning setup

Our model environment builds a molecule step by step 

with the addition of a new bond in each step. We treat 

graph generation as a Markov Decision Process such 

that the next action is predicted based only on the cur-

rent state of the molecule, not on the path that the gen-

erative process has taken. This reduces the need for 

sequential models such as RNNs and the disadvantages 

of vanishing gradients associated with them, as well 

as reducing the memory load on the model. More spe-

cifically, the decision process follows the equation: 

p(st+1|st , . . . s0) = p(st+1|st) , where p is the probability of 

next state ( st+1 ) given the previous state ( st).

We can initialize the generative process with either a 

single C atom (as in Experiments 1 and 2) or with another 

molecule (as in Experiments 3, 4 and 5). At any point in 

the generation process, the state of the environment is the 

graph of the current molecule that has been built up so far. 

The action space is a vector of length 4 which contains the 

information—First Atom, Second Atom, Bond type and 

Stop. The stop signal is either 0 or 1 indicating whether the 

generation is complete, based on valence rules. If the action 

defies the rules of chemistry in the resultant molecule, the 

action is not considered and the state remains as it is.

We make use of both intermediate and final rewards 

to guide the decision-making process. The intermediate 

rewards include stepwise validity checks such that a small 

constant value is added to the reward if the molecule 

passes the valency checks. The final reward includes the 

Table 2 Comparison of the top 3 property scores of generated molecules found by each model

Validity is defined as the fraction of generated molecules that are chemically valid. ORGAN and JT-VAE are described in [79] and [63], respectively

Italics values refer to the best results among the methods compared

Method Penalized logP QED

1st 2nd 3rd Validity 1st 2nd 3rd Validity

ZINC 4.52 4.30 4.23 100% 0.948 0.948 0.948 100%

ORGAN 3.63 3.49 3.44 0.4% 0.896 0.824 0.820 2.2%

JT-VAE 5.30 4.93 4.49 100% 0.925 0.911 0.910 100%

GCPN 7.98 7.85 7.80 100% 0.948 0.947 0.946 100%

Table 3 Comparison of the effectiveness of property targeting task

MW here stands for the Molecular Weight. Success is defined as the percentage of generated molecules in the target range and Diversity is defined as the average 

pairwise Tanimoto distance between the Morgan fingerprints of the molecules. Citations to ORGAN and JT-VAE are given in the legend to Table 2

Italics values refer to the best results among the methods compared

Method −2.5 ≤ logP ≤ − 2 5 ≤ logP ≤ 5.5 150 ≤ MW ≤ 200 500 ≤ MW ≤ 550

Success Diversity Success Diversity Success Diversity Success Diversity

ZINC 0.3% 0.919 1.3% 0.909 1.7% 0.938 0 –

ORGAN 0 – 0.2% 0.909 15.1% 0.759 0.1% 0.907

JT-VAE 11.3% 0.846 7.6% 0.907 0.7% 0.824 16.0% 0.898

GCPN 85.5% 0.392 54.7% 0.855 76.1% 0.921 74.1% 0.920
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 pKi value of the final molecule as predicted by the trained 

model and the validity rewards (+1 for not having any 

steric strain and +1 for absence of functional groups that 

violate ZINC functional group filters). Two other metrics 

are the quantitative estimation of drug-likeness (QED) 

[71] and the synthetic accessibility (SA) [80] score. Since 

our final goal is to generate drug-like molecules that can 

be synthetically generated, we also add the QED and 

2*SA score of the final molecule to the reward.

Apart from this, we also use adversarial rewards so that 

the generated molecules resemble (prediction) the given 

set of molecules (real). We define the adversarial rewards 

V
(

πθ ,Dϕ

)

 in Eq 3.

where πθ is the policy network, Dϕ is the discrimina-

tor network, x represents the input graph and pdata is 

the underlying data distribution which is defined either 

over final graphs (for final rewards) or intermediate 

graphs (for intermediate rewards) (just as proposed by 

You and colleagues [34]). Alternate training of generator 

(policy network) and discriminator by gradient descent 

methods will not work in our case since x is a non-dif-

ferentiable graph object. Therefore we add—V
(

πθ ,Dφ

)

 

to our rewards and use policy gradient methods [81] to 

optimize the total rewards. The discriminator network 

comprises a Graph Convolutional Network for generat-

ing the node embedding and a Feed Forward Network 

to output whether the molecule is real or fake. The GCN 

mechanism is same as that of the policy network which is 

described in the next section.

Graph convolutional policy network

We use Graph Convolutional Networks (GCNs) as the 

policy function for the bond prediction task. This vari-

ant of graph convolution performs message passing over 

each edge type for a fixed depth L . “The node embedding 

for the next depth ( l + 1 ) is calculated as described in 

Eq. 4

where Ei is the ith slice of the tensor E , Ẽi = Ei + I , 

D̃i =
∑

k

Ẽijk , W
(l)
i

 is a trainable weight matrix for the ith 

(3)min
θ

max
φ

V
(

πθ ,Dφ

)

= Ex∼pdata

[

logDφ(x)
]

+ Ex∼πθ

[

logDφ(1 − x)
]

(4)H
(l+1)

= AGG

(

ReLU

({

D̃
−1
2

i
ẼiD̃

−1
2

i
H

(l)
W

(l)
i

}

, ∀i ∈ (1, . . . , b)

))

edge type, and H (l) is the node embedding learned in the 

lth layer with R(n+c)×d [34]. n is the number of atoms in 

the current molecule and c is the number of possible 

atom types (C,N,O etc.) that can be added to the mole-

cule (one atom is added in each step) with d representing 

the dimension of the embedding. We use mean over the 

edge features as the Aggregate (AGG) function to obtain 

the node embedding for a layer. This process is repeated 

L times until we get the final node embedding.

This node embedding X is then used as the input to 

four Multilayer Perceptrons (MLP, denoted by m ), that 

map a matrix Z ∈ Rp×d to Rp representing the probability 

of selecting a particular entity from the given p entities. 

The specific entity is then sampled from the probability 

distribution thus obtained. Note that since the action 

space is a vector of length 4, we use 4 perceptrons to 

sample each component of the vector. The first atom has 

to be from the current molecule state while the second 

atom can be from the current molecule (forming a cycle) 

or a new atom outside the molecule (adding a new atom). 

For selecting the first atom, the original embedding X 

is passed to the MLP mf  and outputs a vector of length 

equal to n . While selecting the second atom, the embed-

ding of first atom Xafirst
 is concatenated to the original 

embedding X and passed to the MLP ms giving a vector 

of length equal to n + c . While selecting the edge type, the 

concatenated embedding of the first ( Xafirst
 ) and second 

( Xasecond
 ) atom is used as an input to MLP me and out-

puts a vector of length equal to 3 (number of bond types). 

Finally, the mean embedding of the atoms is passed to 

MLP mt to output a vector of length 2 indicating whether 

to stop the generation. This process is described in Eqs. 5, 

6, 7, 8, 9 (Fig. 3).

(5)at = CONCAT
(

afirst, asecond, aedge, astep
)

(6)
ffirst(st) = SOFTMAX

(

mf (X)
)

afirst ∼ ffirst(st) ∈ {0, 1}n

(7)
fsecond(st) = SOFTMAX

(

ms

(

Xafirst ,X
))

asecond ∼ fsecond(st) ∈ {0, 1}n+c
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Policy gradient training

For our experiments, we use Proximal Policy Optimi-

zation (PPO) [81], the state-of-the-art policy gradient 

method, for optimizing the total reward. The objective 

function for PPO is described in Eq 10.

Here, St,  at Rt are the state, action and reward respec-

tively at timestep t, V(St) is the value associated with state 

 St, πθ is the policy function and γ is the discount factor. 

Also note that Ât , which is an estimator of the advantage 

function at timestep t, has been estimated using General-

ized Advantage Estimation [82] with the GAE parameter 

λ, since it reduces the variance of the estimate.

For estimating the value of V we use an MLP with the 

embedding X as the input. Apart from this, we also use 

expert pretraining [83] which has shown to stabilise the 

(8)fedge(st) = SOFTMAX
(

me

(

Xafirst ,Xasecond

))

aedge ∼ fedge(st) ∈ {0, 1}b

(9)fstop(st) = SOFTMAX(mt(AGG(X))) astop ∼ fstop(st) ∈ {0, 1}.

(10)

maxLCLIP(θ) = Et

[

min
(

rt(θ)Ât , clip(rt(θ), 1− ∈, 1+ ∈)Ât

)]

rt(θ) =
πθ (at |st)

πθold(at |st)

Ât = δt + (γ �)δ(t+1) + . . . + (γ �)T−t+1δT−1

where ∂t = Rt + γV (St+1) − V (St)

training process. For our experiment, any ground truth 

molecule can be used as an expert for imitation. We 

randomly select a subgraph Ĝ′ from the ground truth 

molecule Ĝ as the state Ŝt . The action ât is also chosen 

Fig. 3 The reinforcement learning pathway for systemic generation of molecules (Redrawn from You et al. [34]). a The state is defined as the current 

graph Gt and the possible atom types C . b The GCPN conducts message passing to encode the state as node embeddings and estimates the 

policy function. c The action to be performed ( at ) is sampled from the policy function. The environment performs a chemical valency check on the 

intermediate state and returns (d) the next state Gt and (e) the associated reward ( rt)

randomly such that it adds an atom or bond in the graph 

Ĝ/Ĝ′ . This pair ( ̂St , ât ) is used for calculating the expert 

loss.

Note that we use the same dataset of ground truth mol-

ecules for calculating the expert loss and the adversarial 

rewards. For the rest of the paper, we will call this dataset 

(11)minLEXPERT(θ) = − log (πθ )

(

ât |Ŝt

)
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the “expert dataset” and the random molecule selected 

from the dataset the “expert molecule”.

System evaluation
In this section we evaluate the system described above on 

the task of generating small molecules that interact with 

the dopamine transporter but not (so far as possible) 

with the norepinephrine transporter.

Property prediction

In this section we evaluate the performance of the super-

vised property prediction component. Dopamine Trans-

porter binding data was obtained from www.bindi ngdb.

org (https ://bit.ly/2YACT 5u). The training data consist 

of some molecules which are labelled with their  Ki val-

ues and some which are labelled with  IC50 values. For 

this paper, we have used  IC50 values and  Ki values inter-

changeably in order to increase the size of the training 

dataset. Molecules having large  Ki values in the dataset 

were not labelled accurately (with labels such as ~ 1000) 

but the use of a robust loss function allowed us to incor-

porate these values directly. As stated above we use log 

transformed values (pKi). (We also attempted to learn the 

 Ki values of the molecules, but the distribution was found 

to be heteroscedastic; hence we focus on predicting the 

 pKi values.) Data are shown in Fig. 4a for the dopamine 

transporter and 4b for the norepinephrine transporter 

pKi values.

Hyperparameter optimization

As the property prediction is a general algorithm with 

a large number of hyperparameters, we attempted to 

improve generalisation on the transporter problem using 

Bayesian optimization on the RMSE error between the 

predicted pKi values and the actual pKi values of the vali-

dation set. For this task we consider the hyperparameters 

to be the depth of the GCN encoder, the dimensions of 

the message vectors, the number of layers in the Feed 

Forward Network, and the Dropout constant. We use 

tenfold cross validation on the train and validation data-

set with the test set held out. The model score is defined 

as the mean RMS error of the ten-folds and we use Bayes-

ian optimization to minimize the model score.

For the case of the dopamine transporter, the opti-

mum hyperparameters that were obtained are 3 (depth of 

GCN), 1300 (dimensions of message vector), 2 (FFN lay-

ers) and 0.1 (Dropout).The RMS error on the test dataset 

for the dopamine transporter after Hyperparameter Opti-

mization was found to be 0.57 as compared to an error of 

0.65 without it. We attribute this quite significant remain-

ing error to the errors present in the dataset. Similarly for 

the norepinephrine transporter, the test RMS error was 

found to be 0.66 after hyperparameter optimization and 

the optimum hyperparameters obtained are 5 (depth of 

GCN), 900 (dimensions of message vector), 3 (FFN lay-

ers), 0.15 (Dropout).

Implementation details

For the prediction of pKi value of both Dopamine and 

Norepinephrine transporters, we split the overall dataset 

into train (80%), validation (10%) and test (10%) datasets 

randomly. The training is done with a batch size of 50 

molecules and for 100 epochs. All the network weights 

were initialized using Xavier initialization [84]. The first 

two epochs are warmup epochs [85] where the learn-

ing rate increases from 1e−4 to 1e−3 linearly and after 

that it decreases exponentially to 1e−4 by the last epoch. 

The model is saved after an epoch if the RMS error on 

the validation dataset is less than the previous best and 

the error for the test dataset is calculated using the saved 

model which has the least error on the validation dataset. 

The code was written in PyTorch library and the train-

ing was done using an NVIDIA RTX 2080Ti GPU on a 

Windows 10 system with 256 GB RAM and Intel 18-Core 

Xeon W-2195 processor.

Fig. 4 Predicted and experimental values for the test sets of the 

dopamine (a) and norepinephrine (b) transporters. Lines are lines of 

best fit (a) y = 0.44 + 0.79x,  r2 = 0.79; b y = 0.49 + 0.74x,  r2 = 0.68)

http://www.bindingdb.org
http://www.bindingdb.org
https://bit.ly/2YACT5u
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Single‑objective molecular generation

To begin the RL evaluation we consider molecular gen-

eration with a single objective (dopamine transporter 

interaction). For all the experiments we use the following 

implementation details. The learning rate for training all 

the networks is taken to be 1e−3 and linearly decreasing 

Fig. 5 In silico generation by DeepGraphMolGen of novel molecules with predicted binding capacity to the dopamine transporter. Molecules 

were generated as described in the text. a Top 10 molecules as predicted by DeepGraphMolGen versus the closest molecule in the BindingdB 

dataset and the Tanimoto similarity thereto (encoded using the RDKit patterned fingerprint). b Distribution of Tanimoto similarities to a molecule in 

BindingdB dataset of the top 500 molecules
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to 0 by 3e7 timesteps. The depth of GCN network for 

both the GCPN and the Discriminator network is taken 

to be 3 and the node embedding size was taken to be 128. 

The code was written using the TensorFlow library and 

training was done using an NVIDIA RTX 2080Ti GPU as 

per the previous paragraph.

Fig. 6 In silico generation by DeepGraphMolGen of novel molecules with predicted binding capacity to the dopamine transporter. Molecules 

were generated as described in the text. a Top 10 molecules as predicted by DeepGraphMolGen versus the closest molecule in the BindingdB 

dataset and the Tanimoto similarity thereto (encoded using the RDKit patterned fingerprint). b Distribution of Tanimoto similarities to a molecule in 

BindingdB dataset of the top 500 molecules
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For the task of analysing the results we provide the ‘top 

10’ molecules generated as in Fig.  5. However, we aim 

to generate molecules that are in some sense similar to 

the original training dataset by systematically modifying 

the RL pathway in the following experiments. For each 

experiment, we find the closest molecule in the Bind-

ingDB dataset to the top 10 generated molecules. The 

relative closeness is measured by calculating its Tanimoto 

Similarity between the RDKit fingerprints and visualize 

the distribution of the TS values.

First, we initialize the molecule with a single Car-

bon atom in the beginning of the generative process. 

The expert dataset in this case is chosen to be the ZINC 

dataset [86], which is a free dataset containing (at that 

time) some 230  M commercially available compounds. 

However, for our experiments, we use 250  K randomly 

selected molecules from ZINC as our expert dataset to 

make the experiments computationally tractable. The 

top generated molecules and their predicted properties 

are given in Additional file  1: Table  S1 (including data 

on QED and SA) with a subset of the data illustrated in 

Fig.  5. Note that in all cases the values of QED and SA 

both exceeded 0.8.

Although the above experiment was able to generate 

optimized molecules, there is no certainty that the pre-

dictions are correct due to the errors in the model as well 

as the errors that were propagated by the experimental 

errors in the data. We thus attempt to generate molecules 

that are similar to the more potent molecules. In the 

next experiment, we choose the expert dataset to be the 

original dataset on which we trained the molecules (we 

will call this the Dopamine Dataset), while omitting mol-

ecules having  Ki greater than 1000. We again choose the 

initial molecule to be a single carbon atom. The equiva-

lent data are given in Additional file 2: Table S2, with sim-

ilar plots to those of Fig. 5 given in Fig. 6.

Another way to ensure that the generated molecules 

will have a high affinity towards dopamine transporter 

is to explicitly ensure that the molecules have higher TS 

with already known molecules that have high  pKi values. 

We attempt to achieve this by initializing the generative 

process with a random molecule from the Dopamine 

Dataset having Ki < 1000. We conduct two experiments 

using this process, one where we restrict the number of 

atoms (other than hydrogen) to be lower than 25 (Addi-

tional file 3: Table S3 and Fig. 7), and another (Additional 

file 4: Table S4 and Fig. 8) where we restrict the number 

of atoms to be less than 15. For both these experiments, 

we use the ZINC dataset as the expert dataset. The 

results are summarized in the tables below. Note that in 

some cases we obtain a TS of 1; this is encouraging as in 

this case the algorithm found no need to add anything to 

the original molecule and could recapitulate it.

Multi‑objective molecular generation

Even though generating molecules having higher affin-

ity towards a particular ligand in itself is quite sought 

after, in many cases we might wish to seek molecules that 

bind to one receptor but explicitly do not bind to another 

one (kinase inhibitors might be one such example). We 

attempt to achieve this here with the help of our Rein-

forcement Learning pipeline by modifying the reward 

function to be a weighted combination of  pKi values for 

the two different targets. Explicitly, we attempt to gen-

erate molecules that have high binding affinity to the 

Dopamine Transporter but a much lower binding affin-

ity to the Norepinephrine Transporter. Thus, we modify 

the reward function used in the previous experiments 

to add 2 times the predicted  pKi values for Dopamine 

Transporter and -1 times the predicted  pKi values for 

the Norepinephrine Transporter. The higher weight is 

given to the dopamine component since we wish to gen-

erate molecules that do bind to it. Clearly we could use 

any other weightings as part of the reward function, so 

those chosen are simply illustrative. For this experiment 

we initialize the process with a random molecule from 

the Dopamine dataset having a number of atoms lower 

than 25 and choose the expert dataset to be ZINC. The 

results of this experiment are summarized in Additional 

file 5: Table S5 and Fig. 9. As above, some molecules have 

a TS of 1 to examples in the dataset, for the same reasons.

Only in rare cases do candidate solutions for multi- 

(in this case two-)objective optimisation problems have 

unique solutions that are optimal for both [87], and there 

is a trade-off that is left to the choice of the experimenter. 

Thus, Fig. 9c also illustrates the molecules on the Pareto 

front for the two objectives, showing how quite changes 

in structure can move one swiftly along the Pareto front. 

Consequently our method also provides a convenient 

means of attacking multi-objective molecular optimisa-

tion problems.

Fig. 7 In silico generation by DeepGraphMolGen of novel molecules with predicted binding capacity to the dopamine transporter using a 

generative method in which the number of heavy atoms is constrained to be lower than 25. Molecules were generated as described in the text. a 

Top 10 molecules as predicted by DeepGraphMolGen versus the closest molecule in the BindingdB dataset and the TS thereto (encoded using the 

RDKit patterned fingerprint). b Distribution of Tanimoto similarities (RDKit patterned encoding) to a molecule in BindingdB dataset of the top 500 

molecules

(See figure on next page.)
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Fig. 8 In silico generation by DeepGraphMolGen of novel molecules with predicted binding capacity to the dopamine transporter using a 

generative method in which the number of heavy atoms is constrained to be lower than 15. Molecules were generated as described in the text. a 

Top 10 molecules as predicted by DeepGraphMolGen versus the closest molecule in the BindingdB dataset and the TS thereto (encoded using the 

RDKit patterned fingerprint). b Distribution of Tanimoto similarities (RDKit patterned encoding) to the closest molecule in BindingdB dataset of the 

top 500 molecules
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Conclusions
Overall, the present molecular graph-based generative 

method has a number of advantages over grammar-based 

encodings, in particular that it necessarily creates valid 

molecules. As stressed by Coley and colleagues [49], 

such methods still retain any inherent limitations of 2D 

methods as a priori they do not encode 3D information. 

This said, there is evidence that 3D structures do not add 

much benefit when forming QSAR models [88–92], so we 

do not consider this a major limitation for now. Some of 

the molecules generated might be seen by some (however 

subjectively) as ‘unusual, even though they scored well 

on both drug-likeness and synthetic accessibility metrics. 

This probably says much about the size of plausible drug 

space that exists relative to the fraction that has actu-

ally been explored [93–95], and implies that generative 

methods can have an important role to play in medici-

nal chemistry. Also, for generating desired molecules, the 

QSAR models need to be accurate and robust in order to 

evaluate accurately the property of the generated mol-

ecules. Recent works such as [96] include uncertainty 

metrics for property discrimination, and benchmarking 

models are also available [97]. In conclusion, we here add 

to the list of useful, generative molecular methods for vir-

tual screening by combining molecular graph encoding, 

reinforcement learning and multi-objective optimisation 

within a single strategy.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
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