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Abstract

Survival analysis (time-to-event analysis) is widely used in
economics and finance, engineering, medicine and many other
areas. A fundamental problem is to understand the relationship
between the covariates and the (distribution of) survival times
(times-to-event). Much of the previous work has approached
the problem by viewing the survival time as the first hitting
time of a stochastic process, assuming a specific form for the
underlying stochastic process, using available data to learn the
relationship between the covariates and the parameters of the
model, and then deducing the relationship between covariates
and the distribution of first hitting times (the risk). However,
previous models rely on strong parametric assumptions that
are often violated. This paper proposes a very different ap-
proach to survival analysis, DeepHit, that uses a deep neural
network to learn the distribution of survival times directly.
DeepHit makes no assumptions about the underlying stochas-
tic process and allows for the possibility that the relationship
between covariates and risk(s) changes over time. Most impor-
tantly, DeepHit smoothly handles competing risks; i.e. settings
in which there is more than one possible event of interest.
Comparisons with previous models on the basis of real and
synthetic datasets demonstrate that DeepHit achieves large
and statistically significant performance improvements over
previous state-of-the-art methods.

Introduction

Survival analysis – also called time-to-event analysis – is
fundamental in many areas, including economics and finance,
engineering and medicine. A long and diverse literature ap-
proaches survival analysis by viewing the event of interest as
the first hitting time of an underlying stochastic process; i.e.
the first time at which the stochastic process reaches a pre-
scribed boundary. Depending on the context, the first hitting
time may represent the time until a stock option can profitably
be exercised, the time to failure of a mechanical system or
the length of time a patient survives following treatment (or
non-treatment); see (Lee and Whitmore 2006) for many other
examples. A fundamental problem of survival analysis in all
of these areas is to understand the relationship between the
(distribution of) hitting times and the covariates, such as the
characteristics of the stock on which the option is written, the
physical environment in which the mechanical system must
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operate, and the features of the individual patient. Especially
in medical setting, the survival analysis is further applied
to discovering risk factors affecting the survival (Koene et
al. 2016), comparison among risks of different subjects at a
certain time of interest (Yoon et al. 2017), decision of a cost-
efficient sensing period (e.g. screening for cancer) (Ahuja,
Zame, and van der Schaar 2017).

Most of the previous work in this area has approached
the problem by assuming a specific form for the underlying
stochastic process, using available data to learn the relation-
ship between the covariates and the parameters of the model,
and then deducing the relationship between covariates and
the distribution of first hitting times – the risk of the event. (In
the medical setting, this is typically the risk of death or onset
of a certain disease.) The Cox proportional hazards model
(Cox 1972) is the most widely-used model in the medical
setting but it makes many strong assumptions about the under-
lying stochastic process and about the relationship between
the covariates and the parameters of that process. Other mod-
els allow for various other specific forms of the underlying
stochastic process and for more general relationships be-
tween covariates and the parameters, but still maintain strong
parametric assumptions (especially that the relationship be-
tween covariates and parameters of the stochastic process are
time-invariant).

This paper proposes a very different approach to survival
analysis: we construct and use a deep neural network that
learns the distribution of first hitting times directly. An impor-
tant aspect of our method, which we call DeepHit, is that it
smoothly handles situations in which there is a single under-
lying risk (cause) and situations in which there are multiple
competing risks (causes). DeepHit employs a network archi-
tecture that consists of a single shared sub-network and a
family of cause-specific sub-networks. We train the network
by using a loss function that exploits both survival times and
relative risks. DeepHit makes no assumptions about the form
of the underlying stochastic process; it therefore allows for
the possibility that, even for a fixed cause or causes (e.g. a
disease or diseases), both the parameters and the form of the
stochastic process depend on the covariates.

Although our approach is quite general and applies to all
the settings mentioned above, and many others, we focus here
on the medical setting (and so we will use medical language,
and speak of patients rather than instances, etc.). In the med-
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ical context, competing risks are extremely common. (For
example, patients suffering from a particular disease, such
as cancer, frequently have co-morbidities, such as cardiovas-
cular disease.) With the exception of the Fine-Gray model
(Fine and Gray 1999), existing work on survival analysis
either cannot be applied or is inadequate in the presence of
competing risks except under the assumption that the risks
are independent, which is very seldom the case. (To refer to
the same example: studies (Koene et al. 2016) have shown
that various treatments for breast cancer increase the risk of
a cardiovascular event; the risks are not at all independent.)
Survival analysis with competing risks is a challenging prob-
lem, and made all the more important because the choice of
treatment must take account of these competing risks. We
note that right-censoring of data is extremely common in
the medical setting: patients are frequently lost to follow-up
(often for unknown reasons).1

We are not the first to apply neural networks to time-
to-event analysis; for example, (Faraggi and Simon 1995;
Katzman et al. 2016; Luck et al. 2017) have employed neu-
ral networks for modeling non-linear representations for the
relation between covariates and the risk of a clinical event.
However, these studies have maintained the basic assump-
tions of the Cox model, weakening only the assumption of the
form of the relationship between covariates and the hazard
rate. In particular, the time-dependent influence of covariates
on time-to-event cannot be addressed by these models.

To demonstrate the usefulness of our approach, we com-
pare its predictive performance with that of competing ap-
proaches using three medical datasets and one synthetic
dataset. For all these datasets, we compare the performance
of DeepHit with previous state-of-the art competing meth-
ods, using as the metric of performance the time-dependent
concordance index Ctd (Antolini, Boracchi, and Biganzoli
2005). (Ctd measures the extent to which the ordering of
actual survival times of pairs agrees with the ordering of their
predicted risk; it is the most-widely-used metric for evaluat-
ing the performance of survival models (Harrell et al. 1982).)
DeepHit provides large and statistically significant perfor-
mance improvements over previous state-of-the-art methods.
(Detailed descriptions of these datasets, the competing meth-
ods, and the performance comparisons are presented in the
following sections.)

Related Work

The survival model most widely used in the statistical and
medical research literature is the Kaplan-Meier estimator
(Kaplan and Meier 1958), which has the advantage of being
able to learn very flexible survival curves, but the disadvan-
tage of not incorporating patients’ covariates. Hence it is
useful at the population level but not useful at the individ-
ual level. As we have noted already the Cox proportional
hazard model (Cox 1972) (CPH) is capable of incorporat-
ing patients’ covariates, but assumes that the hazard rate is
constant and that the log of the hazard rate is a linear func-
tion of covariates. Other models make different assumptions

1Throughout this paper, we follow the literature and assume that
right-censoring occurs completely at random.

about the underlying stochastic processes and about the re-
lationship between the covariates and the parameters of the
assumed process. For instance (Lee and Whitmore 2010;
Doksum and Hyland 1992) assume a Wiener process, while
(Longini et al. 1989) assumes a Markov Chain; see (Lee and
Whitmore 2010) for other examples and discussion of the
literature. An advantage of these models is that, because they
formulate survival analysis as the problem of determining the
distribution of the first time at which the prescribed stochastic
process hits a prescribed boundary, they are able to incorpo-
rate competing risks. The disadvantage of these models is
that they are tied to the specific form of stochastic process
that they assume. Put differently: the models are of limited
use unless we have already learned the underlying stochastic
process. In the medical setting this means learning the under-
lying disease process, which would seem to be an even more
complicated problem than survival analysis itself – especially
since the states of the disease or diseases are typically hidden
and not directly observable. An alternative to this family of
models is the one offered by (Fine and Gray 1999), which
modifies the traditional proportional hazard model by direct
transformation of the cumulative incidence function, but the
Fine-Gray model is also severely limited by strong assump-
tions on the form of the hazard rates and on the way in which
the parameters depend on covariates.

The problem of survival analysis has also received sub-
stantial recent attention in the machine learning literature.
Recently developed survival models include random survival
forests (Ishwaran et al. 2008), deep exponential families
(R. Ranganath and Blei 2016), dependent logistic regres-
sors (Yu et al. 2011), and semi-parametric Bayesian models
based on Gaussian processes (Fernndez, Rivera, and Teh
2016). All of these methods are capable of incorporating the
individual patient’s covariates, but none of them has con-
sidered the problem of competing risks, and none of them
seems readily adaptable to this problem. (In principle, these
models could be applied to the problem of competing risks
by fixing a single event and simply treating all other events
right-censoring, but this approach is inadequate unless the
competing risks are independent, which is frequently not the
case.). Recently, deep multi-task Gaussian process was used
to develop a nonparametric Bayesian model for survival anal-
ysis with competing risks (Alaa and van der Schaar 2017)
while still relying on assumption that the latent stochastic
process follows Gaussian process.

(Faraggi and Simon 1995) represents the first application
of neural networks to survival analysis. In contrast to the stan-
dard CPH model, this work uses a feed-forward network to
learn the relationship of the covariates to the hazard function.
More recently, (Katzman et al. 2016) and (Luck et al. 2017)
have followed the same general approach, although using
more sophisticated network architectures and loss functions.
These works have improved on the CPH model by relaxing
the specific functional relationship between covariates and
the hazard function in the standard CPH model while main-
taining the other central assumption– that the hazard rate is
constant over time. As a result, these works do not fully ex-
ploit the potential capacity of deep neural networks to learn
complex representations of risk and in particular to capture
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the time-dependent influence of covariates on survival.

DeepHit improves on existing models because it suffers
from none of the difficulties identified above. Because Deep-
Hit learns the (joint) distribution of survival times and events
directly, it avoids the problems inherent in assuming a partic-
ular form for the underlying stochastic process or a particu-
lar form for the relationship of covariates to the underlying
stochastic process or any kind of time-invariance. As we shall
see, the performance of DeepHit improves dramatically on
the performance of previous models in the setting of compet-
ing risks and significantly even in the (simpler) setting of a
single risk.

Survival Analysis

In this Section we describe our formal model.

Survival Data

Survival data provides three pieces of information for each
instance/patient: 1) observed covariates, 2) time elapsed since
covariates were first collected, and 3) a label indicating the
type of event (e.g. adverse clinical event or death) that oc-
curred.2 We treat survival time as discrete and the time hori-
zon as finite (e.g. no patients lived longer than 100 years) so
the time set is T = {0, . . . , Tmax} for a predefined max-
imum time horizon Tmax. We consider K ≥ 1 possible
events of interest; we assume that at exactly one event even-
tually occurs for each instance/patient (e.g. a patient even-
tually dies, but can die from only one cause (Gooley et al.
1999)).3 Because events of interest are not always observed
(e.g. patients may be lost to follow-up), survival data are
frequently right-censored; handling this difficulty will be a
crucial aspect of the analysis. We indicate right-censoring
as the “event” ∅ and therefore represent the set of possible
events – including right-censoring – as K = {∅, 1, · · · ,K}.
Each data point/instance (e.g. patient history) is therefore a
triple (x, s, k) where x ∈ X is a D-dimensional vector of
covariates, s ∈ T is the time at which the (unique) event or
censoring occurred, and k ∈ K is the event or censoring that
occurred at time s. Note that s is either the time at which an
event (death) occurred or the time at which the patient was
censored (disappeared from follow-up), but in either case the
patient was known to be alive at times prior to s. We are given

a dataset D = {(x(i), s(i), k(i))}Ni=1 that describe a finite set
of observed instances/patients.

Figure 1 illustrates survival data of the SEER dataset (see
Experiment section for more details) for 6 patients and two
possible events (causes of death); patient 2 and 5 died from
cause 1, patient 1 and 6 died from cause 2; patient 3 and 4
were lost to follow-up (right-censored).

For each tuple (x∗, s∗, k∗) with k∗ �= ∅, we are interested
in the true probability P (s = s∗, k = k∗|x = x∗); i.e. the
true ex-ante probability that a (new) patient with covariates
x∗ will experience the event k∗ at time s∗. Of course the true

2We use medical terms for convenience but we emphasize that
our framework and results are quite general.

3We leave for later work the more complicated setting in which
several events – e.g. the onsets of various diseases – might occur.

Figure 1: Illustration of survival data (SEER dataset).

probability cannot be known on the basis of any finite dataset,

so our task is to find estimates P̂ of the true probabilities.

Model Description

Our goal is to train the network to learn P̂ , the estimate of
the joint distribution of the first hitting time and competing
events. As illustrated in Figure 2, DeepHit is a multi-task net-
work (Collobert and Weston 2008) which consists of a shared
sub-network and K cause-specific sub-networks. Our archi-
tecture, differs from that of conventional multi-task network
in two ways. First, we utilize a single softmax layer as the
output layer of DeepHit in order to ensure that the network
learns the joint distribution of K competing events not the
marginal distributions of each event. Second, we maintain a
residual connection (He et al. 2016) from the input covariates
into the input of each cause-specific sub-network.

Figure 2: The architecture of DeepHit with two competing
events.

The shared sub-network and the k-th cause-specific sub-
network for k = 1, · · · ,K are comprised of LS and LC,k

fully-connected layers, respectively. The shared sub-network
takes as inputs the clinical covariates x and produces as
output a vector fs(x) that captures the (latent) representation
that is common to the K competing events.
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Each cause-specific sub-network takes as inputs the pairs
z = (fs(x),x) and produces as output a vector fck(z), which
corresponds to the probability of the first hitting time of a
specific cause k. More specifically, the inputs to the sub-
networks include both the output of the shared network and
the original covariates; this gives the sub-networks access
to the learned common representation fs(x) while still al-
lowing them to learn non-common part of the representation
as well. (If only the learned common representation were
used as an input to the sub-networks, the non-common part
of the representation would be lost.) The totality of these
outputs is a joint probability distribution on the first hitting
time and event so the cause-specific sub-networks are learn-
ing the distribution for the first hitting time for each cause in
parallel. The output of the softmax layer is a probability distri-
bution y = [y1,1, · · · , y1,Tmax

, · · · , yK,1, · · · , yK,Tmax
]: given

a patient with covariates x, an output element yk,s is the (esti-

mated) probability P̂ (s, k|x) that the patient will experience
the event k at time s. This architecture drives the network to
learn potentially non-linear, even non-proportional, relation-
ships between covariates and risks.

The (cause-specific) cumulative incidence function (CIF)
expresses the probability that a particular event k∗ ∈ K
occurs on or before time t∗ conditional on covariates x∗; as
in the Fine-Gray model (Fine and Gray 1999), understanding
the CIF is key to the analysis of survival under competing
risks. By definition, the CIF for the event k∗ is:

Fk∗(t∗|x∗) = P (s ≤ t∗, k = k∗|x = x∗)

=

t∗
∑

s∗=0

P (s = s∗, k = k∗|x = x∗).
(1)

However, since the true CIF, Fk∗(s∗|x∗), is not known, we

utilize the estimated CIF, F̂k∗(s∗|x∗) =
∑s∗

m=0 y
∗
k,m, in or-

der to compare the risk of event occurring and to assess
how models discriminate across cause-specific risks among
patients.

Loss Function

To train DeepHit, we minimize a total loss function LTotal that
is specifically designed to handle censored data. This loss
function is the sum of two terms LTotal = L1 + L2; L1 is the
log-likelihood of the joint distribution of the first hitting time
and event; L2 incorporates a combination of cause-specific
ranking loss functions.

L1 is the log-likelihood of the joint distribution of the
first hitting time and corresponding event, modified to take
account of the right-censoring of the data (Lee and Whitmore
2006) considering K competing risks. For patients who are
not censored, it captures both the event that has occurred and
the time at which the event has occurred; for patients who are
censored, it captures the time at which the patient is censored
(lost to follow-up) which provides the information that the

Figure 3: An illustration of a computational graph to compute
the training loss of DeepHit.

patient was alive up to that time. We define L1 by

L1 = −
N
∑

i=1

[

1(k(i) �= ∅) · log
(

y
(i)

k(i),s(i)

)

+ 1(k(i)= ∅) · log
(

1−
K
∑

k=1

F̂k(s
(i)|x(i))

)]

,

(2)

where 1(·) is an indicator function. The first term captures
the information provided by uncensored patients; the second
term captures the censoring bias by exploiting the knowledge
that they are alive at the censoring time, so that that the first
hitting event will occur among one of the K causes after the
given censoring time); see (Lawless 2002).
L1 drives DeepHit to learn the general representation for

the joint distribution of the first hitting time and events; L2

incorporates estimated CIFs calculated at different times (i.e.
the time at which an event actualy occurs) in order to fine-
tune the network to each cause-specific estimated CIF. To do
so, we utilize a ranking loss function which adapts the idea
of concordance (Harrell et al. 1982): a patient who dies at
time s should have a higher risk at time s than a patient who
survived longer than s. Write

Ak,i,j � 1(k(i) = k, s(i) < s(j)), (3)

for the indicator function of pairs (i, j) who experience risk
k at different time, and whose risks for event k can therefore
be directly compared; we call these pairs acceptable for event
k. Now define

L2 =
K
∑

k=1

αk·
∑

i �=j

Ak,i,j ·η
(

F̂k(s
(i)|x(i)), F̂k(s

(i)|x(j))
)

(4)

where the coefficients αk are chosen to trade off ranking
losses of the k-th competing event, and η(x, y) is a convex
loss function. For convenience, we assume here that the co-
efficients αk are all equal (i.e. αk = α for k = 1, · · · ,K
and some α to be chosen), and we use the loss function

η(x, y) = exp(−(x−y)
σ

). Incorporating L2 into the total loss
function penalizes incorrect ordering of pairs (with respect
to each event) and so minimizing the total loss encourages
correct ordering of pairs (with respect to each event).

In Figure 3, we illustrate a computational graph to com-
pute the training loss of the proposed network: the inputs
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Table 1: Descriptive Statistics of Real-World Datasets for Competing Risks

Dataset No. Uncensored No. Censored
No. Features

(real, categorical)
Event Time Censoring Time

min max mean min max mean

SEER
CVD 903 (1.3%)

56,788 (83.1%) 23 (7,16)
0 176 79.8

0 179 144.6
BC 10,634 (15.6%) 0 177 55.9

UNOS 29,436 (48.7%) 30,964 (51.3%) 50 (17,33) 0 331 71.5 1 331 90.5
METABRIC 888 (44.8%) 1,093 (55.2%) 21 (6,15) 1 299 77.8 1 308 116.0

are the covariates x and the output is the vector y. Double-
circled nodes imply inputs or outputs of DeepHit or those
of sub-networks, and single-circled nodes indicate calcula-
tion blocks (e.g. sub-networks or loss functions). In training

stage, the network exploits {k(i), s(i)}Ni=1 in order to cal-
culate the indicator functions, to find acceptable pairs, and,
hence, to compute the loss function corresponding to input
covariates. Based on this computational graph, we can ob-
tain the gradient on the nodes (including hidden nodes of all
the sub-networks) and parameters for training the proposed
network.

Experiments

The prognostic performance of DeepHit was evaluated by
comparing it with the performance of conventional bench-
marks in analyzing three real-world clinical datasets and one
synthetic dataset. We give brief descriptions of the datasets
below; Table 1 gives more detail. Throughout the evaluations,
we take 30 days = 1 month as the basic time interval.

UNOS The United Network for Organ Sharing (UNOS)
database4 consists of patients who underwent heart trans-
plantation in the period 1985-2015. Of the total of 60,400 pa-
tients who received heart transplants, 29,436 patients (48.7%)
were followed until death; the remaining 30,964 patients
(51.3%) were right-censored. We used a total of 50 fea-
tures (30 recipient-relevant, 9 donor-relevant and 11 donor-
recipient compatibility). For details on selected features and
pre-processing methods, see to (J. Yoon et al. 2017).

METABRIC The Molecular Taxonomy of Breast Can-
cer International Consortium (METABRIC) dataset contains
gene expression profiles and clinical features used to deter-
mine breast cancer subgroups. Of the total of 1,981 patients
in the dataset, 888 patients (44.8%) were followed until death;
the remaining 1,093 patients (55.2%) were right-censored.
We restricted attention to 21 publicly available clinical fea-
tures including tumor size, number of positive lymph nodes,
etc.; for details see (Bilal et al. 2013). Missing values were re-
placed by the mean value for real-valued features and by the
mode for categorical features. One-hot encoding was applied
for categorical features.

SEER The Surveillance, Epidemiology, and End Results
Program (SEER)5 dataset provides information on breast can-
cer patients during the years 1992-2007. Among the 72,809

4https://www.unos.org/data/
5https://seer.cancer.gov/causespecific/

patients, we focused on 68,325 patients who died due to
breast cancer or cardiovascular disease (CVD), or who were
right-censored. (So we have two competing risks.) We have
23 patient features, including age, race, gender, morphology
information, diagnostic information, therapy information, tu-
mor size, tumor type, etc. Missing values were replaced by
mean value for real-valued features and by the mode for
categorical features.

SYNTHETIC We also created a synthetic dataset with two
competing risks, in the spirit of (Alaa and van der Schaar
2017). To do this we constructed two stochastic processes
with parameters and the hitting times described as follows:

x
(i)
1 ,x

(i)
2 ,x

(i)
3 ∼ N (0, I)

T
(i)
1 ∼ exp

(

(γT
3 x

(i)
3 )2 + γT

1 x
(i)
1

)

T
(i)
2 ∼ exp

(

(γT
3 x

(i)
3 )2 + γT

2 x
(i)
2

)

(5)

where x(i) = (x
(i)
1 ,x

(i)
2 ,x

(i)
3 ) is the vector of clinical co-

variates for patient i and consists of three 4-dimensional
variables: for k = 1, 2, the covariates xk only have an effect
on the hitting time for event k while x3 has an effect on the
hitting times of both events. Note that we assume hitting
times are exponentially distributed with a mean parameter
depending on both linear and non-linear (quadratic) function
of covariates. For convenience, we set γ1 = γ2 = γ3 = 10.
Given the parameters, we first produced 30, 000 patients;
among those, we randomly selected 15, 000 patients (50%)

to be right-censored at a time s
(i)
c randomly drawn from

the uniform distribution on the interval [0,min{T
(i)
1 , T

(i)
2 }].

(This censoring fraction was chosen to be roughly the same
censoring fraction as in the real datasets, and hence to
present the same difficulty as found in those datasets.) The

data for each patient i is therefore (x(i), s(i), k(i)) where

s(i) = min{T
(i)
1 , T

(i)
2 } and k(i) = argminT

(i)
k for patients

who were not censored and s(i) = s
(i)
c and k(i) = ∅ for

patients who were censored.

Experimental Setting

For evaluation, we applied 5-fold cross validation: we ran-
domly separated the data into training set (80%) and testing
set (20%). We reserved 20% of the training set as a validation
set. (In all of these sets, we maintained a constant ratio of
patients who experienced each event and patients who were
censored.) The hyper-parameters for LTotal, including α and
σ, were selected based on the discriminative performance on
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the validation set. Early stopping was performed based on
the total loss. DeepHit is a 4-layer network consisting of 1
fully-connected layer for the shared sub-network and 2 fully-
connected layers for each cause-specific sub-network and a
softmax layer as the output layer. (Note that if there is a single
event, this reduces to 3 fully-connected layers and a softmax
layer as the output layer.) For hidden layers, the number of
nodes were set as 3, 5, and 3 times of the covariate dimension
for the layer 1, 2, and 3, respectively, with ReLu activation
function. The network was trained by back-propagation via
Adam optimizer with a batch size of 50 and a learning rate
of 10−4. Dropout probability of 0.6 and Xavier initialization
was applied for all the layers (DeepHit was implemented in a
Tensorflow environment).

Discriminative Performance

Performance Metric As our metric of performance, we
use the time-dependent concordance index (Ctd-index) (An-
tolini, Boracchi, and Biganzoli 2005). (Recall that the ordi-
nary concordance index (C-index) (Harrell et al. 1982) is a
widely used discriminative index based on the assumption
that patients who lived longer should have been assigned a
lower risk than patients who lived less long. However the
ordinary C-index is computed only at the initial time of ob-
servation and hence cannot reflect the possible change in
risk over time. The time-dependent concordance index takes
time into account.) Given the estimated CIF in Eq. (1), the
Ctd-index for event k is defined as

Ctd= P
(

F̂k(s
(i)|x(i))>F̂k(s

(i)|x(j))|s(i) < s(j)
)

≈

∑

i �=jAk,i,j · 1
(

F̂k(s
(i)|x(i)) > F̂k(s

(i)|x(j))
)

∑

i �=j Ak,i,j

(6)

where, as before, Ak,i,j is the indicator function for a pair
(i, j) to be acceptable for an event k and the approximation
comes from the empirical definition. Thus, the Ctd-index for
event k is derived from comparison of pairs in which one
patient has experienced event k at a particular time while the
other has not experienced any event nor been censored by
that time. Because this discriminative index does not depend
on a single fixed time, it provides an appropriate assessment
for situations in which the influence of covariates on survival
varies over time (in other words, risks are non-proportional
over time). (Note that the Ctd-index is equivalent to the usual
C-index of (Harrell et al. 1982) in the case of a single event
and a survival model for which the proportional hazards
assumption holds.)

For the SEER and SYNTHETIC datasets, which have
two events (competing risks), the discriminative performance
of DeepHit was compared with the Fine-Gray proportional
sub-distribution hazards model (Fine-Gray) (Fine and Gray
1999), deep multi-task Gaussian process (DMGP) (Alaa and
van der Schaar 2017), and with a cause-specific version of
the Cox Proportional Hazards Model (cs-Cox) that was cre-
ated by fixing an event (e.g. death from CVD) and treating
the other event (e.g. death from breast cancer) simply as a
form of censoring; see (Haller, Schmidt, and Ulm 2013). The
results are shown in Tables 2 and 3. (For completeness, we

also compared with cause-specific versions of other models
intended for single-event analysis; the results are shown in
the Table 1 and 2 of the Supplementary Materials.)

For the UNOS and METABRIC datasets, which have a sin-
gle event (risk), the discriminative performance of DeepHit
was compared with two families of other survival models 6.
The first of these families consists of conventional survival re-
gression models: including Cox Proportional Hazards (Cox)
(Therneau 2015), Threshold Regression (ThresReg) (Lee
and Whitmore 2006), and Random Survival Forests (RSF)
with # of trees = 100 (Ishwaran and Kogalur 2017). The other
family consists of survival models which are derived from
mortality prediction performed by machine learning algo-
rithms: Random Forest (MP-RForest), Logistic Regression
(MP-LogitR), and AdaBoost (MP-AdaBoost) and with the
cutting-edge deep neural network (DeepSurv), which is de-
veloped upon Cox proportional assumption (Katzman et al.
2016) 7. (In order to make fair comparisons, the training of
the MP based machine learning algorithms was adjusted for
survival data; see the Supplementary Material for details.)

Comparisons of the performance of DeepHit with other
models for the SEER and the SYNTHETIC datasets are
shown in Table 2 and 3, respectively. In the SEER dataset,
there are two events – competing risks: death from cardio-
vascular disease (CVD) and from Breast Cancer. As can
be seen, DeepHit provides performance improvements over
other models; with the exception of cs-Cox for death by CVD,
the performance improvements were all statistically signifi-
cant (p < 0.05 and often p < 0.001).8 The comparisons for
death by breast cancer are particularly striking. Fine-Gray
and cs-Cox both perform poorly with respect to the risk of
breast cancer, while DeepHit performs much better. Because
Fine-Gray and cs-Cox assume linear proportional hazards
and DMGP model assumes the underlying stochastic process
to follow Gaussian process, while DeepHit makes no such
assumption, the performance comparison strongly suggests
that non-proportional and/or non-linear relationships between
covariates and survival times is crucial for assessing the risk
of breast cancer.

We also compared the discriminative performance of Deep-
Hit with that of Fine-Gray and cs-Cox on the SYNTHETIC
dataset where there are again two events/competing risks:
death from Event 1 and from Event 2. As can be seen in
Table 3, DeepHit outperformed all the benchmarks and the
performance improvements were all statistically significant
(p < 0.001). This is expected since the cs-Cox and Fine-
Gray restrict the relationship between covariates and risks
to be linear. Thus, they are not able to capture the quadratic
relationship introduced when generating the synthetic data.
However, DeepHit allows the network to learn the represen-
tation of the non-linear relation of covariates.

6We did not compare with (Luck et al. 2017) because that paper
did not provide detailed information to permit implementation.

7https://github.com/jaredleekatzman/DeepSurv
8As noted earlier, for the sake of completeness we also compared

the performance of DeepHit with cause-specific versions of other
methods; see Tables 2 and 3 in the Supplementary Materials.
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Table 2: Comparison of cause-specific Ctd-index perfor-
mance (mean and 95% confidence interval) tested on the
SEER dataset

Algorithms CVD Breast Cancer

cs-Cox
0.672

(0.664 - 0.680)
0.639∗

(0.633 - 0.645)

Fine-Gray
0.663‡

(0.656 - 0.670)

0.639∗

(0.632 - 0.646)

DMGP
0.657

(0.632 - 0.682)
0.742‡

(0.738 - 0.746)

DeepHit (α = 0)
0.674

(0.661 - 0.687)
0.736

(0.733 - 0.739)

DeepHit
0.684

(0.674 - 0.694)
0.752

(0.748 - 0.756)

∗ indicates p-value < 0.001
‡ indicates p-value < 0.05

Table 3: Comparison of cause-specific Ctd-index perfor-
mance (mean and 95% confidence interval) tested on the
SYNTHETIC dataset

Algorithms Event 1 Event 2

cs-Cox
0.578∗

(0.570 - 0.586)
0.588∗

(0.584 - 0.593)

Fine-Gray
0.579∗

(0.572 - 0.586)
0.589∗

(0.585 - 0.593)

DMGP
0.663∗

(0.658 - 0.668)
0.666∗

(0.660 - 0.672)

DeepHit (α = 0)
0.739

(0.735 - 0.744)
0.737

(0.732 - 0.742)

DeepHit
0.755

(0.749 - 0.761)
0.755

(0.748 - 0.762)

∗ indicates p-value < 0.001

Single Event/Single Risk As we have noted in the Intro-
duction, an important aspect of DeepHit is that it smoothly
handles competing risks. However, it also provides improved
performance when there is only a single risk. To show this,
we compared the performance of DeepHit with other models
for the UNOS and METABRIC (single event) datasets in Ta-
ble 4. As can be seen, DeepHit consistently provided the best
performance for both the UNOS and METABRIC datasets.
For the UNOS dataset, the improvement of DeepHit over
all the competing methods other than AdaBoost was highly
statistically significant (p < 0.01 and often p < 0.001). For
the METABRIC data set, the improvement of DeepHit over
all the competing methods other than RSF was statistically
significant (p < 0.001, p < 0.05, and often p < 0.01).

We suspect that for the single risk setting, the performance
improvement of DeepHit comes from its capacity to capture
the complicated relationship between covariates and risk, es-
pecially in the presence of many covariates. Because the other
models make restrictive parametric assumptions, they are un-
able to capture this complicated relationship. In particular,

when compared with DeepSurv, we suspect the performance
improvement comes from not relying on the proportional
assumption.

Table 4: Comparison of cause-specific Ctd-index perfor-
mance (mean and 95% confidence interval) tested on Single
Event Datasets.

Algorithms
Datasets

UNOS METABRIC

Cox
0.566∗

(0.563 - 0.569)
0.648†

(0.634 - 0.662)

RSF
0.575†

(0.571 - 0.579)

0.672
(0.655 - 0.689)

ThresReg
0.571∗

(0.568 - 0.574)
0.649†

(0.633 - 0.665)

MP-RForest
0.552∗

(0.548 - 0.556)
0.650†

(0.630 - 0.670)

MP-AdaBoost
0.582

(0.578 - 0.586)
0.633∗

(0.617 - 0.649)

MP-LogitR
0.571∗

(0.567 - 0.575)
0.661‡

(0.643 - 0.679)

DeepSurv
0.563∗

(0.555 - 0.571)
0.648†

(0.636 - 0.660)

DeepHit (α = 0)
0.573

(0.571 - 0.575)
0.646

(0.634 - 0.658)

DeepHit
0.589

(0.586 - 0.592)
0.691

(0.679 - 0.703)

∗ indicates p-value < 0.001
† indicates p-value < 0.01
‡ indicates p-value < 0.05

In other material, we further investigate the performance
gain of using L2 utilizing the definition of Ctd-index:
weighted average of the area under time-specific ROC curve
(Antolini, Boracchi, and Biganzoli 2005).

Conclusion

This paper presents a novel approach, DeepHit, to the analysis
of survival data. DeepHit trains a neural network to learn the
estimated joint distribution of of survival time and event,
while capturing the right-censored nature inherent in survival
data. We train the network by using a loss function that
exploits both survival times and relative risks. As a test, we
compared the performance of DeepHit with the performance
of previous models. In settings with competing risks, the
performance of DeepHit is much better than that of previous
models; even in settings with a single risk the performance of
DeepHit is significantly better than that of previous models.
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