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Abstract

In this paper, we propose multi-stage and deformable

deep convolutional neural networks for object detection.

This new deep learning object detection diagram has in-

novations in multiple aspects. In the proposed new deep

architecture, a new deformation constrained pooling (def-

pooling) layer models the deformation of object parts with

geometric constraint and penalty. With the proposed multi-

stage training strategy, multiple classifiers are jointly opti-

mized to process samples at different difficulty levels. A new

pre-training strategy is proposed to learn feature represen-

tations more suitable for the object detection task and with

good generalization capability. By changing the net struc-

tures, training strategies, adding and removing some key

components in the detection pipeline, a set of models with

large diversity are obtained, which significantly improves

the effectiveness of modeling averaging. The proposed ap-

proach ranked #2 in ILSVRC 2014. It improves the mean

averaged precision obtained by RCNN, which is the state-

of-the-art of object detection, from 31% to 45%. Detailed

component-wise analysis is also provided through extensive

experimental evaluation.

1. Introduction

Object detection is a one of the fundamental challenges

in computer vision. It has attracted a great deal of research

interest [9, 48, 20]. The main challenges of this task are

caused by the intra-class variation in appearance, lighting,

backgrounds, and deformation. In order to handle these

challenges, a group of interdependent components in the

pipeline of object detection are important. First, features

should capture the most discriminative information of ob-

ject classes. Well-known features include hand-crafted fea-

tures such as Haar-like features [55], SIFT [32], HOG [9],

and learned deep CNN features [46, 29, 23]. Second, de-

formation models should handle the deformation of object

parts, e.g. torso, head, and legs of human. The state-of-the-

art deformable part-based model (DPM) in [20] allows ob-

ject parts to deform with geometric constraint and penalty.

Finally, a classifier decides whether a candidate window

shall be detected as enclosing an object. SVM [9], Latent

SVM [20], multi-kernel classifiers [52], generative model

[35], random forests [14], and their variations are widely

used.

In this paper, we propose multi-stage deformable DEEP

generIc object Detection convolutional neural NETwork

(DeepID-Net). In DeepID-Net, we learn the following key

components: 1) feature representations for a large number

of object categories, 2) deformation models of object parts,

3) contextual information for objects in an image. We also

investigate many aspects in effectively and efficiently train-

ing and aggregating the deep models, including bounding

box rejection, training schemes, objective function of the

deep model, and model averaging. The proposed new di-

agram significantly advances the state-of-the-art for deep

learning based generic object detection, such as the well

known RCNN [23] framework. With this new pipeline, our

method ranks #2 in object detection on the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) 2014. This

paper also provides detailed component-wise experimental

results on how our approach can improve the mean Aver-

aged Precision (AP) obtained by RCNN [23] from 31.0%

to mean AP 45% step-by-step on the ImageNet object de-

tection challenge validation 2 dataset.

The contributions of this paper are as follows:

1. A new deep learning diagram for object detection. It ef-

fectively integrates feature representation learning, part

deformation learning, sub-box feature extraction, con-

text modeling, model averaging, and bounding box lo-

cation refinement into the detection system.

2. A new scheme for pretraining the deep CNN model.

We propose to pretrain the deep model on the ImageNet
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image classification dataset with 1000-class object-level

annotations instead of with image-level annotations,

which are commonly used in existing deep learning ob-

ject detection [23]. Then the deep model is fine-tuned on

the ImageNet object detection dataset with 200 classes,

which are the targeting object classes of the ImageNet

object detection challenge.

3. A new deformation constrained pooling (def-pooling)

layer, which enriches the deep model by learning the de-

formation of visual patterns of parts. The def-pooling

layer can be used for replacing the max-pooling layer

and learning the deformation properties of parts at any

information abstraction level.

4. We show the effectiveness of the multi-stage training

scheme in generic object detection. With the proposed

deep architecture, the classifier at each stage handles

samples at a different difficult level. All the classifiers

at multiple stages are jointly optimized. The proposed

new stage-by-stage training procedure adds regulariza-

tion constraints to parameters and better solves the over-

fitting problem compared with the standard BP.

5. A new model averaging strategy. Different from exist-

ing works of combining deep models learned with the

same structure and training strategy, we obtain multiple

models by using different network structures and train-

ing strategies, adding or removing different types of lay-

ers and some key components in the detection pipeline.

Deep models learned in this way have large diversity on

the 200 object classes in the detection challenge, which

makes model averaging more effective. It is observed

that different deep models varies a lot across different

object categories. It motivates us to select and com-

bine models differently for each individual class, which

is also different from existing works [62, 46, 25] of using

the same model combination for all the object classes.

2. Related Work

It has been proved that deep models are potentially more

capable than shallow models in handling complex tasks [4].

Deep models have achieved spectacular progress in com-

puter vision [26, 27, 43, 28, 30, 37, 29, 63, 33, 50, 18, 42].

Because of its power in learning feature representation,

deep models have been widely used for object recognition

and object detection in the recent years [46, 62, 25, 47, 67,

24, 31, 23]. In existing deep CNN models, max pooling

and average pooling are useful in handling deformation but

cannot learn the deformation penalty and geometric model

of object parts. The deformation layer was first proposed in

our earlier work [38] for pedestrian detection. In this pa-

per, we extend it to general object detection on ImageNet.

In [38], the deformation layer was constrained to be placed

after the last convolutional layer, while in this work the def-

pooling layer can be placed after all the convolutional lay-

ers to capture geometric deformation at all the information

abstraction levels. All different from [38], the def-pooling

layer in this paper can be used for replacing all the pooling

layers. In [38], it was assumed that a pedestrian only has

one instance of a body part, so each part filter only has one

optimal response in a detection window. In this work, it is

assumed that an object has multiple instances of a body part

(e.g. a car has many wheels), so each part filter is allowed to

have multiple response peaks in a detection window. This

new model is more suitable for general object detection.

Since some objects have non-rigid deformation, the abil-

ity to handle deformation improves detection performance.

Deformable part-based models were used in [20, 65, 41, 39]

for handling translational movement of parts. To handle

more complex articulations, size change and rotation of

parts were modeled in [21], and mixture of part appearance

and articulation types were modeled in [6, 60, 10]. In these

approaches, features are manually designed, Deformation

and features are not jointly learned.

The widely used classification approaches include vari-

ous boosting classifiers [14, 15, 56], linear SVM [9], his-

togram intersection kernel SVM [34], latent SVM [20],

multiple kernel SVM [53], structural SVM [65], and prob-

abilistic models [3, 36]. In these approaches, classifiers are

adapted to training data, but features are designed manually.

If useful information has been lost at feature extraction, it

cannot be recovered during classification. Ideally, classi-

fiers should guide feature learning.

Researches on visual cognition, computer vision and

cognitive neuroscience have shown that the ability of hu-

man and computer vision systems in recognizing objects is

affected by the contextual information like non-target ob-

jects and contextual scenes. The context information inves-

tigated in previous works includes regions surrounding ob-

jects [9, 12, 22], object-scene interaction [13], and the pres-

ence, location, orientation and size relationship among ob-

jects [3, 57, 58, 11, 41, 22, 49, 13, 61, 12, 59, 40, 10, 45, 51].

In this paper, we utilize the image classification result from

the deep model as the contextual information.

In summary, previous works treat the components in-

dividually or sequentially. This paper takes a global view

of these components and is an important step towards joint

learning of them for object detection.

3. Dataset overview

The ImageNet Large Scale Visual Recognition Chal-

lenge (ILSVRC) 2014 [44] contains two different datasets:

1) the classification and localization dataset and 2) the de-

tection dataset.

The classification and localization (Cls-Loc) dataset is

split into three subsets, train, validation (val), and test data.

The train data contains 1.2 million images with labels of

1, 000 categories. The val and test data consist of 150, 000



photographs, collected from flickr and other search engines,

hand labeled with the presence or absence of 1, 000 object

categories. The 1, 000 object categories contain both inter-

nal nodes and leaf nodes of ImageNet, but do not overlap

with each other. A random subset of 50, 000 of the images

with labels are used as val data and released with labels of

the 1, 000 categories. The remaining 100, 000 images are

used as the test data and are released without labels at test

time. The val and test data does not have overlap with the

train data.

The detection (Det) dataset contains 200 object cate-

gories and is split into three subsets, train, validation (val),

and test data, which separately contain 395, 918, 20, 121
and 40, 152 images. The manually annotated object bound-

ing boxes on the train and val data are released, while those

on the test data are not. The train data is drawn from the

Cls-Loc data. In the Det val and test subsets, images from

the CLS-LOC dataset where the target object is too large

(greater than 50% of the image area) are excluded. There-

fore, the Det val and test data have similar distribution.

However, the distribution of Det train is different from the

distributions of Det val and test. For a given object class,

the train data has extra negative images that does not con-

tain any object of this class. These extra negative images are

not used in this paper. We follow the RCNN [23] in split-

ting the val data into val1 and val2. Val1 is used for training

models while val2 is used for validating the performance of

models. The val1/val2 split is the same as that in [23].

4. Method

4.1. The RCNN approach

A brief description of the RCNN approach is provided

for giving the context of our approach. RCNN uses the

selective search in [48] for obtaining candidate bounding

boxes from both training and testing images. An overview

of this approach is shown in Fig. 1.

At the testing stage, the AlexNet in [29] is used for

extracting features from bounding boxes, then 200 one-

versus-all linear classifiers are used for deciding the exis-

tence of object in these bounding boxes. Each classifier

provides the classification score on whether a bounding box

contains a specific object class or not, e.g. person or non-

person. The bounding box locations are refined using the

AlexNet in order to reduce localization errors.

At the training stage, the ImageNet Cls-Loc dataset with

1, 000 object classes is used to pretrain the AlexNet, then

the ImageNet Det dataset with 200 object classes is used

to fine-tune the AlexNet. The features extracted by the

AlexNet are then used for learning 200 one-versus-all SVM

classifiers for 200 classes. Based on the features extracted

by the AlexNet, a linear regressor is learned to refine bound-

ing box location.

Image
Proposed 

bounding boxes

Selective 
search

AlexNet
+SVM

Bounding box 
regression

person

horse

Detection 
results

Refined 
bounding boxes

Figure 1. Overview of RCNN in [23]. Selective search [48] is used

for proposing candidate bounding boxes that may contain objects.

AlexNet is used to extract features from the cropped bounding box

regions. Based on the extracted features, SVM is used to decide

the existence of objects. Bounding box regression is used to refine

bounding box location and reduce localization errors.

4.2. Overview of the proposed approach

An overview of our proposed approach is shown in Fig.

2. In this model:

1. The selective search in [48] is used for obtaining candi-

date bounding boxes. Details are given in Section 4.3.

2. An existing detector is used for rejecting bounding boxes

that are most likely to be background. Details are given

in Section 4.4.

3. The remaining bounding boxes are cropped and warped

into 227 × 227 images. The 227 × 227 cropped image

goes through the DeepID-Net in order to obtain 200 de-

tection scores. Each detection score measures the confi-

dence on the cropped image containing one specific ob-

ject class, e.g. person. Details are given in Section 5.

4. The 1000-class image classification scores of a deep

model on the whole image are used as the contextual in-

formation for refining the 200 detection scores of each

candidate bounding box. Details are given in Section

5.7.

5. Average of multiple deep model outputs is used to im-

prove the detection accuracy. Details are given in Sec-

tion 6.

6. The bounding box regression in RCNN is used to reduce

localization errors.

4.3. Bounding box proposal by selective search

Many approaches have been proposed to generate class-

independent bounding box proposals. The recent ap-

proaches include objectness [1], selective search [48], cat-

egory independent object proposals [16], constrained para-

metric min-cuts [7], combinatorial grouping [2], binarized

normed gradients [8], deep learning [17], and edge boxes

[66]. The selective search approach in [48] is adopted in

order to have fair comparison with the RCNN in [23]. We

strictly followed the RCNN in using the selective search,

where selective search was run in fast mode on each im-

age in val1, val2 and test, and each image was resized to

a fixed width (500 pixels) before running selective search.

In this way, selective search resulted in an average of 2403

bounding box proposals per image with a 91.6% recall of all

ground-truth bounding boxes by choosing Intersection over

Union (IoU) threshold as 0.5.
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Figure 2. Overview of DeepID-Net. Selective search is used for

proposing candidate bounding boxes that may contain objects.

Then RCNN is used for rejecting 94% candidate bounding boxes.

Each remaining bounding box goes through the DeepID-Net in or-

der to obtain 200 detection scores. Each score measures the con-

fidence on whether the bounding box contains a specific object

class, e.g. person, or not. After that, context is used for refining

the 200 scores of each bounding box. Model averaging and bound-

ing box regression are then used to improve the accuracy. Texts in

red highlights the steps that are not present in RCNN [23].

4.4. Bounding box rejection

On the val data, selective search generates 2403 bound-

ing boxes per image. On average, 10.24 seconds per image

are required using the Titan GPU (about 12 seconds per im-

age using GTX670) for extracting features from bounding

boxes. Features in val and test should be extracted for train-

ing SVM or validating performance. This feature extraction

takes around 2.4 days on the val dataset and around 4.7 days

on the test dataset. The feature extraction procedure is time

consuming and slows down the training and testing of new

models. In order to speed up the feature extraction for new

models, we use an existing approach, RCNN [23] in our

implementation, for rejecting bounding boxes that are most

likely to be background. Denote by si the detection scores

for 200 classes of the ith bounding box. The ith bounding

box is rejected if the following rejection condition is satis-

fied:

||si||∞ < T, (1)

where ||si||∞ = maxj{si,j}, si,j is the jth element in si.

Since the elements in si are SVM scores, negative sam-

ples with scores smaller than −1 are not support vectors

for SVM. When ||si||∞ < −1, the scores are below the

negative-sample margins for all the classes. We choose

T = −1.1 as the threshold to be a bit more conservative

than the margin −1. With the rejection condition in (1),

94% bounding boxes are rejected and only the 6% remain-

ing windows are used for further process of DeepID-Net at

the training and testing stages. The remaining 6% bounding

boxes result in 84.4% recall of all ground-truth bounding

boxes (at 0.5 IoU threshold), 7.2% drop in recall compared

with the 100% bounding boxes. Since the easy examples

are rejected, the DeepID-Net can focus on hard examples.

For the remaining 6% bounding boxes, the execution

time required by feature extraction is 1.18 seconds per im-

age on Titan GPU, about 1/9 of the 10.24 seconds per im-

age required for the 100% bounding boxes. In terms of de-

tection accuracy, bound boxing rejection can improve the

mean AP by around 1%.

5. Bounding box classification by DeepID-Net

5.1. Overview of DeepID­Net

An overview of the DeepID-Net is given in Fig. 3. This

deep model contains four parts:

(a) The baseline deep model. The input is the image region

cropped by a candidate bounding box. The input image

region is warped to 227×227. The Clarifai-fast in [62] is

used as the baseline deep model in our best-performing

single model. The Clarifai-fast model contains 5 con-

volutional layers (conv1-conv5) and two fully connected

layers (fc6 and fc7). conv1 is the result of convolving

its previous layer, the input image, with learned filters.

Similarly for conv2-conv5, fc6, and fc7. Max pooling

layers, which are not shown in Fig. 3, are used after

conv1, conv2 and conv5.

(b) Fully connected layers learned by the multi-stage train-

ing scheme, which is detailed in Section 5.3. The in-

put of these layers is the pooling layer after conv5 of the

baseline model.

(c) Layers with def-pooling layer. The input of these layers

is the conv5 of the baseline model. The conv5 layer is

convolved by filters with variable sizes and then the pro-

posed def-pooling layer in Section 5.4.2 is used for learn-

ing the deformation constraint of these part filters. Parts

(a)-(c) outputs the 200-class object detection scores. For

the example in Fig. 3, ideal output will have a high score

for the object class horse but low scores for other classes

for the cropped image region that contains a horse.

(d) The deep model (Clarifai-fast) for obtaining the image

classification scores of 1000 classes. The input is the

whole image. The image classification scores are used

as contextual information for refining the scores of the

bounding boxes. Detail are given in Section 5.7.

Parts (a)-(d) are learned by back-propagation (BP).

5.2. New pretraining strategy

The training scheme of the RCNN in [23] is as follows:

1. Pretrain the deep model by using the image classification

task, i.e. using image-level annotations of 1000 classes

from the ImageNet Cls-Loc train data.

2. Fine-tune the deep model for the object detection task,

i.e. using object-level annotations of 200 classes from

the ImageNet Det train and val1 data.

The deep model structures at the pretraining and fine-tuning

stages are only different in the last fully connected layer for

predicting labels (1, 000 classes vs. 200 classes). Except

for the last fully connected layers for classification, the pa-
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Figure 3. Overview of the DeepID-Net. It consists of four parts,

(a) the baseline deep model, which is the Clarifai-fast [62] in

our best-performing single model; (b) the layers with multi-stage

training; (c) the layers with variable filter sizes and def-pooling

layer; (d) the deep model for obtaining 1000-class image classifi-

cation scores. The 1000-class image classification scores and the

200-class bounding box classification scores are combined into the

refined 200-class bounding box classification scores.

rameters learned at the pretraining stage are directly used as

initial values for the fine-tuning stage.

The problem of the training scheme of RCNN is that im-

age classification and object detection are different tasks,

which have different requirements on the learned feature

representation. For image classification, the whole image

is used as the input and the class label of objects within

the image is estimated. An object may appear in different

places with different sizes in the image. Therefore, the deep

model learned for image classification is required to be ro-

bust to scale change and translation of objects. For object

detection, the image region cropped with a tight bounding

box is used as the input and the class label of objects within

the bounding box is estimated. Since tight bounding box

is used, robustness to scale change and translation of ob-

ject is not needed. This is the reason why bag of visual

words is popular for image classification but not for detec-

tion. The mismatch in image classification and object de-

tection results in the mismatch in learning features for the

deep model.

Another potential mismatch comes from the fact that the

Cls-Loc data has 1, 000 classes, while the ImageNet detec-

tion challenge only targets on 200 classes. However, our

experimental study shows that feature representations pre-

trained with 1, 000 classes have better generalization capa-

bility, which leads to better detection accuracy than only

selecting the 200 classes from the Cls-Loc data for pretrain-

ing.

Since the ImageNet Cls-Loc data provides object-level

bounding boxes for 1000 classes, which is more diverse in

content than the ImageNet Det data with 200 classes, we

use the images regions cropped by these bounding boxes

as the training samples to pretain the baseline deep model.

We propose two new pretraining strategies that bridge the

image- vs. object-level annotation gap in RCNN.

Scheme 1 is as follows:

1. Pretrain the deep model by using image-level annota-

tions of 1, 000 classes from the ImageNet Cls-Loc train

data.

2. Fine-tune the deep model with object-level annotations

of 1, 000 classes from the ImageNet Cls-Loc train data.

The parameters trained from Step (1) is used as initial-

ization.

3. Fine-tune the deep model for the second time by using

object-level annotations of 200 classes from the Ima-

geNet Det train and val1 data. The parameters trained

from Step (2) are used as initialization.

Scheme 1 uses pretraining on 1000-class object-level anno-

tations as the intermediate step to bridge the gap between

1000-class image classification task and 200-class object

detection task.

Scheme 2 is as follows:

1. Pretrain the deep model with object-level annotations of

1, 000 classes from the ImageNet Cls-Loc train data.

2. Fine-tune the deep model for the 200-class object de-

tection task, i.e. using object-level annotations of 200

classes from the ImageNet Det train and val1 data. Use

the parameters in Step (1) as initialization.

Scheme 2 removes pretraining on the image classification

task and directly uses object-level annotations to pretrain

the deep model. Compared with the training scheme of

RCNN, experimental results on ImageNet Det val2 found

that scheme 1 improves mean AP by 1.6% and scheme 2

improves mean AP by 4.4%.

The baseline deep model is pretrained using the ap-

proach discussed above. The layers with mulit-stage train-

ing and def-pooling layers in Fig. 3 are randomly initialized

and trained at the fine-tuning stage.

5.3. Fully connected layers with multi­stage training

Motivation. Multi-stage classifiers have been widely

used in object detection and achieved great success. With

a cascaded structure, each classifier processes a different

subset of data [54, 15, 5, 19, 53]. However, these classi-

fiers are usually trained sequentially without joint optimiza-

tion. In this paper, we propose a new deep architecture that

can jointly train multiple classifiers through several stages

of back-propagation. Each stage handles samples at a dif-

ferent difficulty level. Specifically the first stage of deep

CNN handles easy samples, the second stage of deep model

processes more difficult samples which cannot be handled

in the first stage, and so on. Through a specific design of

the training strategy, this deep architecture is able to simu-

late the cascaded classifiers by mining hard samples to train

the network stage-by-stage. Our recent work [64] has ex-

plored the idea of multi-stage deep learning, but it was only

applied to pedestrian detection. In this paper, we apply it to



Algorithm 1: Stage-by-Stage Training

Input: Training set: Warped images and their labels

from the fine-tuning training data

Parameters Θ for the baseline deep model

obtained by pretraining.

Output: Parameters Θ for the baseline deep model,

Parameters Wl,t, l = 6, 7, 8, t = 1, · · · , T for

the extra layers.

1 Set elements in Wl,t to be 0;

2 BP to fine-tune Θ, while keeping Wl,t as 0;

3 for t=1 to T do

4 Randomly initialize Wl,t, l = 6, 7;

5 Use BP to update parameters Wl,t, l = 6, 7, 8
while fixing Θ and Wl,1, · · · ,Wl,t−1;

6 Use BP to update parameters Θ and

Wl,1, · · · ,Wl,t, l = 6, 7, 8;

7 end

8 Output Θ and Wl,t, l = 6, 7, 8, t = 1, · · · , T .

general object detection on ImageNet.

Denotations. The pooling layer after conv5 is denoted

by pool5. As shown in Fig. 4, besides fc6, pool5 is con-

nected to T extra fully connected layers of sizes 4096.

Denote the T extra layers connected the pool5 layer as

fc61, fc62, · · · , fc6T . Denote fc71, fc72, · · · , fc7T as

the T layers separately connected to the layers fc61, fc62,

· · · , fc6T . Denote the weight connected to fclT by Wl,t,

l = 6, 7, t = 1, · · · , T . Denote the weights from fc7t to

classification scores as W8,t, t = 1, · · · , T . The path from

pool5, fc6t, fc7t to classification scores can be considered

as the extra classifier at stage t.
The multi-stage training procedure is summarized in Al-

gorithm 1. It consists of two steps.

• Step 1 (2 in Algorithm 1): BP is used for fine-tuning

all the parameters in the baseline deep model.

• Step 2.1 (4 in Algorithm 1): parameters Wl,t, t = 6, 7
are randomly initialized at stage t in order to search for

extra discriminative information in the next step.

• Step 2.2 (5-6 in Algorithm 1): multi-stage classifiers

Wl,t for l = 6, 7, t = 1, · · · , T are trained using BP

stage-by-stage. In stage t, classifiers Wl,t up to t are

jointly updated.

The baseline deep model is first trained by excluding extra

classifiers to reach a good initialization point. Training this

simplified model avoids overfitting. Then the extra classi-

fiers are added stage-by-stage. At stage t, all the existing

classifiers up to layer t are jointly optimized. Each round of

optimization finds a better local minimum around the good

initialization point reached in the previous training stages.

200

(a) Baseline deep model (clarifai-fast)

pool5

fc6 fc7

4096
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...
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4096 4096

4096
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fc71

fc72

Figure 4. The baseline deep model and fully connected layers with

multi-stage training. The layer pool5 is result of max pooling over

the conv5 layer in Fig. 3. Different stages of classifiers deal with

samples of different difficulty levels.

In the stage-by-stage training procedure, classifiers at the

previous stages jointly work with the classifier at the current

stage in dealing with misclassified samples. Existing cas-

caded classifiers only pass a single score to the next stage,

while our deep model uses multiple hidden nodes to transfer

information.

Detailed analysis on the multi-stage training scheme is

provided in [64]. A brief summary is given as follows:

First, it simulates the soft-cascade structure. A new clas-

sifier is introduced at each stage to help deal with misclas-

sified samples while the correctly classified samples have

no influence on the new classifier. Second, the cascaded

classifiers are jointly optimized at stage t in step 2.2, such

that these classifiers can better cooperate with each other.

Third, the whole training procedure helps to avoid overfit-

ting. The supervised stage-by-stage training can be consid-

ered as adding regularization constraints to parameters, i.e.

some parameters are constrained to be zeros in the early

training strategies. At each stage, the whole network is

initialized with a good point reached by previous training

strategies and the additional classifiers deal with misclassi-

fied samples. It is important to set Wl,t = 0 in the previous

training strategies; otherwise, it become standard BP. With

standard BP, even an easy training sample can influence any

classifier. Training samples will not be assigned to different

classifiers according to their difficulty levels. The parameter

space of the whole model is huge and it is easy to overfit.

5.4. The def­pooling layer

5.4.1 Generating the part detection map

Since object parts have different sizes, we design filters with

variable sizes and convolve them with the conv5 layer in the

baseline model. Fig. 5 shows the layers with def-pooling

layers. It contains the following four parts:

(a) The conv5 layer is convolved by filters of sizes 3 × 3,

5 × 5, and 9 × 9 separately in order to obtain the part
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Figure 5. The baseline deep model and def-pooling layers.

detection maps of 128 channels, which are denoted by

conv61, conv62, and conv63 as shown in Fig. 5. In com-

parison, the path from conv5, fc6, fc7 to classification

score can be considered as a holistic model.

(b) Part detection maps are separately fed into the def-

pooling layers denoted by def61, def62, and def63 in or-

der to learn their deformation constraints.

(c) The output of def-pooling layers, i.e. def61, def62, and

def63, are separately convolved with filters of sizes 1×1
with 128 channels to produce outputs conv71, conv72,

and conv73, which can be considered as fully connected

layers over the 128 channels for each location.

(d) The fc7 in the Clarifai-fast and the output of layers

conv71, conv72, and conv73 are used for estimating the

class label of the candidate bounding box.

5.4.2 Learning the deformation

Motivation. The effectiveness of learning deformation con-

straints of object parts has been proved in object detection

by many existing non-deep-learning detectors, e.g. [20].

However, it is missed in current deep learning models. In

deep CNN models, max pooling and average pooling are

useful in handling deformation but cannot learn the defor-

mation constraint and geometric model of object parts. We

design the def-pooling layer for deep models so that the de-

formation constraint of object parts can be learned by deep

models.
Denote M of size V × H as the result of the convolu-

tional layer, e.g. conv61. The def-pooling layer takes small
blocks of size (2R + 1) × (2R + 1) from the M and sub-

samples M to B of size V
kx

× H
ky

to produce single output

from each block as follows:

b(x,y) = max
i,j∈{−R,··· ,R}

{m(kx·x+i,ky·y+j) −
N∑

n=1

cnd
i,j
n }, (2)

where (kx · x, ky · y) is the center of the block, kx and ky
are subsmpling steps, b(x,y) is the (x, y)th element of B. cn
and di,jn are deformation parameters to be learned.

Example 1. Suppose cn = 0, then there is no penalty for

placing a part with center (kx · x, ky · y) to any location in

filter

input Convolution 

resultM

Deformation 

penalty

Output b

Global

max

 

!

Figure 6. The deformation layer when deformation map is de-

fined in (3). Part detection map M and deformation constraint are

summed up to obtain the summed map M̃. Global max pooling is

then performed on M̃ to obtain the score b.

{(kx·x+i, ky·y+j)|i, j = −R, . . .R}. In this case, the def-

pooling layer degenerates to max-pooling layer with sub-

sampling step (kx, ky) and kernel size (2R+1)× (2R+1).
Therefore, the difference between def-pooling and max-

pooling is the term −
∑N

n=1 cnd
i,j
n in (2), which is the de-

formation constraint learned by def-pooling. In short, def-

pooling is max-pooling with deformation constraint.

Example 2. Suppose V = ky , H = kx, i = 1, · · · , V ,

and j = 1, · · · , H , then the def-pooling layer degenerates

to the deformation layer in [38]. There is only one output

for M in this case. The deformation layer can represent

the widely used quadratic deformation constraint in the de-

formable part-based model [20]. Details are given in Ap-

pendix A. Fig. 6 illustrates this example.

Example 3. Suppose N = 1 and cn = 1, then the defor-

mation constraint di,j1 is learned for each displacement bin

(i, j) from the center location (kx·x, ky ·y). In this case, di,j1
is the deformation cost of moving an object part from the

center location (kx ·x, ky ·y) to location (kx ·x+i, ky ·y+j).

As an example, if d0,01 = 0 and di,j1 = ∞ for (i, j) 6= (0, 0),
then the part is not allowed to move from the center loca-

tion (kx · x, ky · y) to anywhere. As the second example,

if di,j1 = 0 for j <= 0 and di,j1 = ∞ for j > 0, then the

part can move freely upward but should not move down-

ward. As the third example, if d0,01 = 0 and di,j1 = 1 for

(i, j) 6= (0, 0), then the part has no penalty at the center lo-

cation (kx · x, ky · y) but has penalty 1 elsewhere. The R in

controls the movement range. Objects are only allowed to

move within the horizontal and vertical range [−R R] from

the center location.

The deformation layer was proposed in our recently pub-



lished work [38], which showed significant improvement in

pedestrian detection. The def-pooling layer in this paper is

different from the deformation layer in [38] in the following

aspects.

1. The work in [38] only allows for one output, while this

paper is block-wise pooling and allows for multiple out-

put at different spatial locations. Because of this differ-

ence, the deformation layer can only be put after the fi-

nal convolutional layer, while the def-pooling layer can

be put after any convolutional layer like the max-pooling

layer. Therefore, the def-pooling layer can capture geo-

metric deformation at all the levels of abstraction, while

the deformation layer was only applied to a single layer

corresponding to pedestrian body parts.

2. It was assumed in [38] that a pedestrian only has one

instance of a body part, so each part filter only has one

optimal response in a detection window. In this work,

it is assumed that an object has multiple instances of its

part (e.g. a building has many windows, a traffic light

has many light bulbs), so each part filter is allowed to

have multiple response peaks. This new model is more

suitable for general object detection. For example, the

traffic light can have three response peaks to the light

bulb in Fig. 7 for the def-pooling layer but only one peak

in Fig. 6 for the deformation layer in [38].

3. The approach in [38] only considers one object class,

e.g. pedestrians. In this work, we consider 200 object

classes. The patterns can be shared across different ob-

ject classes. As shown in Fig. 8, circular patterns are

shared in wheels for cars, light bulb for traffic lights,

wheels for carts and keys for ipods. Similarly, the pat-

tern of instrument keys is shared in accordion and pi-

ano. In this work, our design of the deep model in Fig.

7 considers this property and learns the shared patterns

through the layers conv61, conv62 and conv63 and use

these shared patterns for 200 object classes.

5.5. Fine­tuning the deep model with hinge­loss

RCNN fine-tunes the deep model with softmax loss, then

fixes the deep model and uses the hidden layers fc7 as fea-

tures to learn 200 one-versus-all SVM classifiers. This

scheme results in extra time required for extracting fea-

tures from training data. With the bounding box rejection,

it still takes around 60 hours to prepare features from the

ILSVRC2013 Det train and val1 for SVM training. In our

approach, we replace the softmax loss of the deep model by

hinge loss when fine-tuning deep models. The deep model

fine-tuning and SVM learning steps in RCNN are merged

into one step in our approach. In this way, the extra train-

ing time required for extracting features is saved in our ap-

proach.

filter

input Convolution 

resultM

Deformation 

penalty

Output B

Max

pooling

 

!

Figure 7. The def-pooling layer. Part detection map and deforma-

tion constraint are summed up. Block-wise max pooling is then

performed on the summed map to obtain the output B of size
H

ky

× V

kx

.

(a)

(b)

Figure 8. The circular patterns (a) and musical instrument key pat-

terns (b) shared across different object classes.

5.6. Sub­box features

A bounding box denoted by r0 can be divided into N
sub-boxes r1, · · · , rN , N = 4 in our implementation. r0 is

called the root box in this paper. For example, the bound-

ing box for cattle in Fig. 9 can be divided into 4 sub-boxes

corresponding to head, torso, forelegs and hind legs. The

features of these sub-boxes can be used to improve the ob-
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r4
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Figure 9. A box r0 with its four sub-boxes r1, · · · , r4(a) and ex-

amples for the bounding boxes on cattle (b).

ject detection accuracy. In our implementation, sub-boxes

have half the width and height of the root box r0. The four

sub-boxes locate at the four corners of the root box r0. De-

note Bs as the set of bounding boxes generated by selective

search. The features for these bounding boxes have been

generated by deep model. The following steps are used for

obtaining the sub-box features:

1. For a sub-box rn, n = 1, · · · , 4, its overlap with the the

boxes in Bs is calculated. The box in Bs having the

largest IoU with rn is used as the selected box bs,n for

the sub-box rn.

2. The features of the selected box bs,n are used as the fea-

tures fn for sub-box rn.

3. Element-wise max-pooling over the four feature vectors

fn for n = 1, 2, 3, 4 is used for obtaining max-pooling

feature vector fmax, i.e. fi,max = max4n=1 fi,n, where

fi,max is the ith element in fmax and fi,n is the ith ele-

ment in fn .

4. Element-wise average-pooling over the four feature vec-

tors fn for n = 1, 2, 3, 4 is used for obtaining average-

pooling feature vector favg , i.e. fi,avg = 1
4

∑4
n=1 fi,n,

where fi,avg is the ith element in favg .

5. Denote the feature for the root box as f0. f0, fmax,

and favg are concatenated as the combined feature f =
{f0, fmax, favg}.

6. f is used as the feature for box r0. Linear SVM is used

as the object detection classifier for these features.

The hierarchical structure of selective search has provided

us with the opportunity of reusing the features computed for

small root box as the sub-box for large root box. The sub-

box features need not be computed and is directly copied

from the features computed for bounding boxes of selective

search. In this way, the execution time for computing fea-

tures is saved for sub-boxs. Another good property is that

the selected bounding boxes for sub-boxes are allowed to

move, which improves the robustness to the translation of

object parts. With sub-box features, the mAP improves by

0.5%.

5.7. Contextual modeling

The model learned for the image classification task takes

the scene information into consideration while the model

for object detection focuses on local boxes. Therefore, the

image classification scores provides contextual information

for object detection. We use 1000-class image classifica-

Volleyball

Bathing cap

Golf ball

(a) (b)

Figure 10. The weights of image classification scores (a) for the

object detection class volleyball (b).

tion scores as the contextual features. The steps of using

contextual modeling is as follows:

1. The 1000-class scores of image classification and 200

scores of object detection are concatenated as the 1200

dimensional feature vector.

2. Based on the 1200 features, 200 one-versus-all linear

SVM classifiers are learned for 200 object detection

classes. At the testing stage, the classification scores

obtained by linear weighting of the 1200 dimensional

features are used as the refined score for each candidate

bounding box.

For the object detection class volleyball, Fig. 11 shows the

weights for the 1000 image classes. It can be seen that

image classes bathing cap and golf ball suppress the exis-

tence of volleyball with negative weight while the image

class volleyball enhances the existence of detection class

volleyball. The bathing cap often appears near the beach or

swimming pool, where it is unlikely to have volleyball.

6. Combining models with high diversity

In existing model combination approaches [62, 29, 25],

the same deep architecture is used. Models are different

in spatial locations or learned parameters. In our model

averaging scheme, we learn models under several settings.

The settings of the 10 models we used for model averag-

ing when submitted to ILSVRC2014 challenge are shown

in Table 1. The 10 models are different in net structure,

pretraining scheme, loss functions for the deep model train-

ing, adding def-pooling layer/multi-stage training/sub-box

features or not, and whether to do bounding box rejection

or not. In our current implementation, the def-pooling lay-

ers, multi-stage training and sub-box features are added to

different deep models separately without being integrated

together, although such integration can be done in the fu-

ture work. Models generated in this way have high diver-

sity and are complementary to each other in improving the

detection results. The 10 models were selected with greedy

search based on performance on val2. The mean AP (mAP)

of averaging these 10 models is 40.9% on val2, and its

mAP on the test data of ILSVRC2014 is 40.7%, ranking #2

in the challenge. After the deadline of ILSVRC2014, our

deep models were further improved. Running model av-

eraging again, the selected models and their configurations



Table 1. Models used for model averaging submitted to

ILSVRC2014. The result of mAP is on val2. For net design, A de-

notes AlexNet, C denotes Clarifai-fast, D-D denotes DeepID-Net

with def-pooling layers, D-MS denotes DeepID-Net with multi-

stage training. In A and C, only the baseline deep model (Clarifai-

fast or AlexNet) is used without def-pooling layers or multi-stage

training. In D-D and S-MS, the baseline deep model is chosen

as Clarifai-fast, and extra layers from def-pooling or multi-stage

training are included. For pretrain, [23] denotes the pretraining

scheme of RCNN, 1 denotes the Scheme 1 in Section 5.2, 2 de-

notes the Scheme 2 in Section 5.2.
model number 1 2 3 4 5 6 7 8 9 10

bbox rejection y n y y y y y y y y

net design A A C C D-D D-D D-MS D-D D-D D-D

Pretrain [23] 1 [23] 1 1 1 2 2 2 2

loss of net s s s h h h h h h h

mAP (%) 31.0 31.2 32.1 33.6 35.3 36.0 37.0 37.0 37.1 37.4

Table 3. Experimental results for model averaging on ILSVRC

2014. Fore averaging scheme, all-cls denotes the greedy search

in which all classes share the same set of models for averaging,

per-cls denotes the greedy search in which different classes have

different model combinations. Since our results got improved after

the competition deadline, both results submitted before and after

the deadline are reported on both val2 and test data.

Averaging scheme all-cls all-cls all-cls per-cls

After deadline n n y y

evaluation data val2 test val2 val2

mAP (%) 40.9 40.7 42.4 45

are shown in Table 3. The mAP on val2 is 42.4%.

In existing works and the model averaging approach de-

scribed above, the same model combination is applied to all

the 200 classes in detection. However, we observe that the

effectiveness of different models varies a lot across different

object categories. Therefore, it is better to do model selec-

tion for each class separately. With this strategy, we achieve

mAP 45% on val2.

7. Experimental Results

The ImageNet Det val2 data is used for evaluating sepa-

rate components and the ImageNet Det test data is used for

evaluating the overall performance. The RCNN approach in

[23] is used as the baseline for comparison. The source code

provided by the authors are used for repeating their results.

Without bounding box regression, we obtain mean AP 29.9

on val2, which is close to the 29.7 reported in [23]. Table 2

summarizes the results from ILSVRC2014 object detection

challenge. It includes the best results on test data submitted

to ILSVRC2014 from our team, GoogleNet, DeepInsignt,

UvA-Euvision, and Berkeley Vision, which ranked top five

among all the teams participating in the challenge. It also

includes our most recent results on test data obtained after

the competition deadline. All these best results were ob-

tained with model averaging.

Table 4. Ablation study of bounding box (bbox) rejection and base-

line deep model on ILSVRC2014 val2.

bbox rejection? n y y

deep model A-net A-net C-net

mAP (%) 29.9 30.9 31.8

meadian AP (%) 28.9 29.4 30.5

7.1. Ablation study

7.1.1 Investigation on bounding box rejection and

baseline deep model

As shown in Fig. 3, a baseline deep model is used in our

DeepID-Net. The baseline deep model using the AlexNet

in [29] is denoted as A-net and the baseline deep model

using the clarifai-fast in [62] is denoted as C-net. Table

4 shows the results for different baseline deep model and

bounding box rejection choice. Except for the two com-

ponents investigated in Table 4, other components are the

same as RCNN, while the new training schemes and new

components introduced in Section 5 are not included. The

baseline is RCNN, the first column in Table 4. Based on

the RCNN approach, applying bounding box rejection im-

proves mAP by 1%. Therefore, bounding box rejection not

only saves the time for training and testing new models but

also improves detection accuracy. Based on the bounding

box rejection step, Clarifai-fast [62] performs better than

AlexNet in [29], with 0.9% mAP improvement.

7.1.2 Investigation on different pretraining schemes

There are two different sets of data used for pretraining the

baseline deep model. The ImageNet Cls train data with

1000 classes and the ImageNet Det train and val1 data with

200 classes. There are two different annotation levels, im-

age and object. Investigation on the combination of im-

age class number and annotation levels is shown in Table

5. When producing these results, other new components in-

troduced in Section 5.3-5.7 are not included. Using image-

level annotation, pretraining on 1000 classes performs bet-

ter than pretraining on 200 classes by 9.2% mAP. Using the

same 1000 classes, pretraining on object-level-annotation

peforms better than pretraining on image-level annotation

by 4.4% mAP for A-net and 4.2% for C-net. This ex-

periment shows that object-level annotation is better than

image-level annotation in pretraining deep model. Pretrain-

ing with more classes improves the generalization capabil-

ity of the learned feature representations.

There are two schemes in using the ImageNet object-

level annotations of 1000 classes in Section 5.2. Scheme

1 pretrains on the image-level 1000-class annotation, first

fine-tunes on object-level 1000-class annotation, and then

fine-tunes again on object-level 200-class annotations.

Scheme 2 does not pretrain on the image-level 1000-class

annotation and directly pretrains on object-level 1000-class



Table 2. Experimental results on ILSVRC2014 for top ranked approaches.

approach RCNN[23] Berkeley Vision UvA-Euvision DeepInsight GoogLeNet ours ours new

mAP (%) on val2 31.0 33.4 n/a n/a 44.5 40.9 45

mAP (%) on test 31.4 34.5 35.4 40.5 43.9 40.7 n/a

Table 5. Ablation study of pretraining datasets and net structures

on ILSVRC2014 val2.
net structure A-net A-net A-net C-net C-net

bbox rejection n n n y y

class number 200 1000 1000 1000 1000

annotation level image image object image object

mAP (%) 20.7 29.9 34.3 31.8 36.0

meadian AP (%) 17.8 28.9 34.9 30.5 34.9

Table 6. Ablation study of the two pretraining schemes in Section

5.2 on ILSVRC2014 val2. Scheme 1 uses the image-level annota-

tion while scheme 2 does not.
net structure A-net A-net C-net C-net

bbox rejection n n y y

pretraining scheme 1 2 1 2

mAP (%) 31.2 34.3 33.4 36.0

meadian AP (%) 29.7 33.4 33.1 34.9

Table 7. Ablation study of the different net structures on

ILSVRC2014 val2.
net structure A-net C-net D-MS D-Def

bbox rejection n y y y

pretraining scheme 2 2 2 2

mAP (%) 34.3 36.0 37.5 38.5

meadian AP (%) 33.4 34.9 36.4 37.4

annotation. As shown in Table 6, Scheme 2 performs better

than Scheme 1 by 2.6% mAP. This experiment shows that

image-level annotation is not needed in pretraining deep

model when object-level annotation is available.

7.1.3 Investigation on deep model designs

Based on the pretraining scheme 2 in Section 5.2, different

deep model structures are investigated and results are shown

in Table 7. Our DeepID-Net that uses multi-stage training

for multiple fully connected layers in Fig. 4 is denoted as D-

MS. Our DeepID-Net that uses def-pooling layers as shown

in Fig. 5 is denoted as D-Def. Using the C-net as baseline

deep moel, the DeepID-Net that uses multi-stage training in

Fig. 4 improves mAP by 1.5%. Using the C-net as baseline

deep moel, the DeepID-Net that uses def-pooling layer in

Fig. 5 improves mAP by 2.5%. This experiment shows

the effectiveness of the multi-stage training and def-pooling

layer for generic object detection.

7.1.4 Investigation on the overall pipeline

Table 8 and Table 9 summarize how performance gets im-

proved by adding each component step-by-step into our

pipeline. RCNN has mAP 29.9%. With bounding box re-

jection, mAP is improved by about 1%, denoted by ∼ 1%.

Based on that, changing A-net to C-net improves mAP by

Our approachRCNN

Figure 11. Object detection result for RCNN and our approach.

∼ 1%. Replacing image-level annotation by object-level

annotation for pretraining, mAP increases by ∼ 4%. The

def-pooling layer further improves mAP by 2.5%. After

adding the contextual information from image classification

scores, mAP increases by ∼ 1%. Bounding box regression

improves mAP by ∼ 1%. With model averaging, the best

result is 45%. Table 9 summarizes the contributions of dif-

ference components. More results on the test data will be

available in the next version soon.

8. Appedix A: Relationship between the defor-

mation layer and the DPM in [20]

The quadratic deformation constraint in [20] can be rep-
resented as follows:

m̃(i,j)=m(i,j) − c1(i−ai+
c3
2c1

)2−c2(j−aj+
c4
2c2

)2, (3)

where m(i,j) is the (i, j)th element of the part detection
map M, (ai, aj) is the predefined anchor location of the
pth part. They are adjusted by c3/2c1 and c4/2c2, which
are automatically learned. c1 and c2 (3) decide the defor-
mation cost. There is no deformation cost if c1 = c2 = 0.
Parts are not allowed to move if c1 = c2 = ∞. (ai, aj)
and ( c3

2c1
, c4
2c2

) jointly decide the center of the part. The

quadratic constraint in Eq. (3) can be represented using Eq.
(2) as follows:

m̃(i,j)=m(i,j) − c1d
(i,j)
1 − c2d

(i,j)
2 − c3d

(i,j)
3 − c4d

(i,j)
4 −c5,

d
(i,j)
1 =(i− ai)

2, d
(i,j)
2 =(j − aj)

2, d
(i,j)
3 = i− ai,

d
(i,j)
4 =j − aj , c5 = c3

2/(4c1) + c4
2/(4c2). (4)

In this case, c1, c2, c3 and c4 are parameters to be learned and

d
(i,j)
n for n = 1, 2, 3, 4 are predefined. c5 is the same in all loca-

tions and need not be learned. The final output is:

b = max
(i,j)

m̃(i,j), (5)

where m̃(i,j) is the (i, j)th element of the matrix M̃ in (3).

9. Conclusion

This paper proposes a deep learning diagram that learns four

components – feature extraction, deformation handling, con-

text modeling and classification – for generic object detection.



Table 8. Ablation study of the overall pipeline for single model tested on ILSVRC2014 val2. It shows the mean AP after adding each key

component step-by-step.

detection pipeline RCNN +bbox A-net image to bbox +Def +context +bbox

rejection to C-net pretrain pooling regression

mAP (%) 29.9 30.9 31.8 36.0 38.5 39.2 40.1

meadian AP (%) 28.9 29.4 30.5 34.9 37.4 38.7 40.3

Table 9. Ablation study of the overall pipeline for single model tested on ILSVRC2014 val2. It summarizes the contributions from each

key components.

detection pipeline RCNN +bbox A-net image to bbox +Def +context +bbox model

rejection to C-net pretrain pooling regression averaging

mAP (%) 29.9 +∼ 1% +∼ 1% +∼ 4% +2.5% +∼ 1% +∼ 1% 45%

Through interaction among these interdependent components,

the unified deep model improves detection performance on the

largest object detection dataset. Detailed experimental compar-

isons clearly show the effectiveness of each component in our ap-

proach. We enrich the deep model by introducing the def-pooling

layer, which has great flexibility to incorporate various deforma-

tion handling approaches and deep architectures. The multi-stage

training scheme simulate the cascaded classifiers by mining hard

samples to train the network stage-by-stage and avoids overfitting.

The pretraining and model averaging strategies are effective for

the detection task. Since our approaches are based on baseline

deep model, they are complementary to new deep models, e.g.

GoogLeNet, VGG, Network In Network [31]. These recently de-

veloped can be used as our baseline deep model to replace AlexNet

or Clarifai-fast to further improve the performance of object detec-

tion.
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