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DeepInsight: A methodology to 
transform a non-image data to 
an image for convolution neural 
network architecture
Alok Sharma  1,2,3,4, Edwin Vans  3,8, Daichi Shigemizu1,4,5,6, Keith A. Boroevich  1 & 

Tatsuhiko Tsunoda  1,4,6,7

It is critical, but difficult, to catch the small variation in genomic or other kinds of data that differentiates 
phenotypes or categories. A plethora of data is available, but the information from its genes or 
elements is spread over arbitrarily, making it challenging to extract relevant details for identification. 
However, an arrangement of similar genes into clusters makes these differences more accessible and 
allows for robust identification of hidden mechanisms (e.g. pathways) than dealing with elements 
individually. Here we propose, DeepInsight, which converts non-image samples into a well-organized 
image-form. Thereby, the power of convolution neural network (CNN), including GPU utilization, can 
be realized for non-image samples. Furthermore, DeepInsight enables feature extraction through 
the application of CNN for non-image samples to seize imperative information and shown promising 

results. To our knowledge, this is the first work to apply CNN simultaneously on different kinds of non-
image datasets: RNA-seq, vowels, text, and artificial.

In the post-genomic era, though an abundance of data is accessible, the information is indiscriminately spread 
over across high dimensional data space, making it challenging to di�erentiate phenotypes. �e same problem 
of associating relevant features towards a class label lies for other kinds of data (e.g. vowels, text). It becomes crit-
ical to arrange elements in an appropriate manner which can enable extraction of relevant features for analyses. 
Accordingly, the arrangement of information turns to be an important phase via sorting and positioning of the 
elements in the right order for the subsequent step. We refer this phase as the element arrangement step. �e 
identi�cation or classi�cation of phenotypes or class labels can conceivably be improved following the three steps: 
element arrangement, feature extraction and developing a suitable classi�er.

�e conventional machine learning (ML) techniques for classi�cation or detection problem, requires a sam-
ple in the form of a feature vector (i.e., a column vector of size p × 1). �is feature vector obtained from a feature 
extraction technique is processed to be categorized into one of the de�ned groups. �e features in this vector 
form are generally considered mutually independent (particularly in the order of appearance) by ML techniques. 
Consequently, changing the order of features bears no direct impact in classi�cation or phenotype detection, 
which makes the element arrangement step redundant for many state-of-the-art ML classi�ers like random 
forest1,2 and decision trees3. However, the reliability of ML techniques is dependent on the feature extraction 
technique.

On the other hand, convolution neural network (CNN) architecture from deep neural networks accepts a 
sample as an image (i.e. a matrix of size m × n) and performs feature extraction and classi�cation via hidden 
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layers (such as convolutional layers, RELU layer, max-pooling layers). It does not require additional feature 
extraction techniques as it automatically derives features from the raw elements. �e second advantage is that it 
�nds higher-order statistics of image and nonlinear correlations. �ird, convolutions neurons process data for its 
receptive �elds or restricted subarea, relaxing the need to have a very high number of neurons for large input sizes 
and therefore enables the network to be much deeper with fewer parameters4. Another distinguishing attribute of 
CNN is weight sharing; i.e., many receptive �elds share the same weights and biases (or �lter), enabling a reduc-
tion in the memory footprint as compared to conventional neural networks. �e CNN architecture allows to deal 
with images e�ectively and becoming a promise in accuracy for industrial applications (such as driverless cars). 
�e image consists of spatially coherent pixels in a local region; i.e., the pixels close to each other share similar 
information. Subsequently, the positioning of respective pixels can adversely a�ect the feature extraction and 
classi�cation performance of CNN architecture if arbitrarily arranged. �erefore, the order of neighboring pixels 
in an image utilized by CNN are no longer independent as they were in ML techniques. Additional information is 
captured at a time of process when CNNs employ a collection of neighboring pixels as opposed to individual use 
of features by ML techniques. �e credit of success also goes to the hardware advancements such as GPUs, which 
allow very complex models to be trained in a much faster and a�ordable manner. Also, the development of new 
deep learning architectures and libraries enable models to be built and learned rapidly. Fortunately, for CNNs, 
captured images generally are a depiction of physical objects and don’t require rearrangement of pixels as camera 
lenses place the corresponding shades of objects rightly on to the pixels.

A lot of data such as genomic, transcriptomic, methylation, mutation, text, spoken words, �nancial and bank-
ing are in non-image form and ML techniques are dominantly used in these �elds. Moreover, CNN can’t be used 
because it requires an image as an input. However, if we can transform non-image data to a well-organized image 
form, then CNN can be used for higher classi�cation performance. For this, we need to develop a method that can 
perform element arrangement e�ectively. To improve the detection rate, we integrated all the three steps (element 
arrangement, feature extraction and classi�cation) in the proposed DeepInsight method. DeepInsight, constructs 
an image by placing similar elements or features together and dissimilar ones further apart, enabling the collective 
use of neighboring elements. �is collective approach of element arrangement can be useful in uncovering hid-
den mechanisms (e.g. pathways) or understanding relationship between a set of features (e.g. for texts, vowels). 
�erefore, conversion to an image by inserting alike features (or raw elements) as clusters is more meaningful 
and robust than dealing with individual features (ignoring neighborhood information) as important information 
(from weak elements) can be integrated. �is has a potential to explore the relative importance of features towards 
a target or outcome. Element arrangement is a key to unlock crucial information. It is pertinent to ponder upon 
strategies which may retrieve more information from a given dataset. Furthermore, DeepInsight, allows feature 
extraction and classi�cation via the utilization of CNN. �is will increase the versatility of CNN by opening it to 
non-image cases and thus provide a generalized outcome of CNN. We show in this paper that DeepInsight has 
usefulness for various kinds of data like gene-expression, vowels, texts and arti�cial.

Di�erent versions of CNNs have been proposed to deal with images e�ectively5–16. For example, He et al.8, 
proposed a residual networks architecture to make it easier to train very deep networks. �ey used 152 layers 
deep residual on the ImageNet dataset. Singh et al.17 developed CNN based technique to classify gene expression 
using histone modi�cation data as input. Liu et al.18 used tumor gene expression samples as a column vector and 
employed 1-dimensional CNN to perform classi�cation. �ey did not convert samples to images. Zeng et al.19 
applied CNN to extract features from in situ hybridization gene expression patterns. �e input samples were nat-
ural images. Gao et al.20 uses DNA sequences and convert into 4-dimensional binary codes. �ese binary codes 
are arranged according to the DNA sequence and then applied to CNN to predict polyadenylation sites. Xu et al.21 
applied CNN on text hashing where texts are converted into binary coding and then fed to 1-dimensional con-
volution; i.e., these features are no longer treated as images in convolutional layers. Zhang et al.22 perceived text 
as a raw signal and applied 1-dimensional CNN for classi�cation. Lyu and Haque23 have recently applied CNN 
for RNA-seq data by �rst performing gene selection followed by constructing an image based on chromosome 
location. �is method is perhaps the �rst one of converting gene expression into image samples and applying 
CNN for classi�cation. Since this method requires chromosome location information, it is not possible to use it 
for other kinds of datasets. Most of the methods discussed above are either applied images as input to CNN or 
used 1-dimensional CNN. �erefore, minimal literature is available to ubiquitously convert non-image samples 
to images for the applications of CNN.

Results
Experimental setup. We employed four di�erent kinds of datasets to test the DeepInsight method, and we 
also compared the obtained results of it with the state-of-the-art classi�ers. �ere are 1 gene-expression dataset, 1 
text dataset, 1 vowels dataset and 2 arti�cial datasets. �e prime objective is to show that a non-image data can be 
processed by utilizing the CNN architecture through the implementation of the DeepInsight method.

�e datasets considered for this work are �rst subdivided into training, validation and test sets using 80:10:10 
proportion, respectively. Fitting of a model is carried out on the training set, and its �tness is evaluated on the 
validation set. �e hyperparameters are selected for which the validation error is minimum. �e test set has never 
been employed in the training or model �tting step. �e classi�cation accuracy is computed on the test set to 
deliver an unbiased assessment of a �nal model, where classi�cation accuracy is de�ned as the percentage of the 
number of samples correctly classi�ed from the test set.

�e description of these datasets is as follows. �e �rst is an RNA-seq or gene expression dataset which is 
a public dataset from TCGA (https://cancergenome.nih.gov) containing 6216 samples, and each sample is of 
60483 genes or dimensions. �is is a 10-class dataset, representing ten types of cancer. �e second is a speech 
dataset from the TIMIT corpus24,25. Here a set of 10 distinct monophthong vowels are extracted, then each vowel 
is subdivided into three segments, and each segment is used to generate mel-frequency cepstral coe�cients 
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with energy-delta-acceleration (MFCC_EDA) feature vectors. A total of 12579 samples with 39 dimensions are 
obtained. �e third dataset is Relathe (text)26 which is derived from newsgroup documents and partitioned evenly 
across di�erent newsgroups. It contains 1427 samples and 4322 dimensions. It is a two class problem. �e next 
two are arti�cial datasets. One is Madelon27 which has 2600 samples and 500 dimensions. �is is a two-class 
classi�cation problem with continuous input variables. It is multivariate and highly non-linear. �e other is 
ringnorm-DELVE, which is an implementation of Leo Breiman’s ringnorm example28. It is 20 dimensional, 2 
class classi�cation with 7400 samples. Each class is drawn from a multivariate normal distribution, where class 1 
has zero mean and covariance four times the identity, and class 2 has a mean a = 2/sqrt(20) with unit covariance. 
�ese datasets are summarized in Table 1.

Comparison and classification performance. �e existing state-of-the-art classi�ers such as random 
forest, decision tree, and ada-boost were employed for comparison purposes. �e hyperparameters of competing 
methods were optimized using grid search optimization. As discussed in Section 4.3 and Supplement File 1, the 
DeepInsight method employs two types of normalizations (norm-1 and norm-2), and the validation error is 
evaluated on both these norms. �e norm which gives the lowest validation error is used for further processing. 
�e pixel frame size is �xed at 120 × 120. However, for RNA-seq dataset, the analysis was done on 200 × 200 pixel 
size since the number of elements or features is very large (60483) resulting in lossy compression (as discussed in 
Supplement File 2) compared to other datasets studied in this work. �e validation errors for both the norms are 
depicted in Supplement File 3 for all the datasets a�er executing DeepInsight. �e best �t model on the validation 
set is used to evaluate performance on a separate test set.

�e purpose of this comparison is to show that DeepInsight can also produce a competitive performance 
on di�erent kinds of datasets. �e performance regarding classi�cation accuracy is depicted in Table 2 (see 
Supplementary File 4 for a brief discussion on codes).

DeepInsight produces 99% classi�cation accuracy on a test set of RNA-seq data which is 3% more than the 
state-of-the-art random forest method. For vowels dataset, DeepInsight scored 97% classi�cation accuracy com-
pared to 90% by random forest. �is improvement is around 7% better than the best performing existing method 
compared in this study. Next, on text data, DeepInsight obtained 92% accuracy compared to 90% achieved by ran-
dom forest method. �e same trend can be found in for arti�cial datasets: Madelon and ringnorm. On Madelon, 
DeepInsight obtained 88%, and on ringnorm, it achieved 98%. �e improvement is 23% and 4%, respectively, 
compared to the second best technique. �e average classi�cation accuracy over all the �ve datasets is also com-
puted. Ada-boost obtained 73% average classi�cation accuracy while decision tree scored 80% which is better 
than the ada-boost method. Random forest achieved 86% which is the best out of the existing techniques studied, 
whereas, DeepInsight scored a promising average classi�cation accuracy of 95% which is signi�cantly better than 
the performance of the second best method.

Discussion
As anticipated, the proposed DeepInsight method produced very promising results. �e obtained results enable 
us to use CNN architecture for various kinds of non-image datasets. �is increases the possibility of utilizing 
deep learning networks. One can envisage the immense possibility of applying this algorithm to a wide variety of 
applications.

In this work, we were able to integrate many properties of CNN for non-image samples through the inception 
of DeepInsight method. A non-image sample, in the form of vectors were transformed into meaningful images 
for the processing of CNN. �is strategy does not solve all problems related to genomic data, however, it is a step 
forward in integrating the merits of CNN. Deep neural network architectures, encompass many advantages: 

Datasets #samples #features #classes

RNA-seq 6216 60483 10

Vowels 12579 39 10

Relathe 1427 4322 2

Madelon 2600 500 2

Ringnorm-DELVE 7400 20 2

Table 1. Summary of Datasets.

Datasets Decision Tree
Ada-
Boost

Random 
Forest DeepInsight

RNA-seq 85% 84% 96% 99%

Vowels 75% 45% 90% 97%

Text 87% 85% 90% 92%

Arti�cial (Madelon) 65% 60% 62% 88%

Arti�cial (Ringnorm-DELVE) 90% 93% 94% 98%

Average 80% 73% 86% 95%

Table 2. Classi�cation accuracy on di�erent kinds of datasets using various models.
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feature extraction, dimension reduction, �nding hidden structure from sparse and hyper-dimensional data, 
data augmentation and up-sampling, semi-supervised learning with labeled/non-labeled samples, and optimum 
action selection with time-series data29. �erefore, for a broader context, deep neural network architectures have 
the potential to o�er a solution for genomic analysis for a variety of input samples ranging from DNA sequences 
to protein sequences (which may be considered as time-series data) to RNA-seq or omics data.

�e DeepInsight method increase the versatility of CNN architectures. �e characteristics of CNN such as 
automatic feature extraction, reducing the need of neurons and consequently enabling to train a model much 
deeper, weight sharing capability to mitigate memory requirement, utilization of neighborhood information (i.e., 
processing subarea of pixel frame at a time), and, GPU utilization make CNN a potent tool for classi�cation and 
analysis. �ese attributes of CNN are utilized for non-image cases by the proposed technique. Further, we have 
shown the e�ectiveness of DeepInsight on several kinds of datasets and obtained very promising results. For 
RNA-seq data the maximum classi�cation accuracy achieved by DeepInsight was 99%. For vowels, text, Madelon 
and ringnorm the accuracies were 97%, 92%, 88% and 98%, respectively.

Further extensions of the current version of the algorithm can be considered. �e present technique employs 
gray-scale or single layer (i.e., 2D matrix) for classi�cation. �is can be extended to incorporate multiple layers 
and therefore can be applied to solve problems related to multi-omics data (e.g., gene-expression, methylation, 
mutation) as well. Moreover, di�erent kinds of data (e.g., clinical and non-clinical) can be normalized into a single 
layer (if multi-layer is prohibited due to computing resources) for analysis and classi�cation. �is technique can 
be useful for a number of applications where data is not in image form.

Methods
DeepInsight method. �e concept of DeepInsight is to �rst transform a non-image sample to an image 
form and then supply it to the CNN architecture for the prediction or classi�cation purpose. A simple illustration 
is given in Fig. 1a, where a feature vector x consisting of gene expression values is transformed to a feature matrix 
M by a transformation T. �e location of features in the Cartesian coordinates depends on the similarity of fea-
tures. For example, features g1, g3, g6 and gd are closer to each other in Fig. 1a. Once the locations of each feature 
are determined in a feature matrix, then the expression values or feature values are mapped. �is will generate a 
unique image for each sample (or feature vector). N samples of d features will provide N samples of m × n feature 

Figure 1. DeepInsight pipeline. (a) An illustration of transformation from feature vector to feature matrix. (b) 
An illustration of the DeepInsight methodology to transform a feature vector to image pixels.
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Figure 2. DeepInsight network: an illustration. (a) Illustration of two types of tumors using the image 
transformation methodology of the DeepInsight method. �e di�erence between the two types can be 
visualized at various points. �ese image samples are further processed to deep learning architecture (DLA); 
i.e., parallel CNN as depicted in part b of the same �gure. (b) Parallel CNN architecture used in DeepInsight. 
�is architecture consists of two parallel CNN architectures where each consists of four convolutional layers. 
Parameters are tuned using Bayesian Optimization technique.
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matrices. �is 2D matrix form will have all the d features. �erea�er, this set of N feature matrices are processed 
to the CNN architecture for learning the model and providing prediction.

If the data dimensionality is extremely large and di�cult to handle due to hardware limitations, then the 
dimensionality reduction technique (DRT) may be considered before applying DeepInsight. �e DRT can be 
either in the form of feature selection or feature extraction depending upon the nature of the problem. �e appli-
cation of DRT will provide a small feature set which will help in faster processing, however, can risk classi�cation 
performance. On the other hand, if noisy or redundant features are removed then it could help to get higher 
processing speed as well as better accuracy. Since the application of DRT is case dependent, we have described 
DeepInsight without applying DRT.

DeepInsight pipeline. In this section, we brie�y discuss the transformation of a non-image sample to its 
image form. A general overview of this transformation is depicted in Fig. 1b. �e training set is used to �nd the 
location of features. If the training set consisting of n samples is de�ned as χ = {x1, x2, …, xn} where a feature 

vector has d features or ∈ x d, then we can also de�ne a gene or feature set G = {g1, g2, …, gd} where ∈ g n; i.e., 
a feature gj has n training samples. Basically, G can be obtained by transposing χ. We used this feature set G and 
applied similarity measuring technique or dimensionality reduction technique like t-SNE30 or kernel principal 
component analysis (kPCA) to obtain a 2D plane (please see details about t-SNE and kernel PCA in Supplement 
File 5. �ese are non-linear dimensionality reduction techniques. A number of linear dimensionality reduction 
techniques also exist but not implemented in this work31–34). �e points in this Cartesian plane are the features or 
genes. �ese points only de�ne the location of features, not the feature itself or expression values. Once the loca-
tion of features is de�ned, the convex hull algorithm is used to �nd the smallest rectangle containing all the 
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Figure 3. Revealing patterns by DeepInsight. An illustration showing the di�erent patterns achieved by 
DeepInsight on gene-expression (di�erent kind of cancers), text (two types of text) and vowels (two types 
of vowels). Each plot shows a transformed sample, the di�erence between samples can now be noticed 
straightforwardly.
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points. Since the image should be framed in a horizontal or vertical form for the CNN architecture, a rotation is 
performed. �erea�er, the Cartesian coordinates are converted to pixels. �e conversion from Cartesian coordi-
nates to pixel frames is done by averaging some features as the image size has a pixel limitation. �e pixel frame 
will, therefore, consist of the positions of features (or genes) for a sample xj (for j = 1, 2, …, n). Once the location 
is determined, the next step is to map the feature (or gene expression) values to these pixel locations. If more than 
one feature acquired the same location in the pixel frame, then, during mapping of the features, the respective 
features will be averaged and placed in the same location. �erefore, if the resolution of image or grid size is very 
small (compared to the number of features given), then many features overlap with each other and image rep-
resentation may not be very accurate. An appropriate resolution should be selected given the hardware capacity 
and the number of features required to process. Alternatively, dimensionality reduction may be applied a priori. 
�e details about the procedure is given in Supplementary File 6.

Feature normalization. �e single layer of the image has 256 shades which are normalized in the range of 
[0, 1]. �erefore, feature values are to be normalized before applying the image transformation. In this work, we 
performed two types of normalizations: (1) each feature is assumed independent and therefore normalized by its 
minimum and maximum, and (2) the topology of mutual features are retained up to some extent by normalizing 
it with the one maximum value from the entire training set. �ese normalizations are explained in detail in the 
Supplementary File 1. DeepInsight evaluates validation set performance on both the types of normalizations and 
accepts the one with the lowest validation error.

CNN architecture. In this section, we describe the CNN architecture of the DeepInsight method. Once a fea-
ture vector is transformed into an image, it can then be further processed to the CNN architecture (an illustration 
of two types of cancer samples in image form is shown in Fig. 2a).

We developed a parallel CNN architecture so that di�erent �lter-sizes can be e�ectively used to train the 
model. Our CNN architecture is shown in Fig. 2b. In this architecture, we have four layers in parallel where each 
layer consists of a 2D convolution layer, a batch normalization layer, a ReLU activation layer, and a max pooling 
layer. Batch normalization is used to prevent over�tting during training, and the max pooling layer is used to 
down-sample the image size in each layer. �e outputs of the fourth convolution layer (in the parallel architec-
ture) are combined and fed to a fully connected layer. Finally, a So�Max layer is used to give the output as class 
labels.

�e CNN architecture of DeepInsight has various hyperparameters such as convolution layers, �lter sizes, 
learning rate and so on. We tuned these hyperparameters by applying Bayesian optimization technique for all the 
trials. We obtained a set of hyperparameters that gave the best performance on the validation set. �e parameter 
details and validation error during the training phase are discussed in Supplementary File 2 and Supplement File 3.

Once the CNN model is trained using the optimal hyperparameters, then any novel sample can be identi�ed 
into one of the categories or classes.

For an illustration, two samples are derived from distinct types of cancers, texts and vowels to observe the 
di�erence between samples. �e transformed samples by DeepInsight method are shown in Fig. 3. �is method 
provides interesting localities by performing element arrangement, then feature dissimilarity is further captured 
by feature extraction and classi�cation through the application of CNN. Moreover, these samples can now be 
visualized, and their relative di�erence in particular regions might lead to di�erent class labels (or phenotypes).

Data Availability
RNA-seq data is available from TCGA (https://cancergenome.nih.gov). Vowels data can be extracted from TIMIT 
Acoustic-Phonetic Continuous Speech Corpus (https://catalog.ldc.upenn.edu/LDC93S1). Text data is available 
from http://featureselection.asu.edu/datasets.php. Madelon dataset is available from UCI repository http://ar-
chive.ics.uci.edu/ml/datasets/madelon, and ringnorm dataset is available from University of Toronto at https://
www.cs.toronto.edu/~delve/data/ringnorm/desc.html.

Code Availability
All the source code, a sample dataset and documentaries are available at http://www.riken.jp/en/research/labs/
ims/med_sci_math/ or http://www.alok-ai-lab.com.
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