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ABSTRACT

We present DeeplSP, a full end-to-end deep neural model of the camera image sig-
nal processing (ISP) pipeline. Our model learns a mapping from the raw low-light
mosaiced image to the final visually compelling image and encompasses low-level
tasks such as demosaicing and denoising as well as higher-level tasks such as color
correction and image adjustment. The training and evaluation of the pipeline were
performed on a dedicated dataset, the S7-ISP dataset', containing pairs of low-
light and well-lit images captured by a Samsung S7 smartphone camera in both
raw and processed JPEG formats. The proposed solution achieves state-of-the-art
performance in objective evaluation of PSNR on the subtask of joint denoising
and demosaicing. For the full end-to-end pipeline, it achieves better visual qual-
ity compared to the manufacturer ISP, in both a subjective human assessment and
when rated by a deep model trained for assessing image quality.
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Figure 1: End-to-end low-light image processing. From left to right: a ground truth well-lit image, raw input
low-light image, output of the Samsung S7 ISP, and of the proposed DeepISP.

'Dataset and full paper are available on the project page.


https://elischwartz.github.io/DeepISP
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1 THE DEEPISP NETWORK

We turn to describe now our proposed data-driven solu-
tion for the image processing pipeline. The model jointly
learns low-level corrections, such as demosaicing and de-
noising, and higher level global image restoration in an
end-to-end fashion. Fig. 2 presents our proposed network
architecture for an end-to-end image processing and en-
hancement, denoted as DeepISP. DeepISP is composed of
two stages, depicted in orange and green bordures in the
diagram, respectively. The first stage extracts low-level
features and performs local modifications. The second
one extracts higher level features and performs a global
correction. The network is fully convolutional, thus, can
accommodate any input image resolution.

Low-level stage The low-level part of DeepISP consists
of N blocks. Each intermediate block performs convo-
Iution with filters of size 3 x 3 and stride 1. Its input
and output sizes are M x N x 64, where M and N are
the input image dimensions. The input to the network is
a demosaiced RGB image produced by a simple bilinear
interpolation in a preprocessing stage.

At each layer, 61 out of the 64 channels are standard feed-
forward features (left column in the diagram). The other
3 channels contain a correction for the RGB values of the
previous block, i.e., they contain a residual image that is
added to the estimation of the previous layer. This de-
sign was inspired by DenoiseNet (Remez et al., 2017).

Similarly to DenoiseNet, each block produces a residual
image. Unlike DenoiseNet, each block also gets as input
the current image estimate.

Figure 2: Proposed network archi-
tecture. The network consists of two
stages: Lower level and higher level.

The first performs mainly the low-level
vision tasks such as denoising and de-
mosaicing. The second stage involves
more global processing such as color-
ing. Yet, both share common features.
Layers that output features are colored
dark blue. If the output is an image (or
residual image) a bright blue is used.

High-level stage The last block at the low-level stage
forwards the 61 feature channels in one path and the cur-
rently estimated image (I) in another path to the high-
level stage of the network. The latter uses the features
from the low-level stage for estimating a transformation
W that is then applied to the image corrected by the first
stage (/) to produce a global correction of the image.

This stage includes a sequence of Ny, convolution layers with filters of size 3 x 3 and stride 2. Each
layer is followed by a 2 x 2 max-pooling. A global mean-pooling is applied to the output of these
convolutions, resulting in a single feature vector. This is followed by a fully connected layer that
produces the parameters of the transformation W. T (I, W) is a function of the pixel’s R, G, and
B components; it is applied pixel-wise as a linear combination of R, G, and B and the quadratic
elements, e.g. R2and R - G.

Our solution for the high-level stage of the network is related to few works Gharbi et al. (2017);
Getreuer et al. (2017); Jiang et al. (2017), where a model is also learned to predict a transformation
that is then applied to an input image. But they use local transformation and not global like in our
work. We found that when combined with the low-level part of the network, using a global model is
sufficient for the task at hand and enjoys better convergence and stability.

Loss A commonly used loss for image restoration is the ¢5-distance. While it optimizes mean
squared error (MSE), which is directly related to the peak signal-to-noise ratio (PSNR), it leads to
inferior results with respect to perceptual quality compared to other loss functions. For learning a full
ISP we use a combination of the /1 norm and the multi scale structural similarity index (MS-SSIM)
to get a higher perceptual quality as suggested by Zhao et al. (2017).
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2 JOINT DENOISING AND DEMOSAICING

We start by evaluating our solution on the task of Panasonic Canon
joint denoising and demosaicing. There is a consid-  yrethod  Linear SRGB  Linear SRGB
erable research examining this task and recent stud-

ies, e.g., Gharbi et al. (2016); Klatzer et al. (2016),  RTF 3777 3177 4035 33.82
have benchmarked on the MSR demosaicing dataset EI%ISP 3228 gé? 40.71 3344
(Khashabi et al., 2014). For the task of joint denois- ’ ’

. - . SEM 3893 3293 41.09 34.15
ing and demosaicing, we used the Panasonic images DeepISP 3931  33.65 417 35.43

in the MSR dataset for training, and report results

for both the Panasonic and Canon test sets (disjoint
from the training sets). Table 1: PSNR for joint denoising and demo-

o o ) saicing. Results are compared to Khashabi
As the denoising and demosaicing task requires only ¢ 4] (2014); Heide et al. (2014); Gharbi et al.
local image modifications, we only use the low-level (2016); Klatzer et al. (2016).

stage of the network. The mosaiced raw image is

transformed to an RGB image by bilinear interpolation during the preprocessing stage. Table 1 pro-
vides a comparison to other methods. Our proposed technique achieves the best results for joint
denoising and demosaicing on both the Panasonic and Canon test sets in the MSR dataset. Com-
pared to the previous state-of-the-art results from Klatzer et al. (2016), our method produces an
improvement of 0.38dB (linear space) and 0.72dB (sRGB space) on the Panasonic test set, and of
0.61dB (linear) and 1.28dB (sRGB) on the Canon test set.

exact same settings as those chosen by the camera in

the automatic mode, except the exposure time that

. . 0 - 1 L
was set to be quarter of the automatic setting. MOS patches MOS images ~ DeeplQA

3 FULL ISP

S7-ISP Dataset For training and assessing the per- T T—
formance of our full pipeline, we generated a dataset == Low Light ] Deep,spg(c,urs)
of real-world images. For each scene, we captured a 4 == welllit

JPEG image using the camera fully automatic mode
and saved the original raw image too. In addition, we
captured a low-light image of the same scene, stored
in both JPEG and raw formats. The low-light image
was emulated by capturing the same scene with the

Figure 3: MOS results for DeepISP.
DeepISP Evaluation The proposed end-to-end

model was tested on the challenging task of learning the mapping between low-light raw input
images to well-lit JPEG images (produced by the Samsung S7 ISP in automatic setting). To ac-
count for the fact that it is difficult to define an objective metric for the full pipeline, we performed
a subjective evaluation, generating the mean opinion score (MOS) for each image using Amazon
Mechanical Turk to quantitatively assess its quality. A total of 200 ratings have been collected for
each image (200 per version of an image, i.e., DeepISP output, Samsung S7 output and the well-lit
ground truth): 100 ratings for 10 random patches and additional 100 for the full image. In addition to
scoring by humans, we evaluated image quality by a learned model, DeepIQA (Bosse et al., 2016),
that was trained to estimate human evaluations. The model output was normalized to the range [1, 5].

Fig. 3 presents the evaluation results. For the patch level, DeepISP MOS is 2.86 compared to
Samsung S7 ISP, which has 2.71 MOS on the same images. The DeepISP MOS for full images
is 4.02 compared to 3.74 achieved by Samsung S7 ISP. The former result is only slightly inferior
to the MOS 4.05 that is given to the well-lit images. It is also evident that the visual quality score
predicted by DeepIQA (Bosse et al., 2016) corresponds well to the human evaluation with scores
of 3.72, 3.92 and 4.02 for the Samsung S7 ISP, DeepISP and the well-lit scene, respectively. Fig. 1
presents a selection of visual results.
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