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Abstract

We consider wireless transmission of images in the presence of channel output feedback. From a Shannon

theoretic perspective feedback does not improve the asymptotic end-to-end performance, and separate source

coding followed by capacity-achieving channel coding, which ignores the feedback signal, achieves the optimal

performance. It is well known that separation is not optimal in the practical finite blocklength regime;

however, there are no known practical joint source-channel coding (JSCC) schemes that can exploit the

feedback signal and surpass the performance of separation-based schemes. Inspired by the recent success

of deep learning methods for JSCC, we investigate how noiseless or noisy channel output feedback can be

incorporated into the transmission system to improve the reconstruction quality at the receiver. We introduce

an autoencoder-based JSCC scheme, which we call DeepJSCC-f , that exploits the channel output feedback,

and provides considerable improvements in terms of the end-to-end reconstruction quality for fixed-length

transmission, or in terms of the average delay for variable-length transmission. To the best of our knowledge,

this is the first practical JSCC scheme that can fully exploit channel output feedback, demonstrating yet

another setting in which modern machine learning techniques can enable the design of new and efficient

communication methods that surpass the performance of traditional structured coding-based designs.

I. Introduction

One of the fundamental results in information theory is Shannon’s separation theorem [1], which

establishes that when transmitting a source signal over a noisy channel there is no loss in optimality by

first compressing the source samples into bits, ignoring the channel statistics, and then transmitting
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the compressed bits over the channel using an optimal channel code, designed independently of the

source statistics. This modular design principle has had a tremendous impact on research as well as

practice, reinforcing the notion of layering in communication networks. The application layer (which

processes the information source) does not need to know the details of the physical layer (which deals

with modulation and channel coding), and vice versa. However, despite its huge impact, optimality

of separation holds only under unlimited delay and complexity; and even under these assumptions,

it breaks down in multi-user scenarios [2], [3], or for non-ergodic source or channel distributions [4],

[5].

Despite its suboptimality, almost all communication systems today are designed based on the

separation approach. This is due not only to the modularity of the separate design, but also to the

lack of powerful joint source-channel coding (JSCC) schemes with reasonable coding and decoding

complexity. In current systems, we have highly specialized source codes for different type of informa-

tion sources e.g., JPEG2000/ BPG for images, MPEG-4/ WMA for audio, or H.264 for video, which

have been optimized over many decades and many generations of standards, followed by similarly

highly optimized channel coding and modulation techniques to be used over different communication

channels, e.g., Turbo, LDPC, polar codes. Although there have been many research efforts on joint

source-channel coding techniques, they have mostly focused either on theoretical analysis under some

idealistic source and channel distributions [6]–[10], or the joint optimization of the parameters of

the components (vector quantizer, index assignment, channel code and modulator) of an inherently

separate design [11]–[16].

Another fundamental result in information theory, again due to Shannon [17], states that feedback

does not increase the capacity of a memoryless communication channel. It is not difficult to show

that the optimality of separation continues to hold in the presence of feedback; therefore, information

theoretically feedback does not help the end-to-end performance of source-channel coding either. On

the other hand, feedback is known to improve the error exponents for channel coding [18], [19], and to

significantly simplify the design of JSCC schemes, at least in some ideal scenarios [20]–[22]. However,

there has been limited success in converting these theoretical gains of feedback into practical coding

schemes.

In this paper, our goal is to design practical JSCC schemes that can exploit noisy or noiseless

channel output feedback (see Figure 1 for an illustration of the system model), building upon the
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Figure 1. Communication in the presence of noisy channel output feedback. Source x is transmitted over a noisy channel, where
after the transmission of each symbol a noisy version of the received signal zi becomes available to the encoder through a feedback
link.

recent success of deep neural networks (DNNs) for various coding and communication problems.

The decoder of any known channel code can be treated as a classifier on the noisy channel output.

With the growing success of deep learning for various classification tasks, researchers first explored

using DNNs to decode existing channel codes, such as linear [23], turbo [24], or polar [25] codes,

which provided promising improvements in the error probability. This was later extended to the joint

design of the encoder and the decoder using an autoencoder structure [26]. Despite some success in

designing codes that outperform convolutional codes in the short blocklength regime [27], extending

this success to longer codes has been a challenge due to the exponentially growing codebook size

with the blocklength.

More impressive results have been achieved through DNN-based designs in settings where current

codes fall short of the fundamental theoretical limits; for example, for channels that are harder to

model, such as optical [28] and molecular [29] communications, or in settings no practical coding

scheme exists even for known channel statistics, such as communication in the presence of channel

output feedback [30]. In [30], authors constructed a code based on recurrent neural networks (RNNs),

called Deepcode, that can significantly outperform the coding scheme of Schalkwijk and Kailath [19]

in the case of noiseless feedback, and achieve reasonable reliability even in the case of noisy channel

output feedback. Although the authors proposed concatenating Deepcode with other known coding

schemes to achieve larger blocklengths, the code itself is still limited to short blocklengths due to
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training difficulty. Another limitation of Deepcode is that its design is limited to rates 1/r, for

r = 2, 3, . . ..

Also related to our work are the parallel advances in data compression using DNNs, particularly

for image compression. As opposed to most current image compression standards, such as JPEG,

JPEG2000, BPG, that depend on transform coding followed by quantization and entropy coding,

researcher have studied autoencoder-based DNNs with impressive results [31]–[37]. These DNN-based

compression schemes meet or even surpass standard codecs in various performance metrics, including

in terms of subjective perceptual quality [38].

Most related prior work to the current paper are [39]–[45], which consider the JSCC problem, and

propose autoencoder-based solutions for end-to-end optimization, without explicitly focusing on the

compression or the channel coding problems. While [39] focuses on text as the information source and

binary channels, and [40] deals with lossy data storage, image transmission over an additive white

Gaussian noise (AWGN) wireless channel is studied in [42]–[45]. In [42] the authors propose a fully

convolutional autoencoder architecture, which maps the input images directly to channel symbols,

without going through any digital interface, and show that the proposed DeepJSCC architecture not

only improves upon the concatenation of state-of-the-art compression and channel coding schemes

in a separate architecture [43], but also provides graceful degradation with channel signal-to-noise

ratio (SNR). This latter property, which is common to analog transmission schemes, provides sig-

nificant benefits compared to digital schemes, which exhibit threshold behaviour; particularly when

broadcasting to multiple receivers, or when transmitting over a time-varying channel. DeepJSCC is

also shown in [44] to be almost successively refinable; that is, an image can be transmitted in stages,

where each stage refines the quality of the previous stages, while this multi-stage structure comes at

almost no additional cost.

The current paper builds upon the results of [42] and [44], and proposes an autoencoder architecture

for JSCC of images over an AWGN channel with channel output feedback, considering both perfect

and noisy feedback scenarios. Note that this is a significantly challenging problem as the neural

encoder not only needs to learn how to map the image into the channel input space, while providing

robustness against the channel noise, but also needs to learn how to exploit the channel output

feedback, which provides side information on the decoder’s belief about the source signal. The

difficulty of this problem is corroborated by the lack of any practical codes. Only a handful of papers
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Figure 2. Performance of our algorithm compared to other practical and ideal schemes. Our model using 3 channel feedback
transmissions can outperform all other schemes over a wide range of PSNRs.

have studied this problem; among the few papers that consider image transmission with feedback,

[46] and [47] consider one bit ACK/NACK type feedback, which is used to change the rate of the

channel code by sending additional parity bits until an ACK signal is received to indicate correct

reception, while [48] considers channel state information (CSI) feedback for a multicarrier scenario,

which is used to decide the source information transmitted per channel together with linear encoders.

Although the autoencoder-based results for both channel coding and image compression do not

yet provide significant improvements over existing standards, we highlight the fact that the latter are

results of decades-long intense efforts and expertise of respective engineering communities, while the

data-driven DNN techniques have been introduced only a few years ago, and have already achieved

impressive results, particularly for the image compression problem. On the other hand, we would

like to highlight that for the JSCC of images over wireless channels with feedback, separate design is

strictly suboptimal, and we do not have practical JSCC schemes that truly adapt the mapping of the

source information to the channel input (and vice versa at the receiver) depending on the channel

output feedback. Therefore, the proposed DNN-based coding architecture is the first truly joint design,

where the joint mapping of the source to the channel input depends on the feedback signal. Despite
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the difficulty of the problem at hand, the results presented in this paper are extremely promising,

in the sense that, the proposed deep JSCC architecture that exploits the channel output feedback,

called DeepJSCC-f , outperforms any separate source channel coding architecture even if we consider

combining state-of-the-art image compression codecs (e.g., JPEG2000 or BPG) with a capacity

achieving channel code (despite operating over a finite blocklength). The proposed DeepJSCC-f

architecture divides the available channel bandwidth into a finite number of L blocks, and transmits

the image in L refinement layers, where the transmission over each layer depends on the original

image as well as the receiver’s reconstruction up to that point. This coding scheme is inspired by

the Schalkwijk-Kailath scheme which is designed for a single Gaussian source sample, and is limited

to linear encoding of the estimation error of the receiver at each symbol. Instead, we consider the

receiver’s reconstruction of the original image over blocks, and design a nonlinear encoding and

decoding architecture employing convolutional neural networks (CNNs), which improves the quality

of the receiver’s estimate at each layer.

We plot in Figure 2 the peak SNR (PSNR) for the transmission of images from the CIFAR10 dataset

over an AWGN channel with a compression ratio of 1/3, which refers to the available channel uses

per image pixel (please see below for the proper definition). Here we compare the performance of the

DeepJSCC-f scheme with the DeepJSCC architecture from [42] and with the concatenation of BPG

codec followed by LDPC channel coding. These two schemes do not exploit the feedback link. On the

other hand, we also plot the performance obtained by the BPG codec assuming a capacity achieving

channel code. Note that, since feedback does not increase the capacity, this corresponds to the best

performance that can be obtained by a separation-based scheme that combines BPG compression with

any channel coding scheme, including those that exploit the channel output feedback. We observe

that BPG followed by a capacity-achieving channel code outperforms DeepJSCC; however, when

channel output feedback is utilized, the performance of DeepJSCC-f significantly improves.

In summary, we present in this paper the first practical scheme for JSCC of images in the pres-

ence of channel output feedback. The proposed architecture is fully convolutional, and thus can be

used for input images with different sizes. It employs a layered structure that divides the available

channel bandwidth into multiple blocks, and refines the estimate of the receiver with each new layer

transmitted over a different channel block. It is shown that there is an optimal number of layers that

should be employed. Average reconstruction quality increases gradually with the number of layers
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up to this optimal value, at the expense of increased complexity and training time. The proposed

DeepJSCC-f scheme significantly outperforms separation-based schemes even when we assume the

combination of state-of-the art image compression codecs followed by a capacity-achieving channel

code. The proposed architecture naturally lends itself to variable-length transmission, where the

transmitter sends new layers until a certain quality target is met at the receiver. We have shown that

the improvement is even more significant in terms of the average required delay with variable-length

transmission. Another interesting property of DeepJSCC-f is that its performance behaves more like

analog transmission than separation-based digital communication, and exhibits graceful degradation

with the channel SNR. This is in contrast to digital communication systems, which suffer from the

cliff effect; that is, the performance breaks down when the channel SNR goes below the target SNR

for which the channel code was chosen; and the quality does not increase no matter how high the

channel SNR is beyond this target value. Finally, we show that the proposed architecture is robust

against variations in the feedback channel quality as well, while most known communication schemes

are extremely sensitive to noise in the feedback link as well as mismatches between the targeted and

real values of the feedback channel quality.

II. Problem Formulation

We consider the problem of wireless transmission of images using feedback. An input image,

represented as a vector of pixel intensities x ∈ R
n is to be transmitted in k uses of a noisy

communication channel. In this work, we will consider static as well as fading memoryless complex

additive white Gaussian noise (AWGN) channels, modeled as

z = hy + n, (1)

where y ∈ C
k denotes the complex channel vector, z ∈ C

k the corresponding complex channel

output vector, h ∈ C is the channel gain that remains constant throughout k channel uses, and

n ∈ C
k is the independent and identically distributed (i.i.d.) circularly symmetric complex Gaussian

noise vector with zero mean and variance σ2. Initially we will consider only AWGN channels, that

is, we will set z = y + n. When we consider a fading channel, we will assume h to be random with

a given distribution, but it will remain constant throughout the transmission of a single image, i.e.,

quasi-static fading channel model. An average power constraint is imposed on the transmitted signal:
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1
k
E[y∗y] ≤ 1, where ∗ denotes the complex conjugate operation.

We consider the presence of channel output feedback, through which a noisy version of the channel

output at the receiver is made available to the transmitter with a unit delay. Hence, the feedback

channel is characterized by w = z +nf , where nf denotes the i.i.d. additive complex Gaussian noise

vector on the feedback link with zero mean and variance σ2
f .

An (n, k) joint source-channel code for this system consists of

1) a sequence of encoding functions fi : [0 : 255]n × C
i−1 → C, each of which maps the input

image and the channel output feedback until time i − 1 to channel input at time i, that is,

y(i) = fi(x,w(1), . . . ,w(i− 1)), while satisfying the average power constraint, and

2) a decoding function g : Ck → R
n that maps the received channel output to the reconstructed

image x̂ = g(z).

The image dimension n is also called as the source bandwidth and is given by the product of the

image’s height, width and the number of colour channels. On the other hand, k defines the channel

bandwidth, and we denote the ratio k/n as bandwidth ratio, determining how many channel symbols

are available for each source symbol, which may correspond to spectral or temporal resources available.

We will concentrate our results on the more practically relevant case of bandwidth compression, i.e.,

k < n, although our techniques are applicable for any bandwidth ratio.

For given system parameters, the goal is to define a code that optimizes the average system

performance, in terms of some specified distortion metric between the input and output images,

averaged across possible input signals as well as direct and feedback channel distributions. Note that

this model specifies a joint source-channel code that maps a fixed-size input image to a fixed-length

channel codeword. On the other hand, thanks to the presence of feedback, we can also consider a

variable-length coding setting, where we can set a target distortion value for each image, and minimize

the average code length required to meet this target value for each image. This formulation will be

considered in Section IV-B2.

III. DeepJSCC-f Architecture

In this section we will introduce our proposed DNN-based coding scheme that can exploit the

channel output feedback, called DeepJSCC-f . In terms of architecture, a key innovation of this work is

the employment of layered autoencoders, which allows us to take advantage of the available feedback.
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The proposed design, as seen in Figure 3, models each layer j, j = 1, . . . , L, as a convolutional

autoencoder that is trained for end-to-end communication of images through JSCC.

Motivated by the well-known Schalkwijk-Kailath scheme [20], [21] for the transmission of a single

Gaussian source sample over several channel uses, we divide the transmission of each image x into

L layers, where each layer tries to improve the quality of the receiver’s estimation by transmitting

additional information about the residual error. Let layer j be allocated kj channel uses, where

∑L
j=1 kj = k. For the transmission of layer j, a channel input vector of yj ∈ C

kj is transmitted

over the forward channel, resulting in the channel output vector zj ∈ C
kj . The noisy feedback vector

corresponding to channel output zj is denoted by wj ∈ C
kj . For the encoding of the j-th layer, j > 1,

the encoder has access to the original input x and the channel output feedback of the previous j− 1

layers, [w1, . . . ,wj−1].

Note that, when L = 1 this scheme does not utilize the feedback signal at all. When L = 2 the

encoder benefits only from the feedback signal during the second half of the channel block. Intuitively,

one expects the performance to improve as L increases as we would benefit from more and more

feedback. On the other hand, as the blocklength of each layer gets smaller, it becomes harder to

optimize the corresponding encoder. We will later study the impact of L on the performance of the

proposed DNN-based transmission scheme.

Each layer of the proposed DeepJSCC-f architecture consists of the following components: (a) an

encoder, (b) a decoder, and (c) a combiner, whose functions will be explained below. Each layer

contains a copy of all these components (apart from the combiner, that is only used for layers j ≥ 2).

Please see Figure 3 for a diagram illustrating the DeepJSCC-f architecture for L = 3 layers.

The encoder at layer j is a deterministic encoding function responsible for producing channel

input vector yj, j = 1, . . . , L. In DeepJSCC-f , the encoder of each layer f
θj

j is modeled as a CNN

parameterized by vector θj. In the first layer (j = 1), it receives as input only the source image x,

i.e., we have yj = f
θj

j (x). The subsequent encoders f
θj

j , j ∈ {2, . . . , L}, use as input not only the

original image x, but also an estimate of the image reconstructed by the receiver at the previous

layer, x̃j−1. We will explain how this estimate is generated below. Accordingly the channel inputs for

layers j = 2, . . . , L are given by yj = f
θj

j (x, x̃j−1).

The receiver employs a decoder at each layer, which uses all the channel outputs received so far.

Similarly to the encoder, the decoder of the j-th layer, g
φj

j , is a CNN parameterized by vector φj,
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j = 1, . . . , L, where ûj = g
φj

j (z1, . . . ,zj). After the decoder, for j ≥ 2, we employ a combiner network

c
ψj

j , which recursively combines the output of the decoder of the current layer and the output of the

combiner network of the previous layer, that is, we have x̂j = c
ψj

j (x̂j−1, ûj), where x̂1 = û1.

Remark 1. We remark here that, in the fixed-length code formulation introduced in Section II we

could employ a single combiner network that combines all the decoder outputs to reconstruct the final

output x̂. However, having the intermediate estimates at the end of each layer simplifies the training

operation as it allows training the layers sequentially. It also allows us to implement a variable-length

coding scheme, in which the encoder can stop transmitting additional layers once the receiver reaches

the target reconstruction quality.

Note that, we assume that the decoder and combiner parameters φj and ψj, j = 1, . . . , L, are

known both at the receiver and the transmitter. Thus, the estimation at the transmitter at the j-th

layer, x̃j−1, j = 2, . . . , L, is obtained by the transmitter using the received feedback signal wj−1 at

the transmitter, and applying the previous layer’s decoder and combiner functions on it, such that

x̃j−1 = c
ψj−1

j (x̃j−2, g
φj−1

j−1 (wj−1)) for j > 2, and x̃1 = gφ1

1 (w1). As both the source image x and the

estimates at the transmitter x̃j−1 have the same dimensions, both inputs are concatenated on the

channel axis (thus preserving the height and width positions), and sent as input to the encoder of

the next layer f θj : R2n → C
kj , j = 2, . . . , L.

Remark 2. We remark that, as the encoder performs multiple transmissions, it might not transmit

the whole image at every layer, but may instead transmit error correction or refinement information.

Note that, instead of imposing this in the architecture, e.g., by feeding only the residual error between

the original image and the estimate of the reconstruction at the transmitter to the encoding function,

we provide both inputs to the encoder, and let it learn the right encoding function. We have observed

that this structure provides significant improvement in the performance.

We assume that the forward and the feedback channels are independent of each other, and the

transmission of yj sequences is done through independent realizations of a noisy communication

channel. Both the forward and the feedback channels are modelled as non-trainable layers (see [42]

for details). We consider in this work two commonly used channel models: (a) the AWGN channel, and

(b) the slow fading channel. In the case of slow fading channel, we adopt the commonly used Rayleigh

slow fading model, where we assume that the channel gain h at each transmission is generated from
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a circularly symmetric complex Gaussian distribution with zero mean and variance Hc. As all the

considered channel models are differentiable, they can be integrated as part of the complete model,

without compromising the back-propagation step.

The specific architecture of each component is given by Figure 4. It consists of CNN layers, followed

by normalization obtained by the generalized normalization transformations (GDN/IGDN) [49],

followed by a parametric ReLU (PReLU) [50] activation function (or a sigmoid, in the last blocks

of decoder and combiner). The intuition behind the chosen architecture is that convolutional layers

are able to extract the image features, the GDN apply local divisive normalization, which has been

shown to be suitable for density modeling and image compression [33], while the non-linear activations

allow the learning of non-linear mapping from the source signal space to the channel input space,

and vice versa. The exact hyper-parameters for each block, shown in Figure 4, were chosen based on

experimentation and inspired by [35] and [42].

The parameter c in the encoder’s last CNN layer is responsible for defining the dimension of the

channel input kj. Considering an image input with dimensions n = H × W × C, where H is the

image height, W its width and C the number of channels (3 for colored images, 1 for grayscale), and

the dimension reductions caused by downsampling, the output of the enconder’s last CNN block has

dimension 2kj = H/4 × W/4 × c. This tensor is then reshaped as a one dimensional complex latent

vector ỹ of dimension 1 × k, to be transmitted over the channel. Before transmission, the latent

vector is normalized to enforce the average power constraint and input images are normalized by

the maximum pixel value 255, producing values in the [0, 1] range. This operation is reverted at the

decoder, before output. We note that imposing the average power constraint at each layer results in a

stricter constraint compared to the one required by the model, which allows arbitrary transmit power

over any sub-block as long as the average power constraint is satisfied over the whole blocklength of

k channel uses. We will explore adaptive power allocation strategies through reinforcement learning

as a future extension of this work, which we believe can provide further improvements, especially if

the channel state varies over the transmission of a single image.

The model is trained gradually, layer by layer. Each layer attempts to minimize the average distance

between the input image x and its partial reconstruction x̂j:

(θ∗

j , φ
∗

j , ψ
∗

j ) = arg min
θ,φ,ψ

Ep(x,x̂j)[d(x, x̂j)], (2)
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where d(x, x̂j) is a given distortion measure, and p(x, x̂j) the joint probability distribution of the

original and reconstructed images. Upon convergence, the layer parameters are fixed and additional

layers are trained, using the previous channel output as feedback information. Note that, although

previous encoders and decoders have fixed weights, every channel realisation is independent and pro-

duce new random variables. As mentioned above, this gradual approach not only simplifies training,

but by producing a partial reconstruction x̂j of the complete input image at each layer, it also enables

variable-length coding by allowing to stop transmission when a target quality level is met.

IV. Experimental Results

In this section we present a set of experiments evaluating the performance of DeepJSCC-f in

various different scenarios, and comparing it with several benchmarks. In particular, we will consider

both perfect (noiseless) and noisy channel output feedback, different compression rates, both AWGN

and fading channels at different channel SNR values. We should remark that, to the best of our

knowledge, DeepJSCC-f is the first practical JSCC implementation in the literature able to transmit

images exploiting channel output feedback, so there are no direct competitor to the results presented

here. We will consider practical schemes that ignore the feedback signal, or compare our results with

theoretical bounds, in particular assuming capacity-achieving channel codes.

Unless stated otherwise, all results from this section were obtained by models trained and evaluated

using images with dimension 32 × 32 × 3 (height, width, channels) from the CIFAR10 dataset [51].

The training and evaluation datasets are composed of completely distinct images and contain 50000

and 10000 images, respectively. All plotted results are average values obtained from 10 realizations

of the channel for every image on the evaluation dataset.

The model was implemented1 in Tensorflow [52] and optimized using the Adam algorithm [53]. We

used a learning rate of 10−4 and a batch size of 128. Models were trained until the performance of a

validation set (selected and separated from the training dataset) stop decreasing.

The loss function used for the training of the model at layer j is given by the average mean squared

error (MSE) over N image samples:

L =
1

N

N∑

i=1

||xi − x̂ij||
2, (3)

1The code is available in www.github.com/ipc-lab/deepJSCC-feedback
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where, with abuse of notation, xi denotes the i-th image sample in the dataset, and x̂ij its recon-

struction at layer j.

In order to measure the performance of our algorithm and alternative schemes, we use the peak

signal-to-noise ratio (PSNR), given by:

PSNR = 10 log10

MAX2

||x − x̂j||2
(dB),

where MAX is the maximum value a pixel can take, which is 255 as we use 24-bit depth RGB images.

To measure the quality of a channel in which communication is performed, we consider the average

signal-to-noise ratio (SNR) given by:

SNR = 10 log10

1

σ2
(dB),

representing the ratio of the average power of the coded signal (channel input signal) to the average

noise power.

A. DeepJSCC-f with Two Layers (L = 2)

We first consider the case in which the feedback channel is used only once per transmission and

perfect channel output knowledge is assumed. Thus, the source image x is transmitted in two layers:

first a base layer y1 with bandwidth k1 is sent over the channel; then, using the channel output

corresponding to y1, w1 = z1, a second message y2, of length k2 is transmitted. For simplicity, we

set k1 = k2.

1) General Performance: Figure 5 shows the results for compression rate k/n = 1/6, performed

in two stages with k1/n = k2/n = 1/12. The forward channel is affected by AWGN, and we consider

noiseless feedback. The performance of models subject to different forward channel SNRs is presented

in the plot, where a separate set of encoders, decoders, and combiners is trained for each SNR.

We first compare our scheme to the state of the art JSCC scheme for image transmissions, without

the use of feedback. For this, we use the DeepJSCC algorithm from [42], further enhancing it by

employing the architecture shown in Figure 4. This is also the special case of our scheme with L = 1;

that is, a single transmission with a bandwidth ratio k/n = 1/6. We see that DeepJSCC-f brings a

considerable performance improvement, outperforming the scheme without feedback by a margin of
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Figure 5. Performance comparison as a function of the channel SNR, demonstrating the gains of using feedback information,
compared to a single transmission scheme and a number of separation-based digital schemes.

at least 1dB, being particularly more efficient in the low SNR regime, when the feedback information

is more relevant. This superior performance can be explained solely by the use of feedback, given

that the components share the same architecture. Note also that, sending a source over multiple

layers without feedback can at best maintain, or decrease the performance, compared to single-layer

transmission [44].

We then compare the performance with separation-based digital schemes, where the images are first

compressed using state of the art compression codecs, and then encoded by a channel code against

channel noise or fading. Note that, in the separate architecture feedback can only be used to improve

the channel coding performance. For the source code, we consider well established image compression

algorithms: JPEG, JPEG20002 and BPG3. For fair comparison, we remove the header information

from the compressed files, so we are only considering the communication of the compressed bits.

These codecs are the fruit of years of research and development, and are widely used in diverse

applications, such as content delivery over the Internet, digital photography and medical imaging.

2https://jpeg.org/jpeg2000/index.html
3https://bellard.org/bpg/
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Although there has been recent advances in DNN-based image compression methods, the state of the

art still performs (in terms of PSNR) similarly to BPG on the CIFAR10 dataset [36]. Therefore, we

chose not to include it in this comparison. For the channel code, we consider a practical scheme –

low-density parity-check code (LDPC) followed by quadrature amplitude modulation (QAM) – and

a theoretical bound – channel capacity. For the LDPC+QAM scheme, we evaluate the performance

of different combinations of code rates and modulations, presenting here the envelope of the best

performing configurations for each forward channel SNR (more details are given in Appendix A).

The capacity achieving code would be a hypothetical channel code, achieving the same rate as the

underlying channel capacity. This is not achievable in practice, especially in short blocklengths (we

have k = 512 for the setting considered in Figure 5, as the bound assumes infinite blocklength

(k → ∞). To evaluate the corresponding performance bound, we find the compression rate dictated

by the channel capacity and the bandwidth ratio, and evaluate the PSNR obtained by the employed

compression codec for each image at that bit rate. The resulting performance serves as an upper

bound on the performance of any separation-based transmission scheme with feedback (using the

particular compression scheme), as the channel capacity does not increase with feedback. If, for a

given image, bit rate is below the minimum feasible bit rate, we consider that the receiver reconstruct,

for each color channel, the mean value of all the pixels for that channel.

We plot in Figure 5 the performance of different combinations of source and channel codes. We

see that JPEG, currently the most popular and the most widely employed image compression codec,

presents the worst performance, not being able to compress with enough quality in low SNRs, resulting

in failed transmissions; while BPG is the best performing algorithm. We also note that our algorithm

can surpass, particularly in the low SNR regime, BPG combined with a capacity-achieving channel

code. Since BPG performs similarly or better than DNN-based image compression schemes for the

considered image dataset, the improvement here can be attributed to the improvement from JSCC.

We should remark that we have been quite generous to the separation-based scheme by considering

capacity achieving channel codes despite operating in a short blocklength regime. Hence, the real

improvement with respect to practical codes will be even more significant.

Kim et al. [30] present a practical DNN-based channel code, Deepcode, that exploit the feedback

channel, outperforming other codes such as LDPC and Turbo code. Although we have considered

Deepcode as channel code for our experiments, we found that the proposed scheme cannot be easily
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employed for the transmission of images in large blocklengths. The results presented in [30] consider

transmission of a message of 50 bits at rate 1/3 on the forward channel SNR range -2dB – 1dB. In

this range (-2dB – 1dB), indeed Deepcode outperforms other channel codes; however, we found that

none of our source codes could achieve a non-trivial PSNR value that improves upon the quality

obtained when averaging all pixels with their average values (lower bound considered in case of failed

transmissions). Therefore, in low SNR regimes, the separation-scheme cannot benefit from the more

capable channel code of [30]. However, if the forward channel improves (SNR > 2dB), we noticed

that LDPC outperforms the Deepcode, not justifying its use. Therefore, we decided not to plot those

results in Figure 5, but highlight again that their performance would still be below the one obtained

by assuming a capacity-achieving channel code.

2) Graceful Degradation: In addition to improving the performance with respect to separation-

based transmission, another advantage of DeepJSCC with respect to digital schemes is the graceful

degradation it exhibits with the channel SNR [42]. Figure 6 shows the performance when two models

trained with SNRtrain = 1dB and SNRtrain = 7dB (colored curves) are evaluated in a range of

different SNRtest values, in the range of -2dB to 13dB. Note how the performance increases when

SNRtest > SNRtrain; and, although the performance degrades as SNRtest decreases, it does not drop

rapidly, and it is still possible to retrieve recognisable images, even at very low SNRs. The digital

scheme, in comparison, does not improve when the channel quality increases, and if the channel

deteriorates beyond a threshold value, the performance decreases drastically as the receiver cannot

decode the channel code, and hence the source code, any more (known as the cliff effect).

3) Fading Channel: Here we consider a slow Rayleigh fading channel, whose gain changes randomly

according to a Rayleigh distribution, but remains constants during the transmission of a single image.

Previous work [42] has shown that the single-layer DeepJSCC is capable of learning representations for

the fading channel with remarkable performance, outperforming digital schemes. The most surprising

result is the fact that DeepJSCC is able to learn an efficient transmission scheme without the need of

transmission of pilots, or explicit channel estimation, while the separation-based scheme inherently

assumes perfect CSI at the receiver.

In Figure 7, we plot the results for a range of average channel SNRs, for a bandwidth ratio of

k/n = 1/6. We compare the performance of DeepJSCC-f with that of a separation-based scheme that

again employs BPG followed by the instantaneous capacity of the channel. Note that this inherently
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assumes that the transmitter (as well as the receiver) has access to the perfect CSI due to the

feedback link. It is remarkable that DeepJSCC-f can still outperform the digital scheme despite all

the impractical assumptions to the advantage of the latter.

B. DeepJSCC-f with Multiple Layers (L > 1)

1) Impact of L: As we have mentioned before, one would expect the performance of the proposed

DeepJSCC-f scheme to improve with L as the feedback resources are better utilized as L increases.

On the other hand, DeepJSCC-f is designed to transmit and refine the original image at each layer.

Hence, we expect that allocating a channel bandwidth below a certain value will not allow a reasonable

quality reconstruction of the image.

We plot the performance achieved for different L values in Figure 8 for a fixed bandwidth ratio

of k/n = 1/2). For each L value, we mark the average PSNR value achieved by each layer, starting

from the first to the Lth. The final performance for each L value is the highest point in the plot.

We see that the addition of new layers increases the performance initially. However, as more layers

are introduced, the performance stabilises and even declines after a certain threshold, as expected.

Also, increasing L directly increases the complexity of the model, as we need to train a separate set

of neural networks (encoder, decoder, and a combiner) for each layer. Our simulation results suggest

that L = 4 layers typically provides a reasonable performance trade-off.

We plot the performance of DeepJSCC-f with L = 4 layers in Figure 2 for a range of channel

SNR values and a compression ratio of k/n = 1/3. Here we observe that the gain of DeepJSCC-f

with respect to the separation-based bound is even more pronounced, with gains up to 3 dB in

average PSNR in the low channel SNR regime. We further investigate and verify the superiority of

DeepJSCC-f by, instead of comparing the average PSNR of each scheme (as in Figure 2), comparing

the performance gap between transmissions at a specific SNR (1dB), using different schemes for all

images of the CIFAR10 dataset. Figure 9 shows the distribution of the PSNR difference between

DeepJSCC-f and other schemes, where positive values represent occurrences in which DeepJSCC-f

outperforms its competitor. We clearly see that for the vast majority of the images transmitted our

model results in an improvement in the reconstruction quality.

Finally, in Figure 10 we present results for a wider range of compression ratios and two differ-

ent channel SNRs. We observe that DeepJSCC-f outperforms all other benchmarks, and even the

separation-based bound (which becomes looser as the bandwidth ratio gets smaller), at all settings.
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Figure 8. Impact of amount of feedback in the performance. Initially, the addition of feedback rounds increases performance,
but after a point, the gains stagnate.
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Figure 9. Performance gap distribution between DeepJSCC-f and other schemes over the CIFAR-10 dataset. DeepJSCC-f
produces superior results (positive gaps) for the vast majority of images transmitted.
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Figure 10. Performance comparison for different bandwidth ratios, for L = 4.

Thus, our results show the versatile performance of DeepJSCC-f over a wide array of configurations,

presenting itself as a very efficient image transmission method.

2) Variable Rate Transmission: We can formulate the JSCC coding problem differently by setting

a certain quality target for the delivery of each image, and aim at minimizing the required channel

bandwidth. In this case the perfect channel output feedback provides the transmitter with the

knowledge of the stopping time. It is shown in [7] through theoretical analysis that allowing variable

rate coding leads to a significant improvement in the delay-distortion trade-off.

As we highlighted earlier the layered architecture used in DeepJSCC-f naturally lends itself to

such a variable transmission scheme. Since the receiver reconstructs the image at the end of the

transmission of each layer using a deterministic decoding function, the encoder will know exactly

after each layer whether it needs to send further information, or it can stop transmission as the

distortion target is met.

We experiment this setting by considering the transmission with L = 8 layers, and computing

the average bandwidth needed for achieving a target PSNR. We compare this to a digital scheme

transmitting headerless BPG with an ideal capacity-achieving code. For the digital scheme, we

compress each image to the minimum amount of bits that meet the target PSNR value, and find how

many channel uses is needed to transmit so many bits over the channel, assuming a capacity-achieving
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Figure 11. Target SNR analysis, presenting (a) the cumulative distribution function of bandwidths given a specific target PSNR
for DeepJSCC-f over the CIFAR10 training dataset, and (b) the average bandwidth ratio to achieve a specific target PSNR.
Note that our scheme outperforms the separation-based scheme in the whole range, especially in higher target PSNRs.

channel code.

In Figure 11a we plot the cumulative distribution function of the necessary bandwidth for achieving

three different PSNRs (20dB, 25dB and 30dB). We can see that, despite the low granularity of the

DeepJSCC-f scheme (transmission can be stopped only after transmitting a whole layer), it provides

significant improvement compared to any separation-based scheme. Almost all the images require less

channel bandwidth resources with DeepJSCC-f compared to separation. Note that it is possible to

have more granularity by decreasing the number of channel uses employed by each layer, which would

provide a more accurate mapping to the desired PSNR level, at the cost of increased complexity.

In Figure 11b we plot the average bandwidth ratio required to meet different target SNR values.

Significant gap between the two curves confirm the theoretical results in this practical setting. We

also observe that the gap increases with the PSNR target. For a PSNR target of 30 dB, the average

bandwidth ratio is almost half that is required by the bound on the separation-based schemes.

We should again highlight the fact that this bound is particularly loose when the image can

be transmitted with only a few layers as this would correspond to a very short blocklength. For

example, as we can see in Figure 11a, when we target a PSNR value of 20 dB over a channel with

SNR = 10 dB, almost all of the images bits should be transmitted reliably within only 307 channel

uses (i.e., k/n = 0.1) according to the bound considered.
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Figure 12. Performance of DeepJSCC-f in fading channels, for a bandwidth ratio of k/n = 0.5 with different number of
layers. Notice that, although pilots are not explicitly transmitted, more feedback uses indirectly imply better channel estimation,
improving the performance as the number of feedback transmissions increase.

3) Fading Channel: In order to explore the optimal number of layers in the case of a fading

channel, we propose an experiment similar to the one in Figure 8, in which the performance for a

fixed bandwidth ratio (k/n = 0.5) is experimented with different number of layers. Results can be

seen in Figure 12.

Our results show firstly that the performance over the fading channel can be significantly improved

compared to the results presented in Figure 7 with L = 2 layers. We also observe that we benefit

from increasing the number of layers beyond L = 4, as opposed to the AWGN channel. This can be

explained by the fact that, in the case of a fading channel, feedback conveys information not only

about the corruption/ noise over the channel, but it also contains information regarding the channel

condition, and can be used for channel estimation. More accurate channel state estimation results in

more accurate transmissions.

C. Noisy Feedback

Finally we consider the impact of noisy channel output feedback, i.e., σ2
f > 0. This is a particularly

challenging setting as the encoder cannot track the quality of the receiver’s reconstruction accurately,
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Figure 13. Model performance when feedback channel has noise. Models trained in low forward SNRs are more robust and can
benefit from feedback even when SNRfb is low.

and hence, it cannot steer the decoder to the right decision as efficiently as possible. Indeed it is known

that the known schemes with theoretical performance analysis, e.g., the Schalkwijk-Kailath scheme

[20], [21], break down even with a slightly noisy feedback. While it is shown in [30] that the proposed

DNN-based feedback channel code provides some level of robustness against noise in the feedback

channel, to the best of our knowledge, this is the first practical JSCC scheme that is robust to

feedback channel noise.

Figure 13 shows the performance for different feedback channel SNRs (0 dB, 10 dB, 20 dB, and

noiseless) and the single layer model (no feedback). The SNR of the feedback channel is measured in

terms of the channel input, i.e., 1/σ2
f . We can see that our model is robust to noise in the feedback

channel. When SNRfb = 20 dB (high quality feedback), the performance is only slightly below the

noiseless feedback transmission. As SNR decreases, the performance degrades, but overall remains

quite high and competitive. The network can learn to make good use of the feedback even with

SNRfb = 10dB when forward channel SNR is low.

When the feedback channel is very noisy (SNRfb = 0 dB), the transmission of additional layers

still positively contributes to the refinement of the reconstruction, but the overall performance is
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below than what can be achieved by a single transmission (i.e., L = 1). However, a hybrid approach

could be proposed, in which depending on the noise level, the encoder decides either to use or not the

channel output feedback information at each transmission, transmitting only refinement information

instead of error correction. Such approach could enable that performance to be at least as good as

the single transmission case, regardless of the feedback channel noise [44]. An implementation of such

hybrid solution is left for future work.

1) Feedback Channel Mismatch: Similarly to the mismatch between the training and test SNRs of

the forward channel studied in Subsection IV-A2, we want to study the effects of the variations in

the feedback channel quality during deployment.

Figure 14 shows how models trained with feedback channel SNR equal to 0dB, 10dB and 20dB, and

even noiseless feedback, perform when tested over different qualities of feedback channel, at different

forward channel qualities, for the same models from Figure 13 (L = 2, k/n = 1/6). We used AWGN

for both forward and feedback channels. As baselines, we also plot the performance of a forward

transmission scheme with DeepJSCC using the same bandwidth ratio as the complete transmission

with feedback (i.e., L = 1), and the partial performance of the base layer (x̂1) with bandwidth ratio

k1/n = 1/12. The latter is included to see how much improvement the second layer brings despite

the mismatch between the training and test feedback channel SNRs.

We see that, even in the cases on which the channel conditions differ drastically from the model

designed, the feedback information can still be useful, improving the performance of the base layer.

Remarkably, even the model trained without feedback noise can still perform reasonably well even at

SNRfb = 10dB, especially in low forward channel SNRs, still surpassing the single transmission bound.

Only in extremely adverse and disparate feedback channel conditions (SNRfb
train − SNRfb

test ≥ 20dB)

and high forward channel SNRs, sending the extra layer decrease the communication performance.

However, even in those cases, the retrieved signal can still produce an identifiable picture (the PSNR

of a failed transmission is approximately 15dB).

This shows that, as with the forward channel, DeepJSCC-f can present graceful degradation with

the feedback channel quality as well, and can operate reasonably well in adverse scenarios that would

completely compromise conventional digital systems. On the other hand, the increase in the feedback

channel quality has only a small impact in the performance, being slightly beneficial.
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Figure 14. Effect of the feedback channel degradation in models trained for different feedback channel SNRs. Although the
performance deteriorates when the feedback channel quality decreases, it does progressively, presenting graceful degradation with
respect to the feedback channel quality. Even in highly compromised channels, images can still be conveyed and communication
is refined with successive transmissions.

D. Model Generalisation to Bigger Datasets

The results presented in the previous sections considered models trained and evaluated with

(distinct) images from the CIFAR10 dataset. Although CIFAR10 contains valid examples of colored

images, they are low resolution images (32×32 pixels) and depict only 10 classes of objects (although

our algorithm does not directly consider the class information in any way during its execution and

all classes are transmitted equally). However, our scheme is not limited to a specific input size or

type and, given its fully convolutional architecture, it can accept multiple dimension inputs.

Thus, to test our scheme on a more generic dataset, we trained it on the ImageNet dataset [54],
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a large dataset composed of 1.2 milliom images, with over 20000 classes. Training was performed in

patches of size 128 × 128 and fed into the network in batches of 16 images. We then evaluated our

trained model in full resolution images of the Kodak4 dataset, with dimensions 768 × 512 pixels.

Figure 15 shows the output of DeepJSCC-f at different stages, while transmitting an image at an

AWGN forward channel with SNR = 1 dB, noiseless feedback channel, L = 2 and k/n = 1/6. At the

top left (15a) we see the original image being transmitted (x) and top right is the reconstruction

after the first transmission (x̂1). At the bottom, we first present at the left, the image received by

the second decoder before input to the combiner (û2). Note that û2 contains a residual between

x̂1 and x, creating a refinement on the image quality. Also note that the autoencoder learns this

representation in an unsupervised way, as the encoder receives only x and x̂1, without any explicit

subtraction operation. Finally, by combining the residual û2 with x̂1 through the combiner network,

the final enhanced reconstruction x̂2 is achieved as the output.

We also present, in Appendix B, a visual comparison between DeepJSCC-f and separation-based

schemes for sample images of the Kodak dataset. Our results (Figures 17 and 18) show that DeepJSCC-f

can produce higher quality reconstructions, with increased details and better performance in all

metrics considered (PSNR, SSIM, MS-SSIM).

V. Conclusions

In summary, this work presented, to the best of the authors’ knowledge, the first practical imple-

mentation of a JSCC scheme exploiting channel output feedback – DeepJSCC-f – for images. By

exploring the channel output feedback, we have shown that the scheme can achieve considerable gains

in performance, when compared to a series of other schemes, including (a) JSCC without feedback; (b)

state-of-the-art image compression codecs followed by practical and high performing channel codes;

and (c) ideal capacity achieving channel codes.

Our experiments reveal that the use of the feedback channel improves the quality of the trans-

mission, justifying the adoption of a multi-step strategy for image transmission, in which a source is

sent over multiple layers, exploiting the feedback between transmissions. Moreover, flexible strategies

such as variable rate transmission is also enabled, allowing a considerable economy of resources when

transmitting in order to achieve a target quality goal.

4http://www.r0k.us/graphics/kodak/
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(a) Original image (x) (b) Base layer reconstruction (x̂1)

(c) Decoded image at second layer (û2) (d) Final reconstruction (x̂2)

Figure 15. Example of reconstructions obtained in different stages of the DeepJSCC-f scheme, for from model trained with
Imagenet images and evaluated with Kodak dataset at the AWGN channel with SNR=1dB.

Apart from the direct benefits of exploiting the feedback information, we also show that DeepJSCC-f

has many other advantages, such as presenting analog behaviour and graceful degradation in case of

variations in the channel quality, being able to adapt to either forward or feedback channel variations.

Also, it can adapt to other channels, such as fading channel and to different datasets with diverse

input file sizes.

This work is just a first step towards JSCC strategies using deep neural networks. Advances in the

model architecture and training strategy can bring further performance improvements in the image

transmission task, and the general design principles presented in this work can be potentially applied

to other information sources, such as audio or video.
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Appendix A

Separation-based Scheme Used for Comparison

To compare the performance of our proposed algorithm to practical separation-based digital schemes,

we consider a setup that uses different well established image compression codecs followed by low

density parity check (LDPC) codes for error correction. For image compression, we consider JPEG,

JPEG2000 and BPG, and we discount the header information for BPG and JPEG2000 when com-

puting bit rates and transmission sizes for fair comparison. For the channel code, we consider all

possible combinations of (4096, 8192), (4096, 6144) and (2048, 6144) LDPC codes (which correspond

to 1/2, 2/3 and 1/3 rate codes) with BPSK, 4-QAM, 16-QAM and 64-QAM modulation schemes.

For each channel code configuration, we can define the maximum rate Rmax (bits per pixel) at

which we can transmit an image (using the channel code rate), and empirically evaluate the frame

error rate ǫ for each channel model and condition we consider. Then, we compress the images (using

the different codecs) at the largest rate R that satisfies R ≤ Rmax. We consider that the transmission

can either be successful or fail, with probability of failure ǫ. When the transmission fails, we consider

that the reconstruction at the receiver is set to the mean value for all the pixels per colour channel.

When the transmission is successful the distortion is dictated by R and the codec used. We then

measure the average performance over the evaluation dataset.

Figure 16 shows the individual results obtained from different configurations of code rates and

modulations, for the k/n = 1/6 case. On the plots presented throughout the paper, we simply plot

the envelope of the best performing values across all configurations.

Appendix B

Example of Image Reconstructions from Different Schemes

In order to provide a visual comparison of our algorithm versus traditional digital separation-based

schemes, we present sample images from the Kodak dataset, produced on a setup on AWGN channel,

SNR=1dB and bandwidth compression k/n = 1/6. We compare DeepJSCC-f (noiseless feedback)

with separation-based scheme using 1/3 rate LDPC + 4QAM as channel code and JPEG, JPEG2000

and BPG as source codes. Results can be seen in Figures 17 and 18, where the PSNR, SSIM and

MS-SSIM performances are computed.
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Figure 16. LDPC codes considered in this work. Capacity achieving bound also plotted for reference.

Note that, for the images considered, DeepJSCC-f present superior performance in all metrics

when compared to the sepration-based schemes. This gain is particularly noticed in high frequency

elements (bushes, leaves and water in Figure 17; background landscape, house details in Figure 18).

Also note these results correspond to DeepJSCC-f optimised for MSE as loss function. It is possible

to optimise DeepJSCC-f directly to other metrics (e.g. SSIM or MS-SSIM), producing even superior

results than the presented for the referred metrics.
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Original Image

JPEG+LDPC JPEG2000+LDPC

PSNR: 18.97dB; SSIM: 0.383; MS-SSIM: 0.668 PSNR: 22.02dB; SSIM: 0.508; MS-SSIM: 0.830

BPG+LDPC DeepJSCC-f

PSNR: 22.98dB; SSIM: 0.539; MS-SSIM: 0.851 PSNR: 25.99dB; SSIM: 0.781; MS-SSIM: 0.948

Figure 17. Comparison of reconstructed images from different schemes, including DeepJSCC-f . AWGN channel, compression
rate k/n = 1/6. Note how high frequency components (bushes’ leaves, water waves) better preserve their details in DeepJSCC-f .
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Original Image

JPEG+LDPC JPEG2000+LDPC

PSNR: 18.97dB; SSIM: 0.383; MS-SSIM: 0.668 PSNR: 22.02dB; SSIM: 0.508; MS-SSIM: 0.830

BPG+LDPC DeepJSCC-f

PSNR: 22.98dB; SSIM: 0.539; MS-SSIM: 0.851 PSNR: 25.99dB; SSIM: 0.781; MS-SSIM: 0.948

Figure 18. Comparison of reconstructed images from different schemes, including DeepJSCC-f . AWGN channel, compression
rate k/n = 1/6.DeepJSCC-f presents superior performance in all metrics considered.


