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Abstract  

Plasmids are mobile genetic elements that play a key role in microbial ecology and 

evolution by mediating horizontal transfer of important genes, such as antimicrobial 

resistance genes. Many microbial genomes have been sequenced by short read 

sequencers and have resulted in a mix of contigs that derive from plasmids or 

chromosomes. New tools that accurately identify plasmids are needed to elucidate new 

plasmid-borne genes of high biological importance. We have developed Deeplasmid, a 

deep learning tool for distinguishing plasmids from bacterial chromosomes based on the 

DNA sequence and its encoded biological data. It requires as input only assembled 

sequences generated by any sequencing platform and assembly algorithm and its 

runtime scales linearly with the number of assembled sequences. Deeplasmid achieves 

an AUC-ROC of over 93%, and it was much more precise than the state-of-the-art 

methods. Finally, as a proof of concept, we used Deeplasmid to predict new plasmids in 

the fish pathogen Yersinia ruckeri ATCC 29473 that has no annotated plasmids. 

Deeplasmid predicted with high reliability that a long assembled contig is part of a 

plasmid. Using long read sequencing we indeed validated the existence of a 102 Kbp 

long plasmid, demonstrating Deeplasmid’s ability to detect novel plasmids.  

Availability: The software is available with a BSD license: deeplasmid.sourceforge.io . 

A Docker container is available on DockerHub under: billandreo/deeplasmid .  
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Introduction  

Plasmids are ubiquitous extrachromosomal elements capable of semi-autonomous 

replication and transmission between microbial host cells. Typically, bacterial plasmids 

are small (<80 kb) circular replicons. Natural plasmids often carry a cargo of “accessory 

genes” that confer beneficial traits to the microbial host, such as antibacterial resistance 

(1, 2), bacteriophage defense (3, 4), heavy metal tolerance (5), virulence (6, 7), or unique 

catabolic pathways (8), thereby improving bacterial adaptation to dynamic environments. 

Some plasmids carry toxins and antibiotic resistance genes and thereby constitute a 

serious threat to human health (9). Finally, plasmids are involved in plant-microbe 

interactions; for instance, the nodulation plasmids of rhizobia guide the symbiosis of 

bacteria with plants (10). Plasmid transmission by conjugation provides an efficient 

mechanism of horizontal gene transfer and facilitates the spread of accessory genes in 

bacterial populations and communities. Therefore, the studies of plasmid genetics, 

evolution, and dynamics in bacterial populations have many wide-reaching practical 

applications, such as clinical management of antibiotic resistance (2), development of the 

industrial strains of bacteria for bioremediation (3) and biofertilization (4). In addition, 

identification of new plasmids may guide the discovery of novel antibiotic resistance 

genes, toxins, and genes directly involved in host-microbe interactions, and may be used 

as new tools for efficient gene cloning and exogenous protein expression. 

 

Advances in genomic sequencing technologies have enabled high-throughput 

sequencing of genomes of microbial isolates and environmental populations (through 

metagenome sequencing), including their respective plasmidomes - the total collection of 

encoded plasmids (5). Identification and classification of plasmid sequences in this 

treasure trove of genomic and metagenomic data can provide a unique opportunity to 

study the mechanisms of plasmid persistence, transmission, and host specificity, as well 

as the flow of accessory genes. However, in silico identification of plasmid contigs in 

whole-genome shotgun sequences (WGS) is challenging. The challenge derives from 

poor genome assembly that leads to numerous plasmid-size contigs that are difficult to 

characterize as derived from plasmid or chromosomes. In addition, there is a limited 

number of high-quality, completely sequenced reference plasmids that can be compared 

to while annotating new genomes (6). Sequences from plasmids occasionally integrate 

into chromosomes, making it difficult to computationally characterize contigs from these 

chromosomes as plasmids or chromosomes. Further, sometimes plasmid genes have 

features resembling those of essential chromosomal genes (11). 

 

A variety of in silico methods assisting with separation of plasmid sequences from 
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chromosomal contigs have been developed. Some of them target a subset of plasmids 

mostly of clinical relevance, such as PlasmidFinder/pMLST (12) for detection and typing 

of plasmids from Enterobacteriaceae and selected Gram-positive strains. Other tools, 

such as PLACNET (13) rely on a combination of reference genomes and manual curation 

to restructure an assembly graph and separate putative plasmid contigs from those of 

chromosomal origin. plasmidSPAdes (14), cBAR (15), PlasFlow (16), Recycler (17), and 

PlasmidSeeker (18) are fully automated and perform identification of putative plasmid 

contigs in genome assemblies by analyzing the topology and read coverage of an 

assembly graph (Recycler and plasmidSPAdes) or DNA composition of assembled 

contigs (cBar and PlasFlow). Recycler works on paired-end reads and detects circular 

plasmids by leveraging assembly graphs from conventional assembly tools to assemble 

circular sequences likely to be plasmids (17). HyAsP starts from raw reads and combines 

read depth with GC content, as well as reference-based occurrences of known plasmid 

genes in the assembly (19). An assessment of methods that assemble plasmids from 

short reads (20) concluded that their accuracy is reliant on a difference in the coverage 

of plasmids and chromosomes; for some assemblies they demonstrated close to a 90% 

precision of plasmid finding with just 55% recall, whereas for assemblies with 80% recall 

generally the false positive rate increases by 20% (20). Moreover, most of these tools 

were not tested for their ability to detect novel plasmids that are experimentally validated 

following the computational prediction.  

Existing tools have limitations due to their reliance on the circularity of the topology, bias 

towards certain taxonomies used in training (e.g. in PlasmidFinder) and coverage of a de 

Bruijn assembly graph constructed from k-mers found in reads (e. g. Recycler and 

plasmidSPAdes). The two software packages: cBAR (15) and PlasFlow (16), satisfy the 

above criteria, since they utilize only two types of data: assembled sequences themselves 

(PlasFlow) and features extracted from assembled sequences (cBar). PlasFlow relies on 

a deep neural network to find hidden structures encoded in the assembled sequences, 

while cBar finds plasmids by applying self-organizing maps (SOMs) to the extracted 

features in the form of pentamer profiles of contigs and scaffolds. The two methods also 

differ in the way their models are trained: PlasFlow was developed as a tool for finding 

plasmids in metagenome data and is pre-trained on sequence fragments of up to 10 kb 

long, since metagenome assemblies are typically very fragmented. In contrast, cBAR’s 

model is based on the pentanucleotide profiles of full-length sequences of known 

plasmids and chromosomes. While both cBAR and especially PlasFlow demonstrated 

superior performance in comparison to other methods of plasmid identification (16).  

Our goal was to develop a tool for post-assembly identification of complete plasmids and 

plasmid-derived contigs, which (i) has high accuracy, (ii) is not biased towards the 

sequences of certain topology or taxonomic origin, and (iii) is able to run on genome 

assemblies from either short-read or long-read sequencing technologies without 

assembly graph or coverage information.  We also confirmed that inclusion of genes and 
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other functional features in addition to DNA sequence composition is helpful for contig 

and scaffold classification. We present a new Deep Learning (DL)-based method, 

Deeplasmid, for identification of plasmid contigs and scaffolds in WGS assemblies of 

microbial isolate genomes, which achieves an AUC-ROC of 93% on a sixfold cross-

validation. Our method relies on a combination of assembled sequences and extracted 

features, including GC content (21), oligonucleotide composition, hits to plasmid- or 

chromosome-specific genes, as well as gene density within the contig. Since it does not 

require raw read data, assembly graph or coverage information, it can be applied to 

assembled WGS data, including shotgun metagenomic data, generated by any 

sequencing platform and assembly algorithm. We describe our Deeplasmid model, the 

training and testing methodology, and show that it is capable of automated detection of 

plasmid sequences with over 94% accuracy. Deeplasmid surpasses the accuracy of other 

tools largely due to its use of discriminating gene and protein features. We compare the 

accuracy of our trained model on large plasmid-containing microbial test datasets against 

the alternative tools cBAR and PlasFlow, thus achieving a better precision and 

comparable recall. Finally, we used a whole genome sequencing project of a specific 

microbe, Yersinia ruckeri ATCC 29473, applied Deeplasmid and predicted a novel 

plasmid in this strain. We then performed a sequencing experiment to validate that the 

new plasmid indeed exists as a separate replication unit. This led to discovery of a new 

plasmid in this pathogenic strain. 

 

Name Definition Type 

gc_content GC content of contig Float [0-1] 

A(C/G/T)_longest_homopolymer Length of longest homopolymer Integer 

A(C/G/T)_total_homopolymer Total number of homopolymers of 
length >5 

Integer 

hit_chromosome_proteins Hit to chromosome proteins Boolean 0/1 

hit_plasmid_proteins Hit to plasmid proteins Boolean 0/1 

hit_plasmid_ORIs Hit to plasmid ORI Boolean 0/1 

gene_count Number of genes in scaffold  Integer 

gene_percent Coding percent of scaffold  Float [0-1] 

polypeptide_aa_avg_len Average length of amino acid 
sequence  

Integer 

len_sequence Scaffold seq length Integer 
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Table 1. Definition of 16 features per sequence  

Materials and Methods  

ACLAME-RefSeq training dataset  

We prepared the labeled dataset based on two sources. As negative instances we used 

50 different genera from the RefSeq.microbial dataset (22), from which plasmid and any 

mitochondrial or chloroplast sequences were removed based on their fasta header 

names. The training included Archaeal chromosomal sequences from 40 genera, which 

are found in RefSeq.archaea. As positive instances we used the ACLAME dataset (23), 

which contains 1,056 fully-sequenced plasmids that were manually curated by experts. 

ACLAME has higher-quality curation than refseq.plasmids since some of the NCBI 

records tagged as plasmids are mislabeled as chromosomal sequences and many entries 

do not represent complete records or contain sequence fragments of unknown origin (24, 

25). From ACLAME we discarded 39 sequences (3.69%) that were shorter than 1 kbp or 

longer than 330 kbp because the scaffolds and contigs longer than 330 kb are almost 

invariably chromosomes or megaplasmids or chromids (genetic elements with plasmid-

type replication systems, but carrying some indispensable genes (11)). We did not deal 

with the last two classes as they are special cases. To balance the dataset size we 

randomly selected 40,000 sequences from the RefSeq.microbial dataset, which is two 

orders of magnitude larger than ACLAME.plasmid dataset of size 1,017. The imbalance 

1/40 in the sequence count in our ACLAME-RefSeq training dataset was compensated 

during the training by oversampling the ACLAME dataset. Data were shuffled before 

training. 

Input format 

A single training data element consists of the label and two input words: xseq - a 300bp 

contiguous subsequence sampled randomly from the full original scaffold sequence and 

xf - a vector containing 16 features extracted from the full sequence, as described in Table 

1. In order to ensure feature values like gene count, gene coding percentage, or sequence 

length are meaningful, the features are computed on the entire scaffold, and the values 

are copied into the xf feature vectors for all 300bp sequences subsampled from the 

scaffold. The number (m) of 300bp subsequences sampled from each scaffold is 

proportional to the square root of the scaffold length. The number of samples per scaffold 

was chosen according to m=10+sqrt(seq_len/20) to ensure a fair representation of 

smaller and larger scaffolds, such that longer scaffolds do not overwhelm the training 

step. Each sample is a different xseq associated with the feature vector xf from the 

originating sequence. xseq is one-hot encoded in 4 nucleotide bases. Namely, it is 

transformed into a binary array of size 300×4. The ‘N’-base (unknown) is encoded as four 
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zeros. The values of xf were normalized to be bound within [-1,1]. 

Input feature selection  

We initially explored the predictive power of several extracted features in conjunction with 

existing Machine Learning tools. The particular choice of xf variables shown in Table 1 

was based on an initial sensitivity analysis with the Gradient Boosting Classifier, a classic 

ML method that produces a prediction model in the form of a mixture of decision trees. 

Moreover, we confirmed the relative importance of a feature by training our tool and 

running predictions with null values for the feature (namely, excluding the feature) and 

checking the impact on the error rate (as discussed in the Supp. Info). 

We additionally included in xf three plasmid-specific and chromosome-specific features. 

These features are boolean (0 or 1) and indicate whether any hit is found to these sets of 

plasmid or chromosome-specific sequences: 

1. Plasmid-specific DNA motifs: these are the origins of replication of known plasmids 

(26). 

2. Plasmid-specific proteins: these are taken from 2,826 known plasmids listed on 2019 

in the European Nucleotide Archive: https://www.ebi.ac.uk/genomes/plasmid.html, and 

removed any plasmids not isolated from Proteobacteria, Firmicutes, Bacteroidetes, or 

Actinobacteria using NCBI batch entrez function. We only kept plasmids from these four 

phyla as these are the most commonly sequenced and studied bacterial phyla and as a 

result most contigs that will be classified by our tool belong to these phyla. Some 

plasmidic proteins were extracted from publications (27–36) (Table S1). The final list 

included 136,638, 24,607, 1,163, and 15,449 plasmidic genes from Proteobacteria, 

Firmicutes, Bacteroidetes, and Actinobacteria respectively. 

3. Chromosome-specific proteins: these are based on COGs of genes that are usually 

carried on chromosomes. The 61 COGs used for making this list are based on 

chromosomal housekeeping genes that are unclonable in high copy plasmids (37, 38). 

They appear in Table S1. 

To reduce sequence redundancy the chromosomal and plasmid proteins were clustered 

by 90% identity using cd-hit with otherwise default parameters giving a representative 

sequence from each cluster (39).

Output format  

A neural network is a function  

F(xseq,xf|θ) = y.                                  (1) 

that accepts sequences of nucleotides xseq and the feature vector xf. The function F also 

depends implicitly on the DL model parameters θ, which are determined during the 
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training process. The output of the network, Deeplasmid score y, is computed using the 

softmax function, which ensures that y satisfies y � [0, 1]. By convention, the higher the score 

is for the sequence, the more likely it is to be a true plasmid. 

Model training  

The model was trained with a binary cross-entropy loss function (40) and Adam optimizer 

(41). We performed supervised learning on the balanced set of 6x105 data points with a 

batch size of 200. The initial learning rate was set to 0.001. Typically we sample 50-100 

300bp long sequences per scaffold. 

We used the k-fold cross-validation method, setting k=6, with five data segments merged 

as the ’training’ set and one validation segment that provided the loss (model error) as 

feedback during training. The ’test’ data set was hidden during the training. We performed 

6 independent trainings, cycling the segments to allow each of six segments to influence 

a different model θk. Figure 1 illustrates the k-fold training method. Each model was 

trained for 30 epochs, until it converged, as shown in Figure 2a. 

 

 

Fig. 1. Deeplasmid training, validation and testing. The plasmid and chromosome 

dataset was split into six segments, of which five were used in training a model. The 6th 

segment was used for validation of the trained model. We repeated over the training 

twice to derive 12 different models. Using 12 models allows reducing the effects of 

random variance in the predictions. 

 

Model topology  

We have used the LSTM-based network (42) (Figure S4) to transform the one-hot 
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encoded nucleotide sequence into a one-dimensional vector. The left branch is made out 

of two LSTMs, accepts a 300bp nucleotide sequence xseq, and compresses information 

into a vector of 40 features. The right branch is fully connected, accepts the feature vector 

xf , and produces a vector of 20 features. Both outputs are concatenated and passed to 

another block of fully connected layers whose output is one value - the Deeplasmid score 

y (Eq. 1). This model was implemented in Keras (43) with Tensorflow 1.3.0 (44) as the 

backend. The deep learning model architecture is shown in Figure S3. 

 

Fig. 2. (a) Training convergence through the epochs. Loss and accuracy are shown as a 

function of epochs. The training and validation data are balanced by oversampling the 

plasmid class. (b) The training was repeated 12 times on the plasmid-chromosome 

dataset to derive twelve models (two per validation segment). All models achieved an 

accuracy (AUC) on the validation segment of over 0.93 with a small statistical variance in 

the prediction accuracy. (c) The ROC-AUC on the IMG test dataset after training the 

model is 0.9344.

 

 

Prediction for one 300bp sequence  
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For each k-fold we saved two models, resulting in 12 different saved models. This was 

done to reduce the effects of random variance in the predictions, as well as to ensure that 

the results were reproducible for each k-fold. To make a prediction on a 300bp sequence 

we ran the sequence through all 12 models and then average the score:  

�� = ∑��
��� �(
�) / 12.                          (2) 

The results are shown in Table S2. 

 

Prediction for one scaffold  

 

One scaffold is sampled 50-100 times and for each 300bp sequence the average score 

is computed as in (Eq. 2). Next, the scaffold-average score (yavr) and its standard 

deviation (σ) are computed. We allow for 3-way classification as “plasmid”, 

“chromosome”, or “ambiguous”: 

 

  if yavr > 0.5 + 2σ then plasmid 

  else if yavr < 0.5 - 2σ then chromosome 

  else ambiguous 

 

DNA extraction and Oxford Nanopore sequencing 

 

We validated our plasmid computational prediction using genome re-sequencing with 

Oxford Nanopore long read sequencing. We used strain Yersinia ruckeri ATCC 29473 

(IMG genome ID: 2609460118), which was received as a gift from Dr. Yasuo Yoshikuni.  

Bacteria grew in the final volume of  2L Luria Broth until OD 600 0.3 was reached. DNA 

was extracted with Qiagen Genomic Tip 100/G (Cat No./ID: 10243) and Genomic DNA 

Buffer Set (Qiagen, Cat No./ID: 19060), by following suggested instructions. DNA 

concentration and quality were tested with Nanopore, Qubit and TapeStation. Prior 

sequencing samples were prepared with Ligation Sequencing Kit (SQK-LSK109) and 

Native Barcoding Expansion 1-12 (EXP-NBD104) and finally sequenced by Oxford 

Nanopore MinION. Reads were assembled using Canu 2.0 (45). Reads were also 

assembled in parallel by Shasta 0.6.0 (46). The 3,754,417 bp circular DNA and the 

102,560 circular DNA were found from the Canu and Shasta assemblies, respectively. 

To map linear scaffolds of Yersinia ruckeri ATCC 29473 to the newly assembled 

plasmids, blastn was used, with a bitscore cutoff of 30,000. The blastn hits were visualized 

using DNAFeaturesViewer (47). The IMG scaffold names were shortened in Figure 4; all 

scaffolds displayed are prefixed by “Ga0059170_”, e.g. scaffold 114 is named 

“Ga0059170_114” in the IMG database. Scaffold  “Ga0059170_103” coordinates 1-

145,000 were mapped to the newly found plasmid (fragment is at 8 o’clock in Figure 4, 

marked 103*), away from the rest of the scaffold (12 to 5 o’clock in Figure 4). This 
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subsequence is small enough to be processed by Deeplasmid and was thereby re-ran 

through Deeplasmid to be predicted as a separate piece of DNA. Annotation (Figure 4C) 

was performed based on IMG scaffold annotations (scaffolds Ga0059170_112 and 

Ga0059170_113).  

 

 

Results  

 
Training and feature selection 

 

We assembled a training dataset of bacterial and archaeal chromosomes from 90 genera 

that was retrieved from Refseq, and we retrieved 1,017 plasmids from ACLAME, 

(Materials and Methods). Features included sequence-related physical features and 

features related to the genetic content of the contig (Table 1, Table S1, Materials and 

Methods). The first feature group includes gc_content, repeats: number and size of the 

longest homopolymers, and total length of the sequence. The second feature group 

includes boolean variables of whether the sampled sequence shares similarity with 

chromosomal genes, plasmidic genes, or origin of replication sequences. For example, 

ribosomal proteins are usually carried on chromosomes and plasmid replication and 

mobilization genes are carried on plasmids. We also included in this group the number of 

genes carried on the scaffold, the percent of the scaffold which is coding, and the size of 

the genes (“polypeptide_aa_avg_len”) as through manual inspection we noted that 

plasmids tend to have more intergenic regions and smaller genes than chromosomes. 

 
Deeplasmid predictions for the ’test’ data  

 

The training dataset was divided into six segments (Materials and Methods). One 

segment, called ‘validation’, was used for validating a model’s training. Twelve models 

were trained in total, two for each selection of a validation segment. The model training 

over 30 epochs is characterized by an increase in prediction accuracy (defined as the 

ratio of correct classifications to all queries) and decrease in error (loss) on the validation 

segment. The Receiver Operating Characteristic (ROC) curve is shown in Fig. 2a. The 

Area Under the Curve (AUC) for Deeplasmid reached 0.93. To be consistent with the 

standard definition of AUC we have forced predictions to be binary by reducing the 

standard deviation σ to 0 and setting threshold θ to 0.5. The predictions made by 

Deeplasmid are averaged over 12 models (Materials and Methods). Fig. 2b shows 

prediction accuracy individually for each of the 12 models over the ‘validation’ data 

segment. There is a high agreement between models. 

 

Feature significance 
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We also evaluated the significance of various sets of features by calculating the decrease 

in average AUC of the 12 models on the training data set after setting the features to zero 

values (thus knocking them out). We retrained the model on various combinations of 

features. Most of the runs where features were removed resulted in a mean AUC drop 

more than 3 standard deviations away from the mean AUC achieved when using all 

features. The use of all features resulted in a mean AUC of 0.897 with a relatively small 

standard deviation (over 12 runs) of 0.0026. The mean AUC dropped by 5% to 0.847 after 

removing the hits to plasmid and chromosome-specific genes demonstrating the 

significance of this feature in classification of annotated contigs. When using only hits to 

plasmid and chromosome-specific genes (in addition to the sequence data) the mean 

AUC also dropped to 0.8548. Other features, each one separately, such as sequence 

length, homopolymer-related features (the longest homopolymer and the total number of 

homopolymers of length>5), and gene density in the scaffold had relatively little 

contribution. However, we trained the model with all features since removing features 

translated to an increase in the error of prediction. We provide an analysis of the mean 

AUCs observed over 12 models with various feature sets (Table S3). We conclude that 

using curated biological information provides a clear advantage over previous algorithms, 

which only used “physical” features of the sequences (such as gc content and scaffold 

length).  

 

Testing Deeplasmid model on independent dataset: isolate genomes from IMG 

database  

To test Deeplasmid, we used an independent dataset retrieved from IMG database (48, 

49). We downloaded the sequences of 1,834 isolate genomes that have at least one 

replicon annotated as plasmid. This set included a total of 6820 scaffolds and contigs, 

with 3093 of them annotated as plasmids and 3727 annotated as chromosomes. Figure 

2C shows the ROC curve for the IMG test dataset, achieving an AUC of 0.9344. This 

suggests that the trained Deeplasmid model is applicable widely, and does not suffer from 

overfitting. Figure 3 shows the counts of plasmid and chromosomal scaffolds assigned a 

certain score by Deeplasmid. Setting the threshold for separating the two classes at 0.5, 

the precision or purity of the predicted positive class (plasmid sequences) is 94%. On the 

other hand, recall is 77% (details in Suppl. Info) indicating that the DL model missed some 

plasmids, classifying them as chromosomal fragments. 

Similar to our training methodology, the prediction was done on scaffolds of length 1K-

330K bases, while scaffolds outside this length range were classified as either too long 

or too short. There are also 63 ambiguous predictions, which are split between the 

chromosomal and plasmid classes.  
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Fig. 3. Evaluation on the IMG test dataset. The class separation is clear based on a 

threshold of 0.5.  The percent of plasmids classified above the threshold is 

2264/(2264+599+48)=77.77% (recall). The percent of chromosomes classified below the 

threshold is 1702/(1702+140)=92.4%. 

 

Next, we used this dataset to compare the performance of our DL model to the 

comparable state-of-the-art programs PlasFlow [16] and cBar [15] (Table 2). Deeplasmid 

achieved a precision of 0.94 on this dataset (compared to 0.68 for both of the other tools), 

with a recall comparable to PlasFlow and cBar. Overall, the F1-score, defined as 

2·P·R/(P+R), for Deeplasmid was 0.85, which is higher than either PlasFlow (0.69) or 

cBar (0.73). This comparison demonstrates that addition of biological features vastly 

improves the performance of programs with otherwise similar inputs and goals.

 

 Classified as 
Plasmid 

Classified as 
Chromosome 

Classified 
Ambiguous 

Prec 
(TP/TP+FP) 

Rec 
(TP/TP+FN) 

Truth D P C D P C D P C D P C D P C 

Plasmid 2264 2213 2519 599 229 581 48 658 0 0.94 0.68 0.68 0.77 0.71 0.81 

Chromo. 140 1046 1190 1687 1722 2537 15 959 0 F1 score: 0.85 0.69 0.73 

Table 2. Comparison of Deeplasmid (“D”)  to PLASFlow (“P”) to cBar (“C”) on the IMG 

database. With Deeplasmid the purity of the predicted plasmid sequences is 94% 

(precision) and 77% of known plasmids are predicted correctly (recall).
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The runtimes were taken on a Cray XC40 supercomputer (5 Intel Xeon “Haswell” nodes 

with 120GB, 16 cores). The training runtime was 12.94 hours for the ACLAME and 

RefSeq.microbial dataset with 41K sequences. For 30 epochs that translates to 26 

minutes per epoch. The prediction runtime was <2 seconds per scaffold or under two 

minutes for a microbial genome assembly, assuming a typical microbial genome 

assembly contains 1-60 scaffolds. This satisfies the scalability requirement for an 

automated plasmid finding tool, highlighting Deeplasmid’s potential for widespread 

application on large-scale genomic and metagenomic data. 

 

Experimental validation of a new plasmid based on Deeplasmid prediction 

 

In order to demonstrate Deeplasmid’s ability to predict plasmids in biological samples, we 

focused on the fish pathogen Yersinia ruckeri ATCC 29473 (IMG genome ID: 

2609460118). Until this work, this strain had only been sequenced by 454 and Illumina 

short read sequencers, resulting in 15 linear scaffolds and presumably lacking a plasmid 

(50). Using comparative genomics, researchers studying a similar bacterial strain inferred 

that Yersinia ruckeri ATCC 29473 may encode a plasmid, but no long read sequencing 

was performed to confirm this (51). The 15 linear scaffolds of Yersinia ruckeri ATCC 

29473 were then used as input to Deeplasmid, and labeled as either plasmid or 

chromosomal. One long scaffold of 57Kbp (IMG scaffold 112, Figure 4A) got a 

Deeplasmid score of 0.8 strongly suggesting that it is derived from a plasmid. In contrast, 

other scaffolds were either very long (e.g. IMG scaffold 103 of 1.6 Mbp) or received 

Deeplasmid score below 0.3, suggesting that they derive from a bacterial chromosome. 

To validate these labels, we grew Y. ruckeri bacteria in the lab, extracted DNA, and 

sequenced it with a long read sequencing method (Oxford Nanopore Technology). In 

contrast to the previous short read methods, we were able to find large circular pieces of 

DNA. We found a ~3.7 Mbp chromosome, and a ~102 kbp plasmid. Beyond the fact that 

it is circular, we are confident the latter piece of DNA is a plasmid since it has very high 

similarity to a known Yersinia plasmid (pYR3; Genbank: LN681230.1).  

Upon mapping the linear scaffolds onto the newly sequenced circular DNA fragments, we 

indeed find that predicted plasmid fragments map to the 102 kbp plasmid, demonstrating 

the predictive power of Deeplasmid and its ability to detect large plasmids in genomic 

data (Figure 4A). We note that a number of the linear scaffolds for this genome did not 

undergo Deeplasmid prediction due to their large size (>330kb). Exactly because of their 

large size, they are assumed to be chromosomal in origin. However, those within the size 

range of Deeplasmid functionality were largely predicted to be chromosomal in origin, 

along with some misclassifications (Figure 4). 

 

Looking at the functions of the genes carried on the plasmid, we see many genes 
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previously found on similar plasmids (51), and that have plasmid-related functions. We 

identified Type IV pilus genes, which may be used for transfer of plasmid from one cell to 

another (52), or possibly used as a virulence factor (51). Also encoded on the plasmid is 

the Type IV Secretion System, which may also be involved in plasmid transfer (53) and/or 

virulence (51). We also detected on the plasmid is RelE, a toxin which is commonly found 

in plasmid addiction systems (54). Furthermore, we found mobilization genes like 

transposon genes, integrases, and DNA recombinases. Overall, we conclude that this is 

a bona fide plasmid based on its circularity, separation from the main chromosome, 

similarity to known plasmids, and plasmidic gene content.  

 

 

Figure 4. Deeplasmid validation. Yersinia ruckeri ATCC 29473 was sequenced with 

Oxford Nanopore MinION and assembled with Canu and  with Shasta. (A) The assembled 

contigs included a circular piece of DNA that shares  92.78% identity with a known 

Yersinia plasmid (pYR3; Genbank: LN681230.1). Two linear scaffolds of this genome 

were predicted by Deeplasmid to be from plasmids (shades of red), and indeed they align 

with the newly-found plasmid. (B) The assembled contigs also contained a chromosome. 

Most of the linear scaffolds for this genome did not undergo Deeplasmid prediction, due 

to their large size (>330kb; dark navy blue). However, those within the size range were 

largely predicted to be chromosomal in origin (shades of blue), along with two 
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misclassifications (shades of red). Scaffold 103* is a subsequence of a larger IMG 

scaffold; this short region was predicted by Deeplasmid here (see Materials and 

Methods). (C) Functions of many ORFs identified on the validated plasmid are classically 

associated with plasmids. 

 

Discussion and Conclusion 

In this work we provide an accurate algorithm to classify assembled contigs or scaffolds  

generated by any sequencing platform and assembly algorithm, as parts of plasmids and 

chromosomes using a deep learning approach. By training deep learning models on the 

specific features of plasmids and chromosomes, we have shown that it is possible to 

efficiently separate plasmids from chromosomal sequences. While physical sequence 

features can be used to predict if a sequence is of plasmid or chromosome origin, the 

DNA sequence itself  improves the deep learning models by keeping a memory of what 

came earlier in the sequence. The reason is that statistical features of sequence 

composition, such as GC content or oligonucleotide profiles, fail to capture the nucleotide 

composition over the length of the sequence, as explained in earlier work (8). One of the 

reasons why our Deeplasmid model has better precision at predicting plasmids than other 

methods is that it averages predictions over multiple 300bp windows sampled over the 

length of the sequence, instead of analyzing contigs and scaffolds as a single DNA 

molecule. As a result, each prediction for a 300bp sequence contributes to the overall 

result. Additionally, we complemented sequences with extracted feature data that 

enhance the prediction accuracy. The plasmid-specific ORIs, chromosome-specific 

genes and GC content serve as essential data features.  Averaging the predictions over 

many 300-base sequences and including biologically meaningful features resulted in a 

better ability to classify a sequence as plasmidic or chromosomal. 

Just like other methods that rely on the nucleotide composition signatures of plasmids 

and chromosomes, whether as hidden or extracted features, Deeplasmid is likely to have 

problems with very short sequences for which it may have trouble obtaining a proper 

sequence signature. For this reason we limited the sequences used in the model 

construction to those of minimum 1Kb length. There are also very few existing plasmids 

that are larger than 330 Kbp and therefore we could not train our algorithm on these 

megaplasmids. 

Prediction of plasmids is complicated in large genomic datasets with possible 

chromosomal integrations of  plasmids. Current challenges in the field of plasmid 

identification include discriminating chromosomes that resemble plasmid sequences or 

plasmids with chromosomal replication genes. Another challenge is to achieve high 

prediction accuracy on unknown or understudied microbial lineages that may contain 
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exotic plasmids, since any machine learning tool will be trained with the current 

knowledge.  

Deeplasmid predicts plasmids with a low false positive error rate using only an assembled 

fasta file as input. It can identify both circular and linear plasmids. The output is a per-

scaffold classification of chromosomal, plasmid, or ambiguous contig, along with a score 

representing the confidence of the prediction. Although the default probability threshold 

for separation of classes was set at 0.5 based on our benchmarking, users can specify 

their own filtering cutoffs. Deeplasmid out-performed other available tools in terms of 

accuracy for single microbial assembly plasmidome analyses. Moreover, we provided 

experimental evidence for a new plasmid that was predicted using Deeplasmid. A future 

research direction is to employ Deeplasmid for large-scale identification of plasmids in 

large-scale metagenomic data from different environments or to uncover novel plasmid-

borne antimicrobial resistance genes or novel microbial genes that are horizontally 

transferred via plasmids. This and myriad other high-impact applications of Deeplasmid 

are possible due to its fast running time and scalability.  

Supplementary Information 

The Supplementary Information file includes Deeplasmid running instructions, 

comments on features used in chromosome/plasmid classification, Code Repository, 

Software Design, Deep learning model architecture, AUC per fold on the training 

dataset, ROC curve for the IMG test dataset, and others. 
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