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Abstract. Extracting, harvesting, and building large-scale annotated radiological image datasets is a greatly
important yet challenging problem. Meanwhile, vast amounts of clinical annotations have been collected
and stored in hospitals’ picture archiving and communication systems (PACS). These types of annotations,
also known as bookmarks in PACS, are usually marked by radiologists during their daily workflow to highlight
significant image findings that may serve as reference for later studies. We propose to mine and harvest these
abundant retrospective medical data to build a large-scale lesion image dataset. Our process is scalable and
requires minimum manual annotation effort. We mine bookmarks in our institute to develop DeepLesion, a data-
set with 32,735 lesions in 32,120 CT slices from 10,594 studies of 4,427 unique patients. There are a variety of
lesion types in this dataset, such as lung nodules, liver tumors, enlarged lymph nodes, and so on. It has the
potential to be used in various medical image applications. Using DeepLesion, we train a universal lesion detec-
tor that can find all types of lesions with one unified framework. In this challenging task, the proposed lesion
detector achieves a sensitivity of 81.1% with five false positives per image. © 2018 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JMI.5.3.036501]
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1 Introduction

Computer-aided detection/diagnosis (CADe/CADx) has been

a highly prosperous and successful research field in medical

image processing. Recent advances have attracted much

interest to the application of deep learning approaches.1,2

Convolutional neural network (CNN) based deep learning algo-

rithms perform significantly better than conventional statistical

learning approaches combined with handcrafted image features.

However, these performance gains are often achieved at the cost

of requiring tremendous amounts of labeled training data.

Unlike general computer vision tasks, medical image analysis

currently lacks a large-scale annotated image dataset (compa-

rable to ImageNet3 and MS COCO4), which is mainly because

the conventional methods for collecting image labels via Google

search + crowd-sourcing from average users cannot be applied

in the medical image domain, as medical image annotation

requires extensive clinical expertise.

Detection and characterization of lesions are important topics

in CADe/CADx. Existing detection/characterization algorithms

generally target one particular lesion type, such as skin lesions,5

lung nodules,6,7 liver lesions,8 sclerotic lesions, and colonic

polyps.9 While some common types of lesions receive much

attention, vast infrequent types are ignored by most CADe pro-

grams. Besides, studying one lesion type at a time differs from

the method radiologists routinely apply to read medical images

and compile radiological reports. In practice, multiple findings

can be observed and are often correlated. For instance, metasta-

ses can spread to regional lymph nodes or other body parts. By

obtaining and maintaining a holistic picture of relevant clinical

findings, a radiologist will be able to make a more accurate diag-

nosis. However, it remains challenging to develop a universal or

multicategory CADe framework, capable of detecting multiple

lesion types in a seamless fashion, partially due to the lack of

a multicategory lesion dataset. Such a framework is crucial

to building an automatic radiological diagnosis and reasoning

system.

In this paper, we attempt to address these challenges.

First, we introduce a paradigm to harvest lesion annotations

from bookmarks in a picture archiving and communication sys-

tem (PACS) with minimum manual effort. Bookmarks are

metadata10 marked by radiologists during their daily work to

highlight target image findings. Using this paradigm, we col-

lected a large-scale dataset of lesions from multiple categories

(Fig. 1). Our dataset, named DeepLesion, is composed of 32,735

lesions in 32,120 bookmarked CT slices from 10,594 studies of

4427 unique patients. Different from existing datasets, it con-

tains a variety of lesions including lung nodules, liver lesions,

enlarged lymph nodes, kidney lesions, bone lesions, and so on.

DeepLesion is publicly released and may be downloaded

from Ref. 11.

Using this dataset, we develop an automatic lesion detection

algorithm to find all types of lesions with one unified
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framework. Our algorithm is based on a regional convolutional

neural network (faster RCNN13). It achieves a sensitivity of

77.31% with three false positives (FPs) per image and 81.1%

with five FPs. Note that the clinical bookmarks are not complete

annotations of all significant lesions on a radiology image.

Radiologists typically only annotate lesions of focus to facilitate

follow-up studies of lesion matching and growth tracking. There

are often several other lesions left without annotation. We

empirically find that a large portion of the so-called FPs is

actually true lesions, as demonstrated later. To harvest and dis-

tinguish those clinician unannotated lesions from “true” FPs will

be an important future work.

2 Materials and Methods

In this section, we will first introduce bookmarks as radiology

annotation tools. Then, we will describe the setup procedure and

Fig. 1 Visualization of a subset (15%) of the DeepLesion dataset. The x - and y -axes of the scatter map
correspond to the x - and z-coordinates of the relative body location of each lesion, respectively.
Therefore, this map is similar to a frontal view of the human body. Colors indicate the manually labeled
lesion types. Sample lesions are exhibited to show the great diversity of DeepLesion, including: (a) lung
nodule; (b) lung cyst; (c) costophrenic sulcus (lung) mass/fluid; (d) breast mass; (e) liver lesion; (f) renal
mass; (g) large abdominal mass; (h) posterior thigh mass; (i) iliac sclerotic lesion; (j) perirectal lymph
node (LN); (k) pelvic mass; (l) periportal LN; (m) omental mass; (n) peripancreatic lesion; (o) splenic
lesion; (p) subcutaneous/skin nodule; (q) ground glass opacity; (r) axillary LN; (s) subcarinal LN; (t) ver-
tebral body metastasis; (u) thyroid nodule; and (v) neck mass. Reproduced from the supplementary
material of Ref. 12.
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data statistics of the DeepLesion dataset. The proposed universal

lesion detector will be presented afterward.

2.1 Bookmarks

Radiologists routinely annotate and measure hundreds of clin-

ically meaningful findings in medical images, which have been

collected for two decades in our institute’s PACS. Figure 2

shows a sample of a bookmarked image. Many of the book-

marks are either tumors or lymph nodes measured according

to the response evaluation criteria in solid tumors (RECIST)

guidelines.14 According to RECIST, assessment of the change

in tumor burden is an important feature of the clinical evaluation

of cancer therapeutics. Therefore, bookmarks usually indicate

critical lesion findings. It will be extremely useful if we can

collect them into a dataset and develop CADe/CADx algorithms

to detect and characterize them.

To get an overview of the bookmarks, we analyze them by

year, image modality, and annotation tool. From Fig. 3, we can

see that the number of studies with bookmarks increases each

year with a boost in 2015. This indicates that bookmarks are

becoming more and more popular as radiologists discover

that it is a helpful tool.15 By collecting these bookmarks

every year, we can easily obtain a large-scale lesion dataset.

The image modalities of the bookmarks are shown in Fig. 4.

CT images make up the largest percentage, followed by MR

and nuclear medicine.

Radiologists can use various annotation tools to annotate the

bookmarks, including arrows, lines, ellipses, bidimensional

RECIST diameters, segmentations, and text. We downloaded

all the bookmarks in CT studies and counted the usage of

the tools (Fig. 5). RECIST diameters were applied most fre-

quently. Each RECIST-diameter bookmark consists of two

lines: one measuring the longest diameter of the lesion and

the second measuring its longest perpendicular diameter in

the plane of measurement. Examples can be found in Fig. 2.

The RECIST-diameter bookmarks can tell us the exact location

and size of a lesion. A line bookmark contains only one length

measurement, which may be the longest or shortest diameter of

a lesion, or even a measurement of a nonlesion. For line, ellipse,

text, or arrow bookmarks, while we can infer the approximate

location of a lesion, the exact location and/or size is not

available.

2.2 DeepLesion Dataset

Because bookmarks can be viewed as annotations of critical

lesions, we collected them to build a lesion dataset for

Fig. 2 An example of a bookmarked image. A mass in or adjacent to
the left nephrectomy bed is bookmarked using the RECIST-diameter
tool. The bookmark identifiers indicate that this is bookmark number 6
(B06) and that this bookmark is part of follow-up set number 3 of book-
marks on the same lesion (F03).

Fig. 3 Number of studies with bookmarks in the PACS of our institute
in each year (all image modalities included).

Fig. 4 Proportion of different image modalities of the bookmarks in
our institute. CT, computed tomography; MR, magnetic resonance;
NM, nuclear medicine; CR, computed radiography; PT, positron emis-
sion tomography (PET); and US, ultrasound.

Fig. 5 Proportion of different annotation tools of the CT bookmarks in
our institute.
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CADe/CADx algorithms. This research has been approved by

our Institutional Research Board. Without loss of generality,

currently, we only focus on CT bookmarks, which are the

most abundant. As for the annotation tools, now, we only con-

sider RECIST diameters. Until January 2017, we have collected

33,418 bookmarks of this type. After filtering some noisy book-

marks (detailed in Sec. 2.2.1), we obtained the DeepLesion data-

set with 32,120 axial slices from 10,594 CT studies of 4427

unique patients. There are one to three bookmarks in each

slice, for a total of 32,735 bookmarks. The dataset will be intro-

duced in detail from the following aspects: setup procedure, data

statistics, advantages, limitations, and potential applications.

2.2.1 Setup procedure

First, we acquired the accession numbers of the CT studies with

bookmarks by querying the PACS (Carestream Vue

V12.1.6.0117). Then, the bookmarks were downloaded accord-

ing to them using a Perl script provided by the PACS manufac-

turer. We selected only the RECIST-diameter ones, which are

represented by four vertices. Most of them were annotated on

the axial plane. We filtered the nonaxial ones, and then con-

verted the vertices to image coordinates. The conversion was

done by first subtracting the “ImagePositionPatient” (extracted

from the DICOM file) from each vertex and then dividing the

coordinates of each vertex with the pixel spacing.

The CT volumes that contain these bookmarks were also

downloaded. We used MATLAB to convert each image slice

from DICOM files to 16-bit portable network graphics (PNG)

files for lossless compression and anonymization. Real patient

IDs, accession numbers, and series numbers were replaced by

self-defined indices of patient, study, and series (starting from 1)

for anonymization. We named each volume with the format

“{patient index}_{study index}_{series index}.” Note that

one patient often underwent multiple CT examinations (studies)

for different purposes or follow-up. Each study contains multi-

ple volumes (series) that are scanned at the same time point but

differ in image filters, contrast phases, etc. Every series is

a three-dimensional (3-D) volume composed of tens to hundreds

of axial image slices. Metadata,10 such as pixel spacing, slice

interval, intensity window, and patient gender and age, were

also recorded. The slice intervals were computed by differenti-

ating the “ImagePositionPatient” (extracted from DICOM) of

neighboring slices. We made sure that the slice indices increased

from head to feet.

To facilitate applications such as computer-aided lesion

detection, we converted the RECIST diameters into bound-

ing-boxes. Denote the four vertices as ðx11; y11Þ, ðx12; y12Þ,
ðx21; y21Þ, and ðx22; y22Þ. The z coordinates are omitted since

the vertices are on the same axial plane. A bounding box

(left, top, right, and bottom) was computed to enclose the lesion

measurement with 5-pixel padding in each direction, i.e.,

ðxmin − 5; ymin − 5; xmax þ 5; ymax þ 5Þ, where xmin ¼ minðx11;
x12; x21; x22Þ, xmax ¼ maxðx11; x12; x21; x22Þ, and similarly for

ymin and ymax. The 5-pixel padding was applied to cover the

lesion’s full spatial extent.

There are a limited number of incorrect bookmarks. For

example, some bookmarks are outside the body, which is pos-

sibly caused by annotation error by the user. To remove these

label noises, we computed the area and width-height-ratio of

each bounding-box, as well as the mean and standard deviation

of the pixels inside the box. Boxes that are too small/large/flat/

dark or small in intensity range were manually checked. Another

minor issue is duplicate annotations. A small number of lesions

were bookmarked more than once possibly by different radiol-

ogists. We merged bounding-boxes that have more than 60%

overlap by averaging their coordinates.16

2.2.2 Data statistics

The slice intervals of the CT studies in the dataset range between

0.25 and 22.5 mm. About 48.3% of them are 1 mm and 48.9%

are 5 mm. The pixel spacings range between 0.18 and

0.98 mm∕pixel with a median of 0.82 mm∕pixel. Most of

the images are 512 × 512 and 0.12% of them are 768 × 768

or 1024 × 1024. Figure 6 displays the distribution of the

sizes of the bounding-boxes. The median values of the width

and height are 22.9 and 22.3 mm, respectively. The diameter

range of the lesions is 0.42 to 342.5 mm for long diameter

and 0.21 to 212.4 mm for short diameter.

To explore the lesion types in DeepLesion, we randomly

selected 9816 lesions and manually labeled them into eight

types: lung (2426), abdomen (2166), mediastinum (1638),

liver (1318), pelvis (869), soft tissue (677), kidney (490), and

bone (232). These are coarse-scale attributes of the lesions.

The mediastinum type mainly consists of lymph nodes in the

chest. Abdomen lesions are miscellaneous ones that are not

in liver or kidney. The soft tissue type contains lesions in the

muscle, skin, and fat. Examples of the lesions in the eight

types can be found in Fig. 1, where a subset of the lesions is

drawn on a scatter map to show their types and relative body

coordinates. The map is similar to a frontal view of the

human body. To obtain the approximate z-coordinate of each

lesion, we adopted the unsupervised body part regressor17 to

predict the slice score of each image slice. From Fig. 1, we

can find that the dataset is clinically diversified.

2.3 Universal Lesion Detection

In this section, we will introduce our universal lesion detector in

detail. It is trained on DeepLesion, thus can detect all types of

lesions that radiologists are interested in measuring with one

Fig. 6 Distribution of the sizes of the bounding-boxes in DeepLesion.
The bounding-boxes were computed from the RECIST diameters
after dilation by 5 pixels. The width and height are the size of the
x - and y -axes of the boxes, respectively.
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unified framework. The algorithm is adapted from the faster

RCNN method.13 Its flowchart is illustrated in Fig. 7.

2.3.1 Image preprocessing

The 12-bit CT intensity range was rescaled to floating-point

numbers in [0,255] using a single windowing (−1024 to

3071 HU) that covers the intensity ranges of lung, soft tissue,

and bone. Every image slice was resized to 512 × 512. To

encode 3-D information, we used three axial slices to compose

a three-channel image and input it to the network. The slices

were the center slice that contains the bookmark and its neigh-

boring slices interpolated at 2-mm slice intervals. No data aug-

mentation was used since our dataset is large enough to train a

deep neural network.

2.3.2 Network architecture

The VGG-1618 model was adopted as the backbone of the net-

work. We also compared deeper architectures including ResNet-

5019 and DenseNet-12120 and the shallower AlexNet21 on the

validation set and observed that VGG-16 had the highest accu-

racy. As shown in Fig. 7, an input image was first processed by

the convolutional blocks in VGG-16 (Conv1–Conv5) to produce

feature maps. We removed the last two pooling layers (pool4

and pool5) to enhance the resolution of the feature map and

to increase the sampling ratio of positive samples (candidate

regions that contain lesions), since lesions are often small

and sparse in an image.

Next, a region proposal network13 parsed the feature maps

and proposes candidate lesion regions. It estimated the proba-

bility of “lesion/nonlesion” on a fixed set of anchors on each

position of the feature maps. At the same time, the location

and size of each anchor were fine-tuned via bounding box

regression. After investigating the sizes of the bounding-

boxes in DeepLesion, we used five anchor scales (16, 24, 32,

48, and 96) and three anchor ratios (1:2, 1:1, and 2:1) in

this paper.

Afterward, the lesion proposals and the feature maps were

sent to a region of interest (RoI) pooling layer, which resampled

the feature maps inside each proposal to a fixed size (7 × 7 in

this paper). These feature maps were then fed into two convolu-

tional layers, Conv6 and Conv7. Here, we replaced the original

4096D fully-connected (FC) layers in VGG-16 so that the model

size was cut to 1/4 while the accuracy was comparable. Conv6

consisted of 512 3 × 3 filters with zero padding and stride 1.

Conv7 consisted of 512 5 × 5 filters with zero padding and

stride 1. Rectified linear units were inserted after the two con-

volutional layers. The 512D feature vector after Conv7 then

underwent two FC layers to predict the confidence scores for

each lesion proposal and ran another bounding box regression

for further fine-tuning. Nonmaximum suppression (NMS)13 was

then applied to the fine-tuned boxes to generate the final predic-

tions. The intersection-over-union (IoU) thresholds for NMS

were 0.7 and 0.3 in training and testing, respectively.

2.3.3 Implementation details

The proposed algorithm was implemented using MXNet.22 The

weights in Conv1 to Conv5 were initialized with the ImageNet

pretrained VGG-16 model, whereas all the other layers were

randomly initialized. During training, we fixed the weights in

Conv1 and Conv2. The two classification and two regression

losses were jointly optimized. This end-to-end training strategy

is more efficient than the four-step strategy in the original faster

RCNN implementation.13 Each mini-batch had eight images.

The number of region proposals per image for training was

32. We adopted the stochastic gradient descent optimizer and

set the base learning rate to 0.002, and then reduced it by a factor

of 10 after six epochs. The network converged within eight

epochs.

3 Results

To evaluate the proposed algorithm, we divided DeepLesion

into training (70%), validation (15%), and test (15%) sets by

randomly splitting the dataset at the patient level. The proposed

algorithm only took 34 ms to process a test image on a Titan X

Pascal GPU. Here, we report the free receiver operating charac-

teristic (FROC) curves on the test set in Fig. 8. The sensitivity

reaches 81.1% when there are five FPs on average on each

image. In addition, the performance steadily improves as

more training samples are used. As a result, the accuracy is

expected to be better as we harvest more data in the future.

The FROC curves of different lesion types are shown in

Fig. 9. Note that our network does not predict the type of

each detected lesion, so the x-axis in Fig. 9 is the average num-

ber of FPs of all lesion types per image. Thus, the curves could

Fig. 7 Flowchart of the lesion detection algorithm. Yellow dashed and cyan solid boxes in each image
indicate the ground-truth and the predicted bounding-boxes, respectively.
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not be directly compared with the literature.7–9 Instead, they

reflect the relative performance of different types and sizes.

From Fig. 9, we can find that liver, lung, kidney, and medias-

tinum lesions are among the easiest ones to detect. This is prob-

ably because their intensity and appearance is relatively

distinctive from the background. It is more difficult to detect

abdominal and pelvic lesions, where normal and abnormal

structures including bowel and mesentery clutter the image

and may have similar appearances (Figs. 18–21). Soft tissue

and bone lesions have fewer training samples and small contrast

with normal structures, thus have the lowest sensitivity.

The FROC curves of different lesion sizes are shown in

Fig. 10. The size is computed by averaging the long and

short diameters. In Fig. 10, it is not surprising that small lesions

(<10 mm) are harder to detect. It is also easy to find very large

(≥50 mm) lesions. However, when lesion size is between 10 and

50 mm, the sensitivity is not proportional with lesion size, which

is possibly because detection accuracy can be affected by multi-

ple factors, such as lesion size, lesion type, number of training

samples, etc. The algorithm performs the best when the lesion

size is 15 to 20 mm.

The detection accuracy also depends on the selected IoU

threshold. From Fig. 11, we can find that the sensitivity

decreases if the threshold is set higher.

Some qualitative results are randomly chosen from the test

set and are shown in Figs. 12–21. The figure shows examples of

true positives, FPs, and false negatives (FNs).

4 Discussion

4.1 DeepLesion Dataset

4.1.1 Advantages

Compared to most other lesion medical image datasets23–28 that

consist of only certain types of lesions, one major feature of our

DeepLesion database is that it contains all kinds of critical

Fig. 8 FROC curves of lesion detection on the test set of DeepLesion
when different proportions of training data are used.

Fig. 9 FROC curves of lesion detection on the test set of DeepLesion
with respect to different lesion types. The x -axis is the average num-
ber of FPs of all lesion types per image. The numbers in the legend
are the numbers of lesions of a specific type in the test set.

Fig. 10 FROC curves of lesion detection on the test set of
DeepLesion with respect to different lesion sizes. The x -axis is the
average number of FPs of all sizes per image. The numbers in the
legend are the numbers of lesions of a specific size in the test set.
Accuracy can be affected by multiple factors, such as lesion size,
lesion type, number of training samples, etc. Thus, its order does
not strictly follow the order of lesion size.

Fig. 11 Sensitivity of lesion detection on the test set of DeepLesion
with respect to different IoU thresholds and the numbers of average
FPs per image.
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radiology findings, ranging from widely studied lung nodules,

liver lesions, and so on, to less common ones, such as bone and

soft tissue lesions. Thus, it allows researchers to:

• Develop a universal lesion detector. The detector can help

radiologists find all types of lesions within one unified

Fig. 13 The ground-truth is detected but split into two parts. Some
minor areas of scarring are not marked.

Fig. 14 A correct detection with high confidence.

Fig. 15 An enlarged lymph node is correctly detected, but two unen-
larged ones are also marked (red boxes). This is probably because
the universal lesion detector is robust to small scale changes.
Therefore, small and large lymph nodes are sometimes both
detected.

Fig. 16 A mass is correctly detected with high confidence, but
another one posterior to the trachea is missed.

Fig. 17 The ground-truth and two enlarged lymph nodes are correctly
detected, even though the lymph nodes are not annotated in the
dataset.

Fig. 12 Detection results randomly chosen from the test set. The
ground-truth and correct predictions are marked with yellow dashed
boxes and green solid boxes, respectively. FPs and FNs are marked
with red and blue solid boxes, respectively. The numbers beside the
predictions are confidence scores. Predictions with scores >0.5 are
shown. The same explanation applies to Figs. 13–21. In the figure,
a tiny lung nodule is detected with high confidence. An area of scar-
ring in the lingula is not detected, which is possibly because there are
few bookmarks of scars in the dataset.
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computing framework. It may open the possibility to serve

as an initial screening tool and send its detection results to

other specialist systems trained on certain types of lesions.

• Mine and study the relationship between different types of

lesions.12 In DeepLesion, multiple findings are often

marked in one study. Researchers are able to analyze

their relationship to make discoveries and improve

CADe/CADx accuracy, which is not possible with other

datasets.

Another advantage of DeepLesion is its large size and small

annotation effort. ImageNet3 is an important dataset in computer

vision, which are composed of millions of images from thou-

sands of classes. In contrast, most publicly available medical

image datasets have tens or hundreds of cases, and datasets

with more than 5000 well-annotated cases are rare.10,29

DeepLesion is a large-scale dataset with over 32K annotated

lesions from over 10K studies. It is still growing every year,

see Fig. 3. In the future, we can further extend it to other

image modalities, such as MR, and combine data from multiple

hospitals. Most importantly, these annotations can be harvested

with minimum manual effort. We hope the dataset will benefit

the medical imaging area just as ImageNet benefitted the com-

puter vision area.

4.1.2 Potential applications

• Lesion detection: This is the direct application of

DeepLesion. Lesion detection is a key part of diagnosis

and is one of the most labor-intensive tasks for

radiologists.2 An automated lesion detection algorithm

is highly useful because it can help human experts to

improve the detection accuracy and decrease the reading

time.

• Lesion classification: Although the type of each lesion

was not annotated along with the bookmarks, we can

extract the lesion types from radiology reports coupled

with each study. Nowadays, radiologists often put

hyperlinks in reports to link bookmarks with lesion

descriptions.15 Consequently, we can use natural language

processing algorithms to automatically extract lesion

types and other information cues.30,31

• Lesion segmentation: With the RECIST diameters and

bounding-boxes provided in the dataset, weakly super-

vised segmentation algorithms32 can be developed to auto-

matically segment or measure lesions. One can also select

lesions of interest and manually annotate them for training

Fig. 18 The ground-truth and another liver lesion are detected.
A small liver lesion is missed. Two small lymph nodes are FPs.

Fig. 19 The ground-truth liver lesion is detected with high confidence.
A renal cyst and a bone metastasis are also detected correctly. FPs
include normal pancreas (0.947), gallbladder (0.821), and bowel
(0.608). A subtle bone metastasis (blue box) is missed. Note the com-
plexity and clutter of the appearance of abdominal structures.

Fig. 20 The ground-truth iliac lymph node is missed. Note the com-
plexity and clutter of the appearance of pelvic structures.

Fig. 21 The ground-truth inguinal lymph node is detected with high
confidence, although its appearance is similar to the surrounding
muscles and vessels. FP is on a normal bladder.
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and testing. During the annotation process, active learning

may be employed to alleviate human burden.

• Lesion retrieval: Considering its diversity, DeepLesion is

a good data source for the study of content-based or text-

based lesion retrieval algorithms.33,34 The goal is to find

the most relevant lesions given a query text or image.

• Lesion growth analysis: In the dataset, lesions (e.g.,

tumors and lymph nodes) are often measured multiple

times for follow-up study.14 With these sequential data,

one may be able to analyze or predict the change of

lesions based on their appearance and other relative

information.35

4.1.3 Limitations

Since DeepLesion was mined from PACS, it has a few

limitations:

• Lack of complete labels: DeepLesion contains only two-

dimensional diameter measurements and bounding-boxes

of lesions. It has no lesion segmentations, 3-D bounding-

boxes, or fine-grained lesion types. We are now working

on extracting lesion types from radiology reports.

• Missing annotations: Radiologists typically mark only

representative lesions in each study.14 Therefore, some

lesions remain unannotated. The unannotated lesions

may harm or misrepresent the performance of the trained

lesion detector because the negative samples (nonlesions)

are not purely true. To solve this problem, one can lever-

age machine learning strategies, such as learning with

noisy labels.36 It is also feasible to select negative samples

from another dataset of healthy subjects. Furthermore, to

more accurately evaluate the trained detector, it is better to

have a fully labeled test set with all lesions annotated. The

newly annotated lesions should also be similar to those

already in DeepLesion, so lesions that do not exist in

DeepLesion should not be annotated.

• Noise in lesion annotations: According to manual exami-

nation, although most bookmarks represent abnormal

findings or lesions, a small proportion of the bookmarks

is actually measurement of normal structures, such as

lymph nodes of normal size. We can design algorithms

to either filter them (e.g., by using extracted lesion

types from reports) or ignore them (e.g., by using machine

learning models that are robust to noise).

4.2 Universal Lesion Detection

Because radiologists typically mark only representative lesions

in each study,14 there are missing annotations in the test set.

Therefore, the actual FP rates should be lower. We would

argue that the current result is still a nonperfect but reasonable

surrogate of the actual accuracy. From the qualitative detection

results in Figs. 12–21, we can find that the universal lesion

detector is able to detect various types of lesions in the test

set of DeepLesion, including the annotated ones (ground-

truth) as well as some unannotated ones, although a few FPs

and FNs still present.

• Lung, mediastinum, and liver lesions can be detected

more accurately, as their intensity and appearance patterns

are relatively distinctive from the background.

• Lung scarring is not always detected, which is possibly

because it is not commonly measured by radiologists,

thus DeepLesion contains very few training samples.

• Unenlarged lymph nodes are sometimes detected as FNs.

This is probably because the design of faster RCNN (e.g.,

the RoI pooling layer) allows it to be robust to small scale

changes. We can amend this issue by training a special

lymph node detector and a lesion size regressor.

• There are more FPs and FNs in the abdominal and pelvic

area, as normal and abnormal structures bowel and mes-

entery clutter inside the image and may have similar

appearances (Figs. 18–21). This problem may be miti-

gated by applying ensemble of models and enhancing

the model with 3-D context.6,7,9

It is not proper to directly compare our results with others’

since most existing work7–9 can only detect one type of lesion.

However, we can use them as references. Roth et al.9 proposed

CNNs with random view aggregation to detect sclerotic bone

lesions, lymph nodes, and colonic polyps. Their detection

results are 70%, 77%, and 75% at three FPs per patient for

the three types of lesions, respectively. Ben-Cohen et al.8

applied fully convolutional network and sparsity-based diction-

ary learning for liver lesion detection in CT. Their result is

94.6% at 2.9 FPs per case. Multilevel contextual 3-D CNNs

were used7 to detect lung nodules with a sensitivity of 87.9

at two FPs per scan. The main reason that our result

(77.31% at three FPs per image) is still inferior than those in

Refs. 7–9 is that our task is considerably harder, which tries

to detect all kinds of lesions including lung nodules, liver

lesions, bone lesions, lymph nodes, and so on. Besides, our data-

set is much larger (32,735 lesions with about 25% lung lesions

and 13% liver ones, versus 123 liver lesions8 and 1186 lung

nodules7) with lesion sizes ranging widely from 0.21 to

342.5 mm. Furthermore, we did not use a fully annotated dataset

of a specific lesion to train a sophisticated detection model such

as those in Refs. 7–9. Improving the detection accuracy is one of

our future works.

5 Conclusion

In this paper, we introduced a paradigm to collect lesion anno-

tations and build large-scale lesion datasets with minimal

manual effort. We made use of bookmarks in PACS, which

are annotations marked by radiologists during their routine

work to highlight significant clinical image findings that

would serve as references for longitudinal studies. After analyz-

ing their characteristics, we harvested and sorted them to create

DeepLesion, a dataset with over 32K lesion bounding-boxes and

measurements. DeepLesion is composed of a variety of lesions

and has many potential applications. As a direct application, we

developed a universal lesion detector that can find all types of

lesions with one unified framework. Qualitative and quantitative

results proved its effectiveness.

In the future, we will keep on improving the DeepLesion

dataset by collecting more data and extracting lesion types

from radiology reports. We also plan to improve the universal

lesion detector by leveraging 3-D and lesion type information.
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