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Abstract

This paper presents a novel method for illumination estimation from RGB-D images. The main focus of the proposed method

is to enhance visual coherence in augmented reality applications by providing accurate and temporally coherent estimates of

real illumination. For this purpose, we designed and trained a deep neural network which calculates a dominant light direction

from a single RGB-D image. Additionally, we propose a novel method for real-time outlier detection to achieve temporally

coherent estimates. Our method for light source estimation in augmented reality was evaluated on the set of real scenes. Our

results demonstrate that the neural network can successfully estimate light sources even in scenes which were not seen by

the network during training. Moreover, we compared our results with illumination estimates calculated by the state-of-the-art

method for illumination estimation. Finally, we demonstrate the applicability of our method on numerous augmented reality

scenes.

Keywords Light source estimation · Augmented reality · Photometric registration · Deep learning

1 Introduction

Visual coherence plays an important role in augmented real-

ity (AR) applications. One of the key factors for achieving

visual coherence between virtual and real objects is con-

sistent illumination. In order to render virtual objects with

consistent lighting, we need to have information about real-

world light sources. Therefore, the estimation of real-world

illumination is of high importance for AR.

Typically, real-world illumination can be estimated using

a passive or active light probe positioned in a scene [19,22].

Ideally, light sources would be estimated without the light

probe to avoid the necessity of undesirable objects in the

scene [9,11]. However, the estimation of real illumination

from one image of the scene is a challenging problem, espe-

cially if the light sources are not directly visible in the image.

Past research showed that if no priors are used in light source

estimation from a single image, it is an ill-conditioned prob-

lem [6,25].
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Our method is based on an assumption that prior infor-

mation about lighting can be learned from a large dataset of

images with known light sources. We show that this learned

information can be encoded in a neural network. Such a

trained network can be then used to estimate light sources

during runtime in an AR scene which was not previously

seen by training. We demonstrate that the neural network

can achieve sufficient generality to estimate light in vari-

ous scenes. This generality can be achieved by increasing

the complexity of the network. In order to maintain the con-

vergence of training with increasing network depth and to

avoid a vanishing/exploding gradients problem, we design

our network using residual blocks of convolutional layers

[12]. Previous research showed that it is possible to calcu-

late diffuse lighting in form of an omnidirectional image by

a neural network [9,22]. In the previous work, a neural net-

work was used to calculate the image-to-image relationship

between an input image and the estimated illumination. In

contrast to that, we demonstrate that a neural network can be

trained to directly regress a dominant light direction from an

input RGB-D image.

The varying camera poses in an AR scenario cause prob-

lems for light estimation by a neural network. These problems

are caused by high dimensionality and complexity of input

if a network should handle distinct camera poses in world
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space. We address this problem by regressing a dominant

light direction in form of relative Euler angles φ and θ . These

angles are always relative to a camera pose and therefore

are independent of camera view angle. A dominant light

direction in world space can be then calculated by adding

relative Euler angles of a light source to Euler angles of a

camera.

Once light sources can be estimated from each image of an

AR video stream, discontinuities in the temporal domain may

appear. In order to address this problem, a filtering or outlier

removal needs to be applied in the temporal domain. In this

paper, we propose an efficient method for outlier removal

from a low amount of subsequent samples in the temporal

domain. This method is based on previous research of out-

lier removal in the spatial domain [4], and it is adapted to

the problem of outlier removal from light source estimation

data.

We demonstrate the capabilities of deep learning for light

source estimation in AR by integrating the presented method

into a real-time AR rendering system based on ray tracing. We

also evaluated the results of our method and compare them

to the results of a state-of-the-art method for illumination

estimation [9]. Our results indicate that a deep neural network

can be used to estimate light sources on scenes which have

not been previously seen in the training process.

The main contributions of this paper can be summarized

as follows:

– A novel method for probe-less light source estimation in

AR scenes,

– A novel method for outlier removal in the temporal

domain,

– Evaluation of the proposed methods on multiple real-

world scenes,

– Integration of the proposed methods in an AR rendering

system based on ray tracing.

2 Related work

Light source estimation has been a challenging problem

for researchers in computer graphics for decades. Know-

ing light position in the 3D world is required for many

fields of research including computer vision, image process-

ing and augmented reality. In augmented reality, we can

see two main approaches for obtaining information about

the real illumination in order to achieve consistent light: (1)

inserting active or passive light probes into a scene and (2)

estimating the illumination from the image of the main AR

camera.

Methods based on light probes use either an active camera

with a fish-eye lens or a passive object with known reflectance

properties to capture environmental illumination in real time.

The hemispherical image from the camera with the fish-

eye lens can be used to reconstruct HDR panorama. This

image can be utilized directly for image-based lighting in

AR [16,19,27,29]. The image can be also processed by image

processing methods to identify dominant light sources [8,34].

In case of passive light probes, illumination is captured by

the main camera from the object of known geometry and

reflectance which is inserted into a scene. The most common

passive light probe is a mirror sphere [1,5]. We can also use

a human face as a light probe to capture illumination from

the front-facing camera of a mobile phone [20]. Recently,

Mandl et al. showed that it is possible to utilize an arbitrary

object as a light probe [22]. In their method, a series of neu-

ral networks are trained for a given light probe object. These

networks are then employed to estimate light from a scene

which contains a given light probe object.

The second category of methods (probe-less methods) can

estimate illumination from a main AR camera image without

the need of having an arbitrary known object in the scene.

These methods typically use image features which are known

to be directly affected by illumination. Examples of such fea-

tures are shadows [28], gradient of image brightness [2,3,18]

and shading [10,11,14,21,26,31,32]. Real-world illumina-

tion can be also reconstructed from RGB-D images by

utilizing the estimation of surface normals and albedo [33].

Recent research showed data-driven approaches to address

the problem of light source estimation. These methods typi-

cally use a large datasets of panoramas to train an illumination

predictor. The predictor estimates surrounding lighting (also

represented as a panorama) from a single input image. The

predictor is typically based on finding similarity between an

input image and one of the projections of individual panora-

mas [17]. The predictor can be also automatically learned

from a large dataset and encoded into a neural network

[9,13]. In our method, we also use a deep neural network

to encode a relation between the input image and a domi-

nant light direction. In contrast to prior work, we focus on

delta directional light sources which cause hard shadows and

strong directionality of the light in the scene. Additionally,

we demonstrate direct applicability of our method into an

AR scenario and we also focus on temporal coherence of the

estimated light.

The light source estimation by neural networks can be

also posed as a classification problem. In this case, the space

of light directions is discretized into the set of N classes

and the network classifies an image as one of these classes

[23]. Previous research also showed evidence that dominant

light direction can be directly regressed from an input image

by a neural network [7]. Our research is based on a similar

methodology while we aim at higher complexity of a scene,

temporal coherence and direct application of the network to

an augmented reality scenario.
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3 Light source estimation using deep
learning

Our method for light source estimation uses a deep neural

network to learn a functional relationship between the input

RGB-D image of the scene and a dominant light direction.

This network needs to be trained only once on a variety of

scenes, and then, it can be applied in a new scene with an

arbitrary geometry. We trained our network with an assump-

tion of one dominant light direction in a scene. Therefore, it

works the best on scenes with delta light sources. The pre-

sented method for light source estimation was integrated into

an AR rendering framework and evaluated on several real

scenes (which were not used during training).

An important problem arises when the network needs to

deal with various camera poses for the estimation of light

sources. In this case, the burden of proper registration and

spatial alignment of light sources with the coordinate space

of a camera is posed on the network. During our research,

we found out that including a camera pose into the compu-

tation makes the problem intractable for the network due to

the increased dimensionality and complexity of the problem.

Therefore, we decided to make light source estimation by the

network independent of camera pose and calculate a transfor-

mation to world space after estimation. This can be achieved

by estimating light sources in a coordinate space aligned

with the camera. For this purpose, we model a dominant

light direction in terms of relative Euler angles. These Euler

angles are being calculated in a camera coordinate space to

make the light source estimation independent of a camera

pose. We need only two Euler angles (φ and θ ) to define the

direction of a light source. In our design of the neural net-

work, these two angles are being directly regressed by the

network. As φ and θ are being estimated in the camera coor-

dinate space (i.e., they are relative to camera pose), we still

need to transform them into the world space after estimation.

For this purpose, we express the direction of a camera also

in terms of Euler angles in world space. Then, we sum up the

camera φc angle with the light source φ angle and camera θc

angle with light θ angle to calculate absolute Euler angles of

the light source (φl and θl ) in world space. Finally, we trans-

form the Euler representation of the dominant light direction

into the vector representation (x, y, z) which is directly used

for rendering.

For training of a neural network, we also need to trans-

form the ground-truth light direction from world space into

relative Euler angles. For this purpose, we first calculate a

camera direction in Euler angles φc and θc and subtract those

camera angles from absolute Euler angles of the light direc-

tion φl and θl (calculated in the world space). As a result, we

get the dominant light direction represented as relative Euler

angles. These relative values are used for training of a neural

network. The calculation of relative Euler angles is depicted

Fig. 1 Relative Euler angles φ and θ of dominant light direction which

are regressed by our neural network from an input RGB-D image. The

angles φ and θ are relative to the camera pose C. L denotes a dominant

light direction

in Fig. 1. More formally, a relation between the relative Euler

angles of light (φ and θ ) to the absolute Euler angles of the

camera (φc and θc) and light (φl and θl ) can be written in the

following equations:

φl = φc + φ

θl = θc + θ
(1)

Network structure Our network for light source estimation is

using residual blocks of convolutional layers to avoid the

problem of vanishing or exploding gradients [12]. These

blocks use a shortcut connection from the beginning to the

end of a block to let the network learn only a residual value

from an original input. The shortcut connection and the result

of a block are merged by an addition operation. The struc-

ture of our network for light source estimation is depicted

in Fig. 2. The network starts with an input image of size

160 × 120 × 4. Four dimensions represent RGB-D image

channels. The input layer is followed by a convolutional layer

with 64 kernels of size 7 × 7. This layer also uses strides to

halve image size. The network continues with a max pooling

layer which again halves the resolution. Then, the network

contains 48 convolutional layers organized into 16 residual

blocks. These residual blocks have an increasing number of

kernels (denoted by dotted connections in Fig. 2. The convo-

lutional layers are followed by an average pooling and by four

fully connected layers with a decreasing number of neurons.

All layers in the network have ReLu [24] activation func-

tion except the last two dense layers. The last layer regresses

directly relative Euler angles of light direction φ and θ .

Training data Deep neural networks require large amount of

data to be able to accurately regress a target function. During

our research, we trained our network on a synthetic dataset

which was rendered using Monte Carlo path tracing. Syn-

thetic data contain five simple scenes which were rendered

with a random light source position and a random camera

position. A camera viewing direction was rotated toward the
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Fig. 2 The structure of the used

residual neural network.

Shortcuts for residual blocks

[12] are indicated by curved

arrows. Shortcut connections

from the beginning to the end of

blocks ensure that inner

convolutional layers will

compute a residual value. Dotted

shortcuts mark the increase in

dimensionality. Blocks with

different dimensions are

highlighted by different colors.

All activation functions are

ReLu except the last two layers

which contain linear activations.

Each layer indicates the size of a

kernel for convolution as well as

the number of kernels. Fully

connected layers (fc) indicate

the number of neurons

center of a scene. The synthetic dataset consists of 23,111

images. 3D objects used for the creation of the synthetic

dataset are shown in Fig. 3.

In addition to synthetic data, we experimented with a real-

world dataset which was captured in multiple indoor spaces

using multiple measured light source positions and a tracked

RGB-D camera. This real dataset contains 5650 images from

six real scenes. During our experiments, we found out that the

network converged much better on the synthetic dataset than

on the real one. Moreover, a very interesting finding was that

the network trained on the synthetic dataset performs also

better in a real-world AR scenario than the network trained

on the real dataset. The network trained on the real dataset

did not converge properly and performed poorly in AR. We

hypothesize that the amount of noise present in depth images

was too high for the training process. Due to bad performance
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Fig. 3 3D models used for generation of synthetic training images. Each

scene was rendered many times with variable light source direction and

camera position. The numbers of rendered images per each scene are

indicated in lower left corners of the images

of real data in the training and test scenarios, we decided

to use only the synthetic dataset for training of our neural

network. Moreover, we performed an experiment of training

the network with RGB data only while omitting depth data.

In this experiment, the network performed poorly in an AR

test scenario. Therefore, we decided to use RGB-D data for

all subsequent experiments.

Training A stochastic gradient descent optimizer was used

for training our neural network. We trained multiple net-

works with varying learning rates, and finally, we selected

the one with the lowest training error. In case of our light

source estimation network, the learning rate 0.00004 led to

the lowest error and the best performance. A loss function

used for an optimization was mean squared error between

a ground-truth light direction and an estimated light direc-

tion. We used zero-mean normalization on the whole dataset

before training. Training was done with batch size 32. We

used 200 epochs to train the network. The order of input

data for training was randomized. We evaluated the results

of the network in terms of both mean squared error and the

real-time AR application to assess applicability to the light

source estimation in real conditions.

4 Temporal coherence

In order to apply single-image light source estimation to an

AR system with live video stream, we need to ensure that

the estimated illumination will be coherent in the tempo-

ral domain. As the neural network estimates light for each

frame separately, we need to filter the estimated light direc-

tion in real time. To achieve temporal coherence, we apply

outlier removal and temporal smoothing. These two meth-

ods are both combined into one filtering algorithm. Our

algorithm is inspired by previous work in outlier removal

from 2D vector fields by utilizing neighborhood constraint

and smooth-change constraint [4]. We adapt this method

to operate in the 1D temporal domain instead of the 2D

spatial domain. We observe that neighborhood constraint is

represented by the first derivative and the smooth-change

constraint is represented by the second derivative of the vec-

tor field. As we operate in the 1D temporal domain, the first

derivative can be approximated as a difference between sub-

sequent frames and the second derivative as difference in the

first derivatives (Eqs. 2 and 3).

∂l(i)

∂t
≈ l(i) − l(i − 1) (2)

∂2l(i)

∂t2
≈

∂l(i)

∂t
−

∂l(i − 1)

∂t
(3)

l(i) represents a dominant light direction in the i th frame.

∂t stands for a derivative in temporal domain. Our algorithm

records N last light source estimates in time and uses them

for filtering. Firstly, the first and second derivatives are cal-

culated (Eqs. 2, 3) on these N estimated directions. Then,

we classify a light source estimate as an outlier if the first

derivative is higher than the neighborhood threshold and if

second derivative is higher than the smooth-change thresh-

old. Both thresholds must be exceeded to report an outlier. In

our implementation, we empirically set both neighborhood

and smoothing thresholds to value 0.1. We found these values

to work best during our experiments.

After each light direction from the last N frames is classi-

fied as inlier or outlier, we calculate a resulting light source

direction as an average of all inliers. This averaging enables

temporal smoothing of the estimated light direction. We

empirically set N to value 6 in our experiments.

5 Rendering

When the light source of a real scene can be estimated for

each frame, we need to integrate this algorithm into an AR

scenario. In our experiments, we used an RGB-D camera

Microsoft Kinect and we integrated it into an AR rendering

system based on real-time ray tracing [15]. ARToolKitPlus

[30] marker-based tracking is used to track the RGB-D

camera in a real scene. The light source estimation runs asyn-

chronously in a separate thread, and it always uses the last

frame from the RGB-D camera to estimate a dominant light

direction. This estimated light direction is then used in the

ray-tracing system to illuminate virtual objects. As both ren-

dering and light source estimation run in interactive time, the

light reflections, shadows and caustics are always adapted

to the light direction in the real world. Therefore, consis-
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Fig. 4 Our AR system uses an input RGB-D image (left) to estimate

light sources by neural network and to track a camera pose with respect

to an AR marker. The estimated light source and camera pose are used in

a rendering system to calculate the final AR image (right) with consis-

tent illumination between real and virtual objects. A 3D printed model

of the dragon was used in the real scene. Please note the consistent

direction of shadows cast by the real dragon and virtual objects

Fig. 5 Depth data from RGB-D contain holes (red pixels) around edges

of objects (left). The holes are filled by using information from neigh-

borhood valid pixels (right). The scene contains a tripod and a box

tent illumination between real and virtual objects is achieved

(Fig. 4).

Depth image processing Depth data from a Kinect camera

typically contain holes (with no information) around the

edges of objects or in areas with specular materials. In order

to improve input data for light source estimation during run-

time, we utilize a hole-filling algorithm. The holes of each

depth frame are filled by information from neighborhood

valid pixels. For this purpose, we employ a flood-fill algo-

rithm. Using this algorithm, we achieve a depth image fully

populated with depth data. The comparison of a depth image

without and with the post-processing is shown in Fig. 5. The

hole-filling algorithm improves the results of light source

estimation by our neural network.

6 Evaluation and results

We evaluated our method for light source estimation on the

set of test scenes. These scenes were not seen by the network

in the training process. All test scenes contain data from real

world captured by an RGB-D camera. The results of esti-

mated dominant light were compared to a state-of-the-art

method for light source estimation by deep learning [9] and

to a ground truth. The ground-truth light direction was mea-

sured by physical measurements of distances in x, y and z

coordinates to the reference point of coordinate space (the AR

marker). Despite the fact that our network was only trained

on the synthetic dataset, we hypothesize that it can be used on

real-world data. The test dataset for evaluation of our method

contains five real scenes (Fig. 6). The comparison with the

state of the art [9] was made by calculating the angular error

to the ground-truth light direction and by rendering virtual

objects in AR using an estimated light source. The method

of Gardner et al. [9] estimates the illumination in form of a

light probe. In order to compare their results with ours, we

need to extract a dominant light direction from the result-

ing light probe image. Typically, this image contains one or

more areas with overexposed pixels. These areas correspond

to the directions of dominant light sources. In order to get a

single direction, we first calculate a centroid for each of these

overexposed areas and then we select the one which is the

closest to the ground-truth light direction. We compare this

extracted direction with the result of our method in terms of

angular error to the ground truth.

The results of the evaluation are shown in Fig. 6 and

Table 1. The results indicate that our method achieves higher

accuracy of an estimated light direction than the compared

state-of-the-art method in four scenes and the compared

method is better in one of the tested scenes. The results of

AR renderings with light direction estimated by our method,

by the compared method and with ground-truth light direc-

tion, are shown in Fig. 6. We can see that for all scenes our

method estimates light direction which is visually acceptable

and comparable with a real scene illumination (i.e., the shad-

ows of virtual and real objects are consistent). The results
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Fig. 6 The comparison of AR renderings with illumination estimated

by our method (left column) and the state-of-the-art method from

Gardner et al. [9] (middle column). Rendering with ground-truth light

direction is shown in the right column. Scenes contain the following

real objects from top to bottom: cactus, ping-pong racket, 3D-printed

dragon, fan and humidifier. In the scene with fan, the method of Gardner

at al. estimated a dominant light direction with negative z coordinate.

Therefore, the dragon appears dark
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Table 1 The comparison of our method to algorithm from Gardner

et al. [9]

Scene Our method Gardner et al.

Angular error Angular error

Cactus 26.8 31.6

Ping-pong racket 25.1 43.1

Dragon 27.1 36.8

Fan 31.9 97.2

Humidifier 31.3 25.7

Average error 28.4 46.9

Numbers represent angular errors to the ground-truth light directions

(i.e., the angle between estimated light direction and measured light

direction), measured in degrees. The method of Gardner et al. uses only

an RGB image, while our method utilizes RGB-D data

of our evaluation support our hypothesis that the network

trained on synthetic dataset can successfully estimate light

direction also on real-world data. Additionally, the results

show that a deep neural network can estimate light direction

in scenes which were not seen in a training process.

In our evaluation, we also measured the performance of

our method on a synthetic dataset. For this purpose, we ren-

dered a new dataset which consists of 7097 images. The

scene with a cone model was used in this case. A similar

scene was also used in training, but the test data were ren-

dered with new viewpoints and light source positions which

were not used during training. We calculated the average

angular error of estimated light direction. All images from

the new rendered dataset were used for this evaluation. The

resulting error is 20.4◦. This result indicates that the trained

neural network performs well also on synthetic data under

new viewpoints.

The above-discussed evaluations were performed in an

environment with controlled light. We were also interested

to investigate the performance of our neural network in a

scene with natural (uncontrolled) illumination. For this pur-

pose, we ran an experiment in an office scene lit by sunlight

through a window. In this scenario, we measured the position

of the window with respect to an AR marker to represent a

reference light direction. We compared our result with the

method of Gardner et al. [9]. The results of this experiment

are shown in Fig. 7. The rendering with the estimated light

direction indicates correct estimation of light by our method.

(Virtual shadows are consistent with the real ones.) This posi-

tive result is also supported by the projection of the estimated

light direction into the captured light probe (Fig. 7 red dot

in the ground-truth environment). The light probe image was

captured by a camera with fish-eye lens (185◦ field of view),

and it represents the upper hemisphere of incoming light. Our

method calculated the light direction with an angular error of

21.7◦. The compared method performed better in this scene

(Angular error of 12◦). Nevertheless, the result of this exper-

Fig. 7 The evaluation of our method in a scene with uncontrolled natu-

ral illumination. The image shows an input image, AR rendering using

a reference light direction, the result of our method and the result of

Gardner et al. [9]. The ground-truth environment map shows the sur-

rounding environment (upper hemisphere) in the scene. The red dot

indicates the light direction estimated by our method. The environment

map estimated by Gardner et al. correctly identifies the light from the

window. Please note that two environment maps are not aligned in ele-

vation angle because the ground truth was captured in world space,

while Gardner et al. estimates the environment in camera space

iment suggests that our method performs well also in scenes

with arbitrary uncontrolled lighting.

In addition to single-image light source estimation, we

evaluated our method for temporal filtering and outlier

removal on a live AR stream. We captured the video of a scene

with a moving light source, and we evaluated our light source

estimation with and without temporal filtering in comparison

with ground-truth data. In this evaluation, an average angular
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error was 41◦ without temporal filtering and 38.3◦ with tem-

poral filtering. The results suggest that our method achieves

higher temporal coherence (and lower average error) when

temporal filtering is used. Additionally, the example of our

method for light source estimation with temporal filtering is

given in supplementary video.

Finally, we measured the calculation time of our method.

The neural network processing and whole light source esti-

mation with AR integration were measured separately to

provide detailed analysis. Calculation times were calculated

as averages of multiple measurements. A computer with a

hexa-core 3.2 GHz processor and NVIDIA Titan Xp graphics

card was used for time measurements. Light source esti-

mation by the neural network was executed on the CPU

because the GPU was fully utilized by ray tracing. The aver-

age time of light source estimation by the neural network

was 380 ms. In our implementation, light source estima-

tion and AR rendering were represented by two services.

Therefore, a communication overhead between them also

influences the update rate of estimated light. The average

time for communication between the rendering and illumi-

nation estimation was 50 ms. In the future, this overhead can

be reduced by integration of both algorithms into one stand-

alone system. The AR rendering is running asynchronously

and therefore is independent of the light estimation speed.

With ray-tracing-based rendering, we achieved an average

rendering time of 58ms. The results indicate that processing

by the neural network achieves interactive speed suitable for

AR applications.

7 Discussion

The results of our evaluation show that the trained neural net-

work is capable of estimating illumination from real scenes

which were not used during training. Moreover, an interest-

ing finding was that training on a synthetic dataset leads to

better convergence than on real-world data and to better per-

formance in AR. We hypothesize that bad performance of

training with real-world data was caused by insufficient vari-

ability of light positions and by a high level of noise in depth

data.

The results also indicate that in average our method

performs better in the estimation of delta light sources

than the method of Gardner et al. [9]. The average error

of our method to ground-truth light direction was 28.4◦,

while the average error of the compared method was 46.9◦.

Nevertheless, it is important to note the compared method

is also capable of estimating an omnidirectional light source

which is important for scenes with diffuse lighting. There-

fore, we see both methods rather as complementary than

competitive.

Fig. 8 Light source estimation by our method when light comes from

a direction opposite to a camera. Left image shows correct estimate of

light direction by our method. In some cases, the method estimates light

incorrectly (right)

Limitations and future work Our method works well in many

tested AR scenes. However, in some special cases the net-

work does not estimate a light direction correctly. This is

often the case if a light source is positioned opposite to a

camera. In this case, the uncertainty of the network can be

observed (Fig. 8). We hypothesize that this uncertainty is

caused by discontinuity in yaw angle on the direction oppo-

site to the camera. This angle can be represented as both

π and −π . Therefore, the network cannot find a continuous

transition from one side to another. In the future, this problem

can be addressed by using a different representation of the

light direction. For example, the relative direction (x, y, z)

in the camera coordinate space can be used.

Another limitation of the network, trained on synthetic

data, can be caused by a domain gap between real-world

and simplistic synthetic data. As a consequence, the net-

work might not operate properly in complex real scenes.

This problem can be addressed in the future by two solu-

tions: The first one is to create complex synthetic scenes

which mimic the real world as close as possible. The second

direction is to improve quality of the capturing process and

use high-quality real-world data to do additional training of

the network.

An interesting direction for future work will be training of

a network which will operate in both the spatial (2D image)

and temporal domain. Such a network might calculate light

estimates which are already temporally coherent and there-

fore additional filtering in the temporal domain would not

be needed. Additionally, as real scenes often contain more

than one light source, we also aim in future work at train-

ing a deep neural network which can estimate multiple light

sources.

Finally, the exploration of a wide space of various network

designs would be vital for finding the best design for a given

problem. We explored many possible network designs during

this research, and we found the network in Fig. 2 to work the

best in our experiments. Nevertheless, the automatic explo-

ration of design space of neural networks would be beneficial

for finding the most appropriate model for various problems.
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8 Conclusion

This paper presents a novel method for delta light source esti-

mation in AR. An end-to-end AR system is presented which

estimates a directional light source from a single RGB-D

camera and integrates this light estimate into AR rendering.

The rendering system superimposes virtual objects into a real

image with consistent illumination using the estimated light

direction. Moreover, temporal coherence of light source esti-

mation is achieved by applying outlier removal and temporal

filtering. We evaluated the proposed methods on various AR

scenes. The results indicate that the proposed neural net-

work can estimate a dominant light direction even on scenes

which were not seen by the network during training. Finally,

our evaluation shows that our method can be a beneficial

complement to the methods estimating diffuse lighting to

faithfully estimate all frequencies of illumination in AR.
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