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Abstract

In the clinic, resected tissue samples are stained with
Hematoxylin-and-Eosin (H&E) and/or Immunhistochem-
istry (IHC) stains and presented to the pathologists on
glass slides or as digital scans for diagnosis and assess-
ment of disease progression. Cell-level quantification, e.g.
in IHC protein expression scoring, can be extremely in-
efficient and subjective. We present DeepLIIF (https:
//deepliif.org), a first free online platform for ef-
ficient and reproducible IHC scoring. DeepLIIF outper-
forms current state-of-the-art approaches (relying on man-
ual error-prone annotations) by virtually restaining clinical
IHC slides with more informative multiplex immunofluores-
cence staining. Our DeepLIIF cloud-native platform sup-
ports (1) more than 150 proprietary/non-proprietary input
formats via the Bio-Formats standard, (2) interactive ad-
justment, visualization, and downloading of the IHC quan-
tification results and the accompanying restained images,
(3) consumption of an exposed workflow API programmat-
ically or through interactive plugins for open source whole
slide image viewers such as QuPath/ImageJ, and (4) auto
scaling to efficiently scale GPU resources based on user
demand.

1. Introduction

Single cell protein expression quantification by pathologists
and researchers in digital pathology serves a critical role in
characterizing tissue microenvironment (TME) for clinical
diagnostics to guide patient therapy as well as for develop-
ing research predictive and prognostic biomarkers. How-
ever, there are widely reported variations in manual sin-
gleplex/protein immunohistochemistry (IHC) scoring, even
between experienced pathologists, that can negatively im-
pact patient outcomes. Research multiplex imaging plat-
forms can overcome these variations by allowing detection
and co-visualization of multiple protein markers in a single
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Figure 1. Brightfield Hematoxylin-Eosin (H&E) and single-
plex/protein immunohistochemistry (IHC) stains are cheap, high
throughput, and clinically deployed. Multiplex IHC staining, still
in the research phase, allows detection and co-visualization of
multiple protein markers, providing deeper characterization of tis-
sue microenvironment. DeepLIIF bridges the gap between clinic
and research to create more informative representations for diag-
nosis and assessment of disease progression.

tissue sample for more precise scoring of protein markers-
of-interest in TME. An example of the visual difference be-
tween H&E, IHC, and multiplex stains is shown in Figure 1.

There are several open source tools for segmenting cells
in pathology slides stained with H&E (Hematoxylin &
Eosin), IHC (Hematoxylin + brown DAB substrate), and
multiplex [5]. These tools are available as (1) web apps
(easiest to run with no prerequisite computational exper-
tise), (2) plugins for image analysis toolboxes (mandates
familiarity with these toolboxes), (3) coding notebooks (re-
quires basic coding skills), and (4) code-based pipelines (re-
quires significant coding expertise). In this demonstration
paper, we focus on tools that are available as web apps and
hence are accessible to a broad audience, including both im-
age analysis experts and non-experts.

There are currently three tools that are available as web
apps, namely DeepCell (https://deepcell.org/)
[2, 6], Cellpose (https://www.cellpose.org/) [7],
and NucleAIzer (https://www.nucleaizer.org/)
[3]. DeepCell and Cellpose focus on nuclei and cyto-
plasm segmentation in multiplex images whereas Nucle-
Alzer can segment nuclei across H&E, IHC, and multi-
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Figure 2. System design diagram for the DeepLIIF online platform deployed on AWS. The application is running on an Elastic Container
Service (ECS) cluster with auto scaling. The Web App service handles requests through the https://deepliif.org website, and uses an S3
bucket to store images uploaded by the user, along with the resultant inference images and post-processed images. The API service runs
the actual DeepLIIF model and performs post-processing on the images. The Web App communicates with the API service running on the
same machine. Direct programmatic access to the API is possible, allowing for the creation of an ImageJ plugin.

plex images (via style transfer). DeepCell and Cellpose can
also perform H&E and IHC nuclei segmentation if these
are provided as grayscale images. DeepCell is the only
tool among the above three that allows interaction with
the segmented results via the DeepCell-Label web module
(https://label.deepcell.org/). The Cellpose
web app allows 512× 512 input patches whereas DeepCell
restricts input to 2048 × 2048 pixels in order to output re-
sults in a reasonable amount of time (less than a minute).

None of the above web apps perform both cell segmen-
tation and classification simultaneously. In brightfield H&E
and IHC slides, the two channels (Hematoxylin and Eosin
in H&E and Hematoxylin and DAB in IHC) cannot be visu-
alized or analyzed separately without performing the neces-
sary digital stain deconvolution pre-processing step. This
is not the case with the research multiplex immunofluo-
rescence platforms, for example, that output each marker
as an independent channel that can be visualized and ana-
lyzed separately or as composites. Leveraging this insight,
we developed DeepLIIF (published in Nature Machine In-
telligence [1]) for virtual multiplex immunofluorescence
restaining of standard IHC slides that performs stain de-
convolution and cell segmentation/classification in a single
step to output clinically relevant IHC scores (mostly quanti-
fied as relevant DAB brown cells divided by the total cells).
We showed that DeepLIIF, trained on co-registered IHC and
multiplex immunofluorescence images, not only achieves

state-of-the-art results in IHC nuclear protein marker scor-
ing (Ki67, ER, PR, P53) but also works out-of-the-box for
H&E nuclei segmentation as well as cytoplasmic markers
(that are expressed close to the nuclei, e.g. CD3/CD8).

This demonstration paper accompanies our Nature Ma-
chine Intelligence manuscript [1]. Specifically, here we
present the DeepLIIF cloud-native platform which supports
(1) more than 150 proprietary/non-proprietary input formats
via the Bio-Formats standard, (2) interactive adjustment,
visualization, and downloading of the IHC quantification
results and the accompanying restained images, (3) con-
sumption of an exposed workflow API programmatically or
through interactive plugins for open source whole slide im-
age viewers such as QuPath/ImageJ, and (4) auto scaling to
automatically and efficiently scale GPU resources based on
user demand.

2. System Design

Our DeepLIIF cloud native platform is hosted on Ama-
zon Web Services (AWS). It is deployed using an Elastic
Container Service (ECS) cluster powered by an Auto Scal-
ing group to automatically adjust resources to demand. An
Amazon S3 bucket is used for cloud storage for images up-
loaded through the website interface and the corresponding
results. An overview of our system design architecture is
shown in Figure 2.

https://label.deepcell.org/


(a) Image upload. (b) Image verification. (c) Results view.

Figure 3. DeepLIIF website interface. (a) The DeepLIIF homepage, where the user has the option to upload their own image, or select
one of several sample images to process. (b) Choice of resolution (10×, 20×, or 40×) along with preview of uploaded image. (c) Results
page, showing the inferred modalities, segmentation, and IHC quantification score. The user can also download the full resolution inferred
images and quantification scores, as well as leave feedback.

We have three services, each running in Docker Contain-
ers for ease of portability:

• Web App service for front-end website content.

• API service for back-end data processing.

• Nginx reverse proxy to serve requests.

Both the web application and the API are packaged us-
ing Flask. The API service requires use of a CUDA-enabled
NVIDIA GPU with at least 4GB of video memory in or-
der to run the DeepLIIF inference model. To meet this re-
quirement, the Auto Scaling group spins up Elastic Com-
pute Cloud (EC2) G4dn machines, each with a single GPU.
Each machine that is started contains all three services, with
the web service communicating with the API service on the
same machine.

Web App Service. The Web App service serves all of the
front end website content for each page of our web appli-
cation. Additionally, user input is handled by this module,
including verifying that uploaded files are valid images and
within the specified limit of 3000 × 3000 pixels. All con-
nections to our S3 cloud storage bucket occur from this ser-
vice, including both the original uploaded image and the
inference results returned by the API service.

API Service. The API service handles all of the back
end computational tasks, including the DeepLIIF model,
segmentation post-processing, and quantification. Splitting
these computational tasks into a separate service allows the
website interface to remain responsive to user requests even
during long running processes. In addition to providing
back-end service for the DeepLIIF website, the API can also
be accessed programmatically, allowing users to write and
integrate their own code. This capability has also facilitated
our ability to develop a plugin that can be used to access
DeepLIIF directly from within the ImageJ application.

Input Images. We utilize Bio-Formats [4] for reading the
input image, which allows our application to support over
150 image formats, including all standard formats in the
digital pathology domain. To maintain an acceptable pro-
cessing time and ensure equitable usage of resources, input
data is currently limited to images of size no greater than
3000 × 3000 pixels. Since the website handles a series of
separate requests across a session, the image data is stored
in an S3 bucket. Similarly, the result images and quantifi-
cation are stored in the S3 bucket to allow for interaction
and downloading of the complete result package. Images
uploaded to the API are not stored in the cloud (and neither
are the corresponding results), since the API consumer is
responsible for handling all of the data.



License Agreement Upon the first visit to the DeepLIIF
website in a session, the user is presented with the Terms
of Use for the website and results. Memorial Sloan Ketter-
ing Cancer Center (MSK) makes no warranties as to the
accuracy of the results. Submitted images must be the
property of the user uploading said images, and MSK re-
serves the right to copy and use any submitted images as
desired. Submitted images should not contain and person-
ally identifiable information (PII) or personal health infor-
mation (PHI). DeepLIIF content and results are for per-
sonal and academic research only, and may not be used in
any commercial setting. The underlying DeepLIIF project
(https://github.com/nadeemlab/DeepLIIF)
is licensed under the Apache 2.0 with Commons Clause li-
cense, and is available for non-commercial academic pur-
poses.

3. User Experience
We provide three methods with which users can access the
capabilities of the online DeepLIIF platform. The first is
through an ordinary website interface, where users can up-
load images, view/download results, and visualize and in-
teract to adjust the quantification score. For users seeking
a more automated approach, we have exposed an API end-
point which can be accessed programmatically. Addition-
ally, we have utilized this endpoint to create an ImageJ plu-
gin, allowing users to access DeepLIIF directly within the
ImageJ application.

Website Interface

The DeepLIIF platform is made available through a con-
ventional website user interface, which requires only a
standards-compliant modern web browser and no other
client software to be installed. The steps in using the web-
site to upload and obtain the results from the DeepLIIF
model are shown in Figure 3. These figures show the ap-
pearance of the site for desktop users, though the interface
is fully responsive and can be used on any device. The gen-
eral steps for a user on the website include:

1. Upload a digital pathology image.

2. Verify thumbnail and select image resolution.

3. View/download image and quantification results.

4. Interactively adjust the segmentation and update the fi-
nal results.

Image Upload. The homepage for DeepLIIF (Figure 3a)
provides the user with the option to upload an image either
through drag and drop on the target area or via a File Upload
dialog box. Users can also choose from one of the sample
images below the upload area if they want to try out the

system but do not have their own pathology images. Pre-
calculated results are not used for the sample images, so if a
sample is selected, it is processed through the same pipeline
as any image uploaded by a user would be. Once a file or
sample is selected, the image is automatically sent to the
server for verification.

Image Verification. Once the uploaded image has been
verified by the server as an image and within the required
size (currently limited to 3000×3000 pixels), the image data
(without any metadata from the original upload) is stored in
our S3 bucket. A thumbnail is generated and returned for
display in the interface (Figure 3b). The user can verify that
the image appears as expected, and is given the option to
choose the resolution (magnification level) used when the
image was captured (10×, 20×, or 40×). Once the user is
ready, processing through DeepLIIF begins.

Results View. Once the DeepLIIF model has run and
post-processing is completed, the results view is presented
to the user (Figure 3c). Thumbnails of the result inferred
modalities (and original upload) are displayed, along with
the classified segmentation outlines overlaid on the original
image. The inferred modalities that are displayed include
the protein marker, hematoxylin, DAPI, and Lap2 images.
Beneath these thumbnails are the scoring results, including
the total number of nuclei, the number of positive cells, and
the percentage of positive cells. For further inspection and
records, all of the full resolution images (along with the
scoring results) can be downloaded in a single ZIP file. At
the bottom of the page, a feedback form is provided so that
the user can leave comments specifically about the image
that was processed, which will allow us to retrospectively
evaluate the performance of our system.

Interactive Adjustment. In addition to the automatic re-
sults provided by DeepLIIF, our online platform provides
an interactive tool with which the user can adjust the seg-
mentation results, and thus the quantification results. This
view also allows the user to visualize the results in multiple
ways, such as with or without segmentation outlines and
various combinations of inferred multiplex data. The user
can adjust the segmentation threshold and perform size gat-
ing on the image. A visual preview of the adjustments is
shown in the page as the sliders are moved, implemented in
JavaScript and using web workers for distributed processing
to yield real-time performance even at the highest supported
image resolution of 3000×3000. When the user is satisfied
with the preview segmentation overlay, a button is clicked
to perform the full update on the server for both the seg-
mentation image and the quantification. The user can also
download these updated results, if desired. The interface for
this interactive adjustment is shown in Figure 4.

https://github.com/nadeemlab/DeepLIIF


(a) Original IHC with segmentation. (b) Inferred multiplex DAPI + Ki67 + Lap2. (c) Inferred DAPI + Ki67 with segmentation.

Figure 4. User interaction and multiplex visualization. The user can interactively adjust the segmentation threshold and perform size
gating. The on-screen preview will update in real time to show the new cell segmentation based on the adjustments, and the IHC score
can then be updated with these user-specified parameters. User controlled visualization of the inferred multiplex data is also provided.
(a) Original IHC image with segmentation outlines. (b) Inferred multiplex image of DAPI + Ki67 + Lap2. (c) Inferred multiplex image of
DAPI + Ki67 with segmentation outlines.

Multiplex Visualization In addition to the segmentation
overlay on the original IHC image, we also provide an in-
ferred multiplex view which is user controlled. The user
can combine and adjust the following three inferred multi-
plex modalities, which are part of the DeepLIIF results:

• Protein marker, indicating IHC positive cells.

• DAPI stain, highlighting cell locations.

• Lap2 stain, highlighting cell boundaries.

These inferred multiplex images help the user to view
the cellular data without background noise and evaluate the
accuracy of the segmentation results. Each of these modal-
ities can be toggled on or off, and the double slider can be
used to adjust the histogram normalization window for each
marker/stain channel. Additionally, the user can toggle the
segmentation outlines on or off for both the inferred multi-
plex view and the original uploaded image view.

As an example, the combination of DAPI + Lap2 + Ki67
without the segmentation outlines (Figure 4b) allows the
user to compare against the original IHC image to confirm
that the DeepLIIF model is accurately identifying the indi-
vidual cells along with protein markers. The combination
of DAPI + Ki67 with the segmentation outlines (Figure 4c)
allows the user to confirm the accuracy of the cell segmen-
tation and classification.

API Endpoint

The image inference can also be accomplished through an
API endpoint, giving users programmatic access to the in-
ferred modalities, segmentation, and quantification results.
This is accessed by posting a multipart-encoded request
containing the original image file to the /api/infer end-
point. The response is JSON encoded data including an ar-
ray of images with the results of the DeepLIIF model and
the quantification scoring values. The result images are
Base64 encoded Portable Network Graphics (PNG) image
data, allowing them to be easily viewed or saved locally.
The following query parameters can be passed:

• resolution (string): resolution used to scan the
slide (10×, 20×, 40×); defaults to 20×.

• pil (boolean): if true, use the Python Imaging Li-
brary to load the image instead of Bio-Formats. For
common image formats, this will reduce the time re-
quired to read the image on the server.

• slim (boolean): if true, return only the segmentation
result image. This will reduce the amount of data that
is returned.

A Python code sample showing how to access and obtain
results from this API is given in Code 1.



(a) Select a region of interest (ROI). (b) DeepLIIF results for ROI. (c) Interactive adjustment.

Figure 5. ImageJ plugin. (a) A user has selected a region of interest (ROI), outlined in yellow, using the ImageJ freehand selection tool.
(b) After running the DeepLIIF plugin to submit the image region and obtain the results, the segmentation and scoring for the ROI are
displayed. (c) The user can invoke the interactive adjustment command of the plugin to adjust the results, as is possible on the DeepLIIF
website.

ImageJ Plugin

The API endpoint also allows integration of our platform
into open source whole slide viewers, such as QuPath/Im-
ageJ, through custom plugins. We have developed and made
available an ImageJ plugin which allows users to easily sub-
mit images and obtain results from the DeepLIIF cloud plat-
form. This plugin provides a user experience that is similar
to that of the website, but with the user able to take ad-
vantage of the additional tools provided by ImageJ. For ex-
ample, Figure 5 shows DeepLIIF being run on a region of
interest (ROI) that a user has selected within an image. All
of the inferred image results, along with the scoring results,
are saved as local files.

4. Limitations and Future Work

Currently, we enforce a limit on the size of uploaded im-
ages to no larger than 3000 × 3000 pixels. As we con-
tinue to improve the performance of our model, we will
increase the size of images which are allowed. Moreover,
at present we expect users to use our ImageJ/QuPath plugin
to open whole slide images, crop regions of interest (nor-
mally tumor regions) for IHC scoring, and upload to the
DeepLIIF platform. Users can obviously crop regions of in-
terest in other whole slide image viewers and upload these
manually as well. Our eventual goal is to incorporate an
open source whole slide image viewer (e.g. HistomicsUI,
https://digitalslidearchive.github.io/
digital_slide_archive/) into the web interface,
which will allow users to upload a whole slide image, anno-
tate one or more regions of interest, and then process those
selected regions to obtain the inferred modalities and quan-
tification.

Our platform currently only supports nuclear markers
(such as Ki67, ER, PR) and cytoplasmic markers (e.g.
CD3/CD8) that express close to the boundary of the nuclei.
In the future, we also plan to support cytoplasmic/mem-
branous IHC protein markers, such as PD-L1, HER2, etc.
We invite readers to visit our online platform at https:
//deepliif.org, which will be under continuous de-
velopment as we refine our model and add additional fea-
tures.
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