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Abstract

Motivation: The prediction of eukaryotic protein subcellular localization is a well-studied topic in

bioinformatics due to its relevance in proteomics research. Many machine learning methods have

been successfully applied in this task, but in most of them, predictions rely on annotation of homo-

logues from knowledge databases. For novel proteins where no annotated homologues exist, and

for predicting the effects of sequence variants, it is desirable to have methods for predicting protein

properties from sequence information only.

Results: Here, we present a prediction algorithm using deep neural networks to predict protein sub-

cellular localization relying only on sequence information. At its core, the prediction model uses a

recurrent neural network that processes the entire protein sequence and an attention mechanism

identifying protein regions important for the subcellular localization. The model was trained and

tested on a protein dataset extracted from one of the latest UniProt releases, in which experimen-

tally annotated proteins follow more stringent criteria than previously. We demonstrate that our

model achieves a good accuracy (78% for 10 categories; 92% for membrane-bound or soluble), out-

performing current state-of-the-art algorithms, including those relying on homology information.

Availability and implementation: The method is available as a web server at http://www.cbs.dtu.

dk/services/DeepLoc. Example code is available at https://github.com/JJAlmagro/subcellular_local

ization. The dataset is available at http://www.cbs.dtu.dk/services/DeepLoc/data.php.

Contact: jjalma@dtu.dk

1 Introduction

Proteins fulfil a wide diversity of functions inside the various com-

partments of eukaryotic cells. The function of a protein depends on

the compartment or organelle where it is located, as it provides a

physiological context for its function. However, aberrant protein

subcellular localization can affect the function that a protein ex-

hibits and contributes to the pathogenesis of many human diseases;

such as metabolic, cardiovascular and neurodegenerative diseases,

as well as cancer (Hung and Link, 2011). Therefore, predicting the

subcellular localization of the proteins is an essential task which has

been extensively studied in bioinformatics (Emanuelsson et al.,

2007; Imai and Nakai, 2010; Wan and Mak, 2015).

Most of the current machine learning methods for subcellular lo-

calization prediction extract a fixed number of features from the

protein sequences and use this fixed length representation as input

to a non-linear classifier such as a support vector machine (SVM).

However, sequence-based models, which process one position at a

time, are more natural for this task as they can learn and make infer-

ences from input of varying length. Unfortunately, these models

have not been competitive with non-linear classifiers up until
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recently. In this paper we take advantage of progress in deep learn-

ing, specifically recurrent neural networks (RNNs) with long short-

term memory (LSTM) cells, attention models and convolutional

neural networks (CNNs), to propose an end-to-end sequence-based

model. LSTMs contain memory cells that can hold information

from past inputs to the network for in principle an arbitrary number

of positions (Hochreiter and Schmidhuber, 1997). Attention

(Bahdanau et al., 2014) makes it possible to detect sorting signals in

proteins regardless of their position in the sequence. In addition,

CNNs are able to train filters that detect short motifs in the input se-

quence irrespectively of where they occur, and have shown promis-

ing performance for protein subcellular localization when combined

with LSTMs (Sønderby et al., 2015). We also propose a hierarchical

tree likelihood mimicking the biology of the sorting pathway and a

transfer learning approach to jointly predict subcellular localization

and whether the protein is membrane-bound or soluble.

In the following we discuss some of the caveats with the datasets

used in previous subcellular localization tools. First, many methods

use homology information for prediction, either by directly using

annotated subcellular location annotations of retrieved hits in a

database search, as in LocTree3 (with an accuracy of 80% for 18 lo-

cations) (Goldberg et al., 2014), or by taking hints from other types

of annotation such as GO-terms, as in iLoc-Euk and YLoc

(Briesemeister et al., 2010; Chou et al., 2011), or PubMed abstracts

linked to the protein’s Swiss-Prot entry, as in SherLoc (Briesemeister

et al., 2009). These methods are appropriate for annotated proteins

or proteins with annotated close homologues. Nonetheless, it should

be taken into account that the performance will be much lower for

sequences without well-annotated homologues—precisely the se-

quences for which it would be most relevant to have working predic-

tion methods. In addition, any homology-based method will have

very limited chance of being able to predict the consequences of mu-

tations affecting sorting signals because the wild-type and the vari-

ant probably would pick up the same homologues in a database

search.

Second, the performances of machine learning algorithms are

crucially dependent on the datasets used to train and test them. For

protein subcellular localization a key aspect is that proteins should

have experimental evidence for their subcellular location, so that

predictions are not based on predictions in a circular fashion.

However, current methods use data from UniProt (The UniProt

Consortium, 2017) prior to release 2014_09, where a major change

in the annotation standards took place. Before the change, an anno-

tation was regarded as experimental if it lacked qualifiers such as

‘Potential’, ‘Probable’ or ‘By similarity’; after the change, only anno-

tations with a specific literature reference were annotated as being

experimental (evidence code ECO:0000269). This resulted in a con-

siderable decrease in the number of proteins with subcellular loca-

tion regarded as experimentally confirmed, thus raising the issue

that current methods may in part be trained and tested on question-

able examples.

Another aspect of the dataset issue is that the amount of hom-

ology between training data and test data should be kept at a min-

imum (Hobohm et al., 1992). The measured test performance

should be a true measure of the predictive performance on new pro-

teins and not just a measure of how good the method is at finding

homologues with the same subcellular location. Unfortunately, the

Höglund dataset (Höglund et al., 2006) which has been used in the

training and test of several methods (Blum et al., 2009;

Briesemeister et al., 2009, 2010; Shatkay et al., 2007; Sønderby

et al., 2015) is only homology reduced to 80% identity. This means

that rather close homologues to the training data will occur in the

test set, which results in overly optimistic performances that do not

reflect the true generalization to new unseen proteins. An example

of a state-of-the-art method that uses this dataset set is Sherloc2,

which reports an accuracy of 93% for 11 locations.

This paper has four major contributions:

1. We construct a new dataset from a recent version of UniProt

where proteins have experimental evidence for their subcellular

locations according to the new stricter definition. We perform

stringent homology partitioning to avoid overfitting, providing

realistic accuracy measures on new proteins.

2. We show that models trained on the Höglund dataset have poor

generalization performance on our new dataset. This reflects the

high level of homology and possibly erroneous annotations in

the old dataset.

3. We develop deep recurrent neural networks for the protein sub-

cellular localization task with a number of novel state-of-the-art

model features. This includes convolutional motif detectors, se-

lective attention on sequence regions important for subcellular

localization prediction and a novel hierarchical sorting likeli-

hood. These features are used for interpretation of the model

and predictions. Our networks show improved prediction accur-

acy without using homology information.

4. We implement the resulting model as a user-friendly web-server

called DeepLoc (Concurrently with our work, Kraus et al.

(2017) has introduced a method for protein subcellular location

from cell image data also called DeepLoc).

2 Materials and methods

2.1 Neural network models
The deep learning neural network model used is described in detail

below. Figure 1 and the following description gives a summary of

the architecture used: The input is sequence length (¼1000)� size of

amino acid vocabulary (¼20). The CNN extracts motif information

using 120 filters of different sizes (20 for each of the sizes 1, 3, 5, 9,

15 and 21). This gives a 1000�120 feature map. Another convolu-

tional layer of 128 filters of size 3�120 is applied to this feature

map. This gives a 1000�128 feature map which is used as input to

the recurrent layer. The recurrent neural network scans the sequence

using 256 LSTM units in both directions giving in total a

1000�512 dimensional output. The attention decoding layer uses

an LSTM with 512 units through 10 decoding steps and the atten-

tion mechanism feedforward neural network (FFN) has 256 units.

The final fully connected dense layer is composed by 512 and the

two output layers have one unit (membrane-bound) and 10 units

(subcellular localization).

We learn a subcellular localization model which predicts the sub-

cellular localization using the amino acids sequence as input:

y ¼ fh Xð Þ ; (1)

where y is the predicted localization, f is the prediction model para-

metrized by parameters h and X is the input data sequence of size

L�N where L is the protein length and N is the number of input

features per sequence position. The parameters h are optimized

using stochastic gradient descent with cross entropy loss between

the true and predicted localization distribution.

In practice, the length of protein sequences can vary from tens to

thousands of amino acids posing a challenge for many prediction al-

gorithms requiring a fixed size input representation. Instead, recur-

rent neural networks (RNN) that naturally handle varying input
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sequence lengths were used. The networks applies a recurrent calcu-

lation at each sequence position t

ht ¼ fE xt; ht�1ð Þ; t ¼ 1 . . . L (2)

where fE is an RNN denoted the encoder, xt is the input features of

X at position t and h ¼ h1; . . . ; hL½ � is the hidden states of the RNN

where ht is a vector of same length as the number of hidden units in

the RNN. The encoder can be viewed as a trainable feature extrac-

tor encoding the amino acid sequence into a feature space suitable

for subcellular localization prediction. Naively, the final subcellullar

location y could be predicted by applying a classifier fy to the final

hidden state of the encoder hL

y ¼ fy hLð Þ : (3)

However, this approach is not ideal for several reasons. Firstly the

RNN has to remember all useful information across the entire, often

very long, input sequence. In subcellular localization this is espe-

cially problematic since most of the information is known to reside

in the beginning (N-terminus) and end (C-terminus) of the sequence.

Secondly all information about the protein has to be compressed

into the same size vector regardless of the length of the protein.

Two different solutions were used to alleviate these problems,

Bidirectional RNNs and Attention RNNs. In bidirectional RNNs,

the protein sequence is processed both forwards and backwards by

two separate RNNs and the input to the final classifier is then the

concatenated outputs of the last hidden state of both RNNs. The

forwards and backwards RNNs will then be better at remembering

motifs in the C-terminus and N-terminus respectively. Nevertheless,

for long sequences these algorithms still have to remember informa-

tion across many steps. To solve this problem, as well as identify

protein regions important for classification, we augmented the bidir-

ectional RNN encoder with an attentive decoder (Bahdanau et al.,

2014). Using the last hidden state of the encoder hL as input the at-

tentive decoder fD is run for D decoding steps. Note that D does not

depend on the input sequence length L. At each step, the hidden

state of the attentive decoder dr is used by an attention function fA
to assign a normalized importance weight to each sequence position

of the encoder hidden states h ¼ h1; . . . ; hL½ � as

dr ¼ fD hL;dr�1; cr�1ð Þ; r ¼ 1 . . . D (4)

et;r ¼ fA ht;drð Þ ¼ tanh htW e þ dr�1Wdð ÞvT (5)

at;r ¼
exp et;r

� �

PL

t0¼1

exp et0 ;r

� � ; (6)

where dr is the hidden state of the decoder at step r, matrices Wd

and W e and column vector v are the trainable parameters of the

Fig. 1. (A) The convolutional neural network (CNN) extracts motif information using different motif sizes. (B) The recurrent neural network scans the sequence in

both directions, extracting the spatial dependencies between amino acids. (C) The attention mechanism assigns higher importance to amino acids that are rele-

vant for the prediction. At each decoding step, the attention weights a are generated based on the hidden states from the RNN and the hidden states from the pre-

vious decoding step. The weighted average of these weights at the last decoding step is used as input to a fully connected dense layer. (D) All the information

gathered from the protein sequence is passed to a softmax function and a hierarchical tree of sorting pathways to calculate the final prediction
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attention function. dr is vector of same size as the number of hidden

units in the decoder LSTM, which can be different from the dimen-

sionality of the encoder ht. at;r is the normalized importance weights

and cr is a weighted average of the encoder RNN hidden states cal-

culated as

cr ¼
XL

t¼1

at;rht: (7)

The initial value of cr, i.e. c0, is a learned parameter vector that is

trained as part of the neural network model. The subcellular local-

ization is then predicted using the weighted average of the encoder

RNN hidden states at the last step of the decoder

y ¼ fy cDð Þ : (8)

This allows the model to selectively assigns weight to sequence pos-

itions important for classification, which reduces the need for re-

membering all information across the entire length of the sequence.

Both fE and fD are implemented as a special type of RNN units

called Long-Short Term Memory (LSTM) cells (Hochreiter and

Schmidhuber, 1997). LSTMs share the same chain structure as

RNNs, but the recurrent calculation is augmented with an internal

memory cell capturing long range dependencies.

Furthermore, convolutional filters were used to detect protein

motifs. Here a filter, akin to position specific scoring matrices, is

slid across the sequence. It will then detect a motif regardless of

its position in the sequence. The weights of each filter can be ad-

justed to find the motifs that help to better predict each class.

These new features created with a CNN can represent the inputs in

a more abstract way, which, in combination with LSTMs, has been

shown to be beneficial for protein classification (Sønderby et al.,

2015).

2.2 Hierarchical tree likelihood
To include information from protein sorting pathways into our

model, a hierarchical tree with multiple nodes was developed. Each

node represents a binary decision attempting to assign the protein to

the right pathway from high-level to detailed classification. As an

example, the first binary decision in the tree classifies proteins in the

secretory or non-secretory pathway, whereas the last nodes separate

related compartments such as mitochondria and chloroplasts, see

Figure 1 panel D. The leaf nodes correspond to the final subcellular

localizations, and the likelihood is calculated as the joint probability

of decisions in the tree. So for example, if we have decisions A, B, y

then according to the tree decomposition the probability of y given

input sequence X is given by

P yjXð Þ ¼ P yjB;Xð ÞP BjA;Xð Þp AjXð Þ : (9)

An example path is A ¼ Non-Secretory Pathway, B ¼ N-terminal

Sequence and y ¼ Mitochondria. Each of the nine binary classifiers

is implemented by a logistic output connected to the fully connected

dense layer. By construction, the tree probabilities are normalizedP
y p yjXð Þ ¼ 1.

2.3 Datasets
2.3.1 DeepLoc dataset

The protein data used to train DeepLoc were extracted from the

UniProt database, release 2016_04 (The UniProt Consortium,

2017). The protein dataset was filtered using the following criteria:

eukaryotic, not fragments (they could have the N-terminal or C-ter-

minal missing), encoded in the nucleus, longer than 40 amino acids

and experimentally annotated (ECO:0000269). Similar locations or

subclasses of the same location were mapped to 10 main locations

in order to increase the number of proteins per compartment.

Furthermore, proteins were classified as membrane or soluble if they

were found on either the membrane or the lumen of the organelle; if

no information was provided, they were tagged as unknown.

Finally, proteins with more than one subcellular localization were

filtered out. A total of 13 858 proteins were obtained after the filter-

ing process. The mapped sublocations and the number of proteins in

each main localization are summarized in Table 1.

To ensure that the model generalizes to new data a stringent

homology partitioning was performed. Homologous proteins that

fulfil a certain threshold of similarity were clustered as detailed

below. Then, each cluster of homologous proteins was assigned to

one of the five folds, ensuring that similar proteins were not mixed

between the different folds. PSI-CD-HIT (Li and Godzik, 2006) was

used to cluster proteins with 30% of identity or 10�6 E-value cutoff

and the alignment must cover 80% of shorter (redundant) se-

quences, which produced 8410 clusters for the whole dataset. The

five folds generated had approximately the same number of proteins

in each location. Four were used for the training and validation and

one heldout set for testing.

2.3.2 Höglund dataset

The Höglund dataset (Höglund et al., 2006) have been used to train

both the MultiLoc and RNN prediction methods in Höglund et al.

(2006) and Sønderby et al. (2015). This dataset consist of 5959 pro-

teins with 11 possible locations (cytoplasm, nucleus, extracellular,

mitochondria, plasma membrane, ER, chloroplast, Golgi apparatus,

lysosome, vacuole and peroxisome) and is homology reduced to

80% identity. Apart from grouping together lysosomal and vacuolar

proteins no modifications were made to the dataset.

Table 1. Number of proteins in each location and sublocations that were grouped together under the same main location

Location No. of proteins Sublocations

Nucleus 4043 Envelope, inner and outer membrane, matrix, lamina, chromosome, nucleus speckle

Cytoplasm 2542 Cytoplasm (cytosol and cytoskeleton)

Extracellular 1973 Extracellular

Mitochondrion 1510 Envelope, inner and outer membrane, matrix, intermembrane space

Cell membrane 1340 Apical, apicolateral, basal, basolateral, lateral, cell membrane, cell projection

Endoplasmic reticulum (ER) 862 ER membrane and lumen, microsome, rough ER, smooth ER, Sarcoplasmic reticulum

Plastid 757 Plastid membrane, stroma and thylakoid

Golgi apparatus 356 Golgi apparatus membrane and lumen

Lysosome/Vacuole 321 Contractile, lytic and protein storage vacuole, vacuole lumen and membrane, lysosome lumen and

membrane

Peroxisome 154 Peroxisome matrix and membrane
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2.4 Comparison to current prediction algorithms
The performance of our models were compared with a number of

current prediction algorithms using the following approaches:

LocTree2 (Goldberg et al., 2012), MultiLoc2 (Blum et al., 2009)

and SherLoc2 (Briesemeister et al., 2009) were run with local

command-line versions installed on our own server, while CELLO

(Yu et al., 2006), iLoc-Euk (Chou et al., 2011) and WoLF PSORT

(Horton et al., 2007) were run on their web servers. YLoc

(Briesemeister et al., 2010) was run offline by the maintainer of the

web service. Results for YLoc are given with the option to include

GO terms turned on. For MultiLoc2 and SherLoc2, a newer version

of InterProScan (5.21-60) was used instead of the recommended one

(4.4) due to compatibility problems with the older version. As a ref-

erence the performance of Höglund test set was measured on our

local installation obtaining an accuracy of 0.8300 for Multiloc2 and

0.9179 for SherLoc2.

In the cases where current methods predict more than ten loca-

tions, the predicted locations were mapped onto our ten locations.

Two of the methods, iLoc-Euk and WoLF PSORT, in some cases

predict dual locations (such as cytoplasm/nucleus). Since pro-

teins with dual locations were filtered out in the construction of

the dataset, those predictions were counted as erroneous, unless

both the predicted locations mapped to the same location in our

classification.

2.5 Experiments
Two different set of experiments were carried out. The first experi-

ments were used for model selection comparing the relative perform-

ances of the following model architectures:

• Feedforward neural network (FFN)
• Bidirectional LSTM neural network (BLSTM)
• BLSTM neural network with attention mechanism (A-BLSTM)
• Convolutional BLSTM neural network with attention mechan-

ism (Conv A-BLSTM)

Using the best model architectures the second set of experiments is

designed to test the generalization performance of models trained on

either our new DeepLoc dataset or the Höglund dataset.

Hyperparameters were optimized on three of four splits of the

training data and the performance was evaluated on the last valid-

ation split. The hyperparameter selection was done using uni-

dimensional search where one hyperparameter was changed and the

rest were kept fixed. If a hyperparameter had not yet been tested,

the median value in the range of that hyperparameter was chosen.

Each hyperparameter setting was run for 150 epochs (epoch¼ full

pass over the training set) and the performance was measured as the

highest seen performance on the validation set. This strategy was

used for computational reasons since a full grid search over all par-

ameters was not computationally feasible. After the best hyperpara-

meters were identified, a final run of experiments were used to

identify the best combination of amino acid encodings among

BLOSUM62 (Henikoff and Henikoff, 1992), sparse, protein profiles

or HSDM encoding (Prli�c et al., 2000). We further found that pro-

tein profiles gave the highest performance and included these as in-

put features for the final models. The profiles were generated using

the same method as the TOPCONS web server (Tsirigos et al.,

2015).

The test performance was measured by training four models on

the training set using the four different combinations of training and

validation set. The reported test performance is the average of the

four models evaluated on the held-out test set. We stress that we

never optimized any parameters on the test set leaving the reported

performances unbiased.

To decrease the training time, the maximum protein length was

1000. If a protein exceeded this length, amino acids from the middle

of the sequence were removed in order to not to lose information

about the N-terminal and C-terminal sorting signals. 9.98% of the

proteins were truncated using this rule.

The performance measurements used to assess the performance

of our models were accuracy and the Gorodkin measure (Gorodkin,

2004). For the binary prediction, the accuracy and the Matthew’s

Correlation Coefficient (Matthews, 1975) (MCC) were used. The

Gorodkin measure can be seen as a generalization of MCC that

applies to K-categories, which is more informative than the accuracy

when there is an imbalance of classes. For K¼2, the Gorodkin meas-

ure squared is the ‘generalized squared correlation’ (GC2) of Baldi

et al. (2000).

All models were implemented in Python 2.7.11 using the neural

network library Lasagne 0.2 (Dieleman et al., 2015) and Theano 0.9.0

(Theano Development Team, 2016) for efficient GPU implementation.

3 Results

We designed experiments to address the following questions:

• What are the relative performances of the proposed neural net-

work model architectures?! Section 3.1
• How does the generalization performances of models trained on

either the DeepLoc or Höglund datasets compare?! Section 3.2
• How does the final DeepLoc model compare to current state-of-

the-art protein subcellular prediction models?! Section 3.3

3.1 Model selection
In Table 2 we compare the performances of different model archi-

tectures trained on the DeepLoc dataset. Note that we are interested

in the relative performance of the models. Due to this, we only used

BLOSUM62 encodings as input features, which resulted in a slightly

degraded performance compared to the final performances

described in the following sections.

The A-BLSTM and the CONV A-BLSTM models achieved the

highest performance predicting the subcellular localization with

accuracies of 0.7290 and 0.7289, respectively. Comparing these re-

sults with the performance of the BLSTM without attention (accur-

acy 0.6925), we see that attention improves performance. These

results confirm the benefit of selective, context dependent, attention

for protein classification. All of the A-BLSTM models performed

significantly better than the baseline FFN model which achieved an

accuracy of 0.5234. This is expected since FFN models do not take

into account the order of the amino acids, whereas the LSTM mod-

els naturally consider the relationships between amino acids.

Furthermore, we observed that including 10 decoding steps in the at-

tention mechanism increased the accuracy (a difference of 1%) in

Table 2. Comparison of performances for different model architec-

tures using BLOSUM62 input features

Model Subcellular location Membrane

Accuracy Gorodkin Accuracy MCC

FFN 0.5234 0.4229 0.7301 0.4509

BLSTM 0.6925 0.6278 0.9004 0.8023

A-BLSTM 0.7290 0.6729 0.9163 0.8345

CONV A-BLSTM 0.7289 0.6780 0.9111 0.8218
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comparison with a single decoding step. Increasing the decoding

steps beyond 10 resulted in a reduction in the accuracy. Lastly, the

A-BLSTM models predicted whether the proteins were membrane-

bound or soluble with accuracies of 0.9163 and 0.9111 respectively.

From the amino acid encoding comparison, we found that the

CONV A-BLSTM model using protein profiles encoding had the

highest accuracy, with a difference of 2% compared to the A-

BLSTM model. Therefore, we decided to use this encoding and this

model for the rest of the experiments.

3.2 Dataset comparison
To compare the generalization performance of models trained on either

the DeepLoc or the Höglund datasets, we trained a CONV A-BLSTM

model on each dataset and evaluated the performances on the test sets

from both datasets. Table 3 shows that (i) the Höglund training set

achieves a good test performance only on the Höglund test set and

(ii) the DeepLoc training set achieves a good test performance on test

sets with stringent independence between training and test sets.

These results show that models trained on the Höglund dataset

generalize poorly compared to models trained on the DeepLoc data-

set. As a qualitative comparison of the two datasets we visualized

the context vectors cr for CONV A-BLSTM models trained on both

datasets as seen in Figure 2. The compartments are notably more

separated for the model trained on the Höglund dataset compared

to the model trained on the DeepLoc dataset

3.3 DeepLoc model
From the model comparisons we identified the CONV A-BLSTM as

the best performing model architecture. To further improve

prediction accuracy we trained an ensemble of 16 models using

nested cross validation. Eight of the models were trained using a

softmax output distribution (class probability from softmax func-

tion) and eight of the models using the hierarchical tree distribution

(joint probability of multiple logistic functions). Further we mitigate

the effect of the class imbalances by using a cost matrix (Zhou and

Liu, 2006) to recalculate the class probabilities based on the number

of samples in the training set. The full ensemble achieved an accur-

acy of 0.7797 and Gorodkin of 0.7347 on the subcellular localiza-

tion and an accuracy of 0.9234 and a MCC of 0.8435 on the

membrane-bound or soluble prediction. We found that the softmax

models had a slightly higher accuracy than the hierarchical tree

model with the 8-ensembles achieving an accuracy of 0.7717 and

0.7695, respectively. We show in Table 4 the accuracy and the

MCC for each binary decision in the hierarchical tree model. We ex-

perimented with increasing the ensemble size but found no improve-

ment in performance.

The training time for the full ensemble was 80 hours, approxi-

mately five hours per model. When testing, the ensemble takes

three seconds per protein on average to perform a prediction.

Nonetheless, this ensemble used protein profiles, which were already

generated for this dataset. This profile generation is the most time-

consuming step usually taking approximately 30 seconds per

protein. If a hit with the PFAM database is not found the profile

generation uses Uniref90 instead. This can take even longer and

therefore can be problematic for large protein datasets. To solve this

we trained the same ensemble using BLOSUM62 encoding. This

model has an accuracy of 0.7360 and Gorodkin of 0.6832 on the

Table 3. Comparison of generalization performances using the

CONV A-BLSTM model between the DeepLoc dataset and the

Höglund dataset

Training set Test set Accuracy Gorodkin

DeepLoc DeepLoc 0.7511 0.6988

Höglund DeepLoc 0.6426 0.5756

DeepLoc Höglund 0.8301 0.8010

Höglund Höglund 0.9138 0.8979

Note: Sequence profiles were used as input features.

Fig. 2. t-SNE representation of the context vector cr for a Conv A-BLSTM trained on the DeepLoc and Höglund dataset and visualized for the respective test sets

Table 4. Accuracy and MCC of each node in the hierarchical tree

Node Accuracy MCC

Secretory/Non-secretory pathway 0.9502 0.8902

Intracellular/Extracellular 0.9507 0.8979

N-terminal sequences 0.9544 0.8784

Intermediate compartment 0.7982 0.5824

PTS 0.9784 0.4085

Mitochondrion/Chloroplast signals 0.9537 0.8955

Cell membrane/Lysosome 0.8575 0.5002

ER/Golgi 0.8559 0.6376

NLS 0.8138 0.6031
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subcellular localization and an accuracy of 0.9130 and a MCC of

0.8237 on the membrane-bound or soluble prediction. By omitting

the profile generation, we achieved a faster prediction at the cost of

decrease in accuracy.

Tables 5 and 6 show the confusion matrices of the full ensemble

described above for subcellular localization and membrane-bound

prediction respectively. The primary sources of error are confusion

of the nucleus and cytoplasm, lysosome/vacuole misclassified as cell-

membrane and Golgi misclassified as cytoplasm. In Figure 3, we

show the attention vector a, i.e. how important different regions of

the sequence are for the classification. In general, the DeepLoc

model assigns large importance to the N-terminal for secreted pro-

teins whereas e.g. membrane proteins have regions of importance

interspersed across the protein length.

To compare the performance of the final DeepLoc model to

other approaches we benchmarked a number of current prediction

algorithms on the DeepLoc test set as seen in Table 7. The accuracy

of the final DeepLoc model (0.7797) is significantly better than all

other methods with iLoc-Euk achieving the second best accuracy of

0.6820.

4 Discussion

In this paper we have introduced the DeepLoc dataset: a well

assembled protein collection with reliable subcellular localization in-

formation. Secondly we have provided a deep neural network based

prediction algorithm achieving state-of-the-art performance on this

new dataset. The context-dependent annotation vector generated by

the attention mechanism is able to represent a protein based on its

subcellular localization. In addition, the attention based prediction

method allows visualization of the biologically plausible regions

used to predict the subcellular localization of the proteins which we

believe will provide relevant information.

The comparison of the generalization performances for models

trained on our new DeepLoc dataset and the Höglund dataset

showed that DeepLoc trained models generalized much better than

the Höglund trained model. Here we discuss a number of explan-

ations for these findings. Firstly, with the Uniprot database change

the Höglund dataset could contain many wrongly annotated

proteins, which generates a model that learns to predict the wrong

labels. Secondly, the homology reduction threshold 80% used for

constructing the Höglund dataset might not be stringent enough,

since it produces similar training and test examples.

In Figure 2, we compared the attention context vector for models

trained on either the DeepLoc or Höglund datasets. For the

Höglund trained model, all locations are almost perfectly separated

implying that there is little variation within the Höglund dataset

classes and that the training and test sets are relatively similar. This

supports the finding of poor generalization performance for models

trained on the Höglund dataset. Hence, we believe that the high per-

formance reported for algorithms trained on this dataset is actually

results from overfitting. The true variation within each protein class

is larger as indicated by the better generalization performance for

models trained on the DeepLoc dataset. This is further corroborated

by the poorer separation of classes for the DeepLoc trained models

in the same figure.

We compared the performance of the final DeepLoc model with

other current prediction algorithms in Table 7. We found that the

DeepLoc model performs significantly better than the other

approaches. Here we note that the DeepLoc performance is a true

test set performance, whereas the performances of the other meth-

ods may be overestimated since some sequences in our test set may

have been included in their training sets. Further we emphasize that

the DeepLoc method is a purely sequence-based method and does

not rely on annotation information from homologous proteins. Due

to the stringent homology partitioning applied in the dataset con-

struction, the model should generalize to new proteins without

known close homologues.

We note that we also compared the performance against the

LocTree3 prediction method (Goldberg et al., 2014), which is a

combination of LocTree2 and a BLAST search of a database of pro-

teins with known subcellular location. However, as 75% of the pro-

teins in the DeepLoc test set are also in the LocTree3 BLAST

database, the measured accuracy was artificially high at 91%, since

LocTree3 simply retrieves the same subcellular location used for

labelling our test set.

The compartment specific prediction performance of the final

DeepLoc model is shown in Table 5. The main source of error is the

low performance on the Golgi apparatus, lysosome/vacuole and per-

oxisome. One possible cause is the low number of samples used to

train these classes. However, this finding could also be associated

with the similarity between the proteins from these locations and

other compartments. For example, Table 5 shows that the lysosome/

vacuole is usually misclassified as cell membrane and the peroxi-

some as cytoplasm.

Table 5. Confusion matrix of the test set on the final DeepLoc model using profiles encoding

Location Number of predicted proteins Sens. MCC

Nucleus 680 103 4 5 2 8 1 2 2 1 0.842 0.784

Cytoplasm 94 361 7 18 5 4 3 8 1 7 0.711 0.608

Extracellular 3 5 365 5 5 4 2 0 4 0 0.929 0.907

Mitochondrion 9 21 0 247 0 5 14 2 1 3 0.818 0.812

Cell membrane 5 15 6 1 203 20 1 4 18 0 0.744 0.732

Endoplasmic reticulum 3 6 6 3 18 120 1 7 8 1 0.694 0.654

Plastid 1 2 0 8 0 0 140 0 1 0 0.921 0.883

Golgi apparatus 4 17 1 0 9 8 1 26 4 0 0.371 0.414

Lysosome/Vacuole 0 7 11 1 20 9 0 4 12 0 0.188 0.194

Peroxisome 0 13 0 4 1 4 0 0 0 8 0.267 0.321

Note: Sens., sensitivity.

Table 6. Confusion matrix for the membrane-bound predictor

Type Number of predicted proteins

Soluble 968 38

Membrane-bound 96 647
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In addition to the mentioned under-represented classes, proteins

from the cytoplasm and nucleus are also difficult to differentiate

(Fig. 2, Table 4) because they both lack N-terminal sorting signals.

The only difference between them is the nuclear localization signal

(NLS), which is a highly variant short sequence that can be located

in multiple regions of the protein sequence, making it hard to recog-

nize. Figure 3 shows the positions in the sequence that the attention

mechanism focuses on to generate the attention context vector cr.

For the nucleic and cytoplasmic proteins, the model focuses on the

beginning of the sequence (checking for the absence of an N-ter-

minal sorting signal). Moreover, the model also gives importance to

small regions across the sequence. The main difference is that there

is a higher density of these regions in nucleus examples than in cyto-

plasm, which could indicate that the model is able to identify some

of the most represented NLS.

Figure 3 allows us to visualize what regions in the sequence are

relevant for each subcellular localization to perform the prediction.

For the extracellular proteins, the model focuses mainly on the signal

peptide, which can be seen as a small region at the N-terminus of the

sequence. In contrast, the attention is scattered across the sequence for

plasma membrane proteins, which could indicate that the algorithm is

detecting the transmembrane helices. For the ER proteins we can see

attention at the N-terminus, where the signal peptide is located, and

also some attention at the C-terminus, which could mean the presence

of KDEL or KKXX signals. Golgi proteins have the importance on the

N-terminus slightly shifted to the right, in comparison with other pro-

teins from the secretory pathway, as they are mostly type II transmem-

brane proteins with signal anchors. Mitochondrial and chloroplastic

proteins have large regions at the N-terminus, which clearly correlates

to the mitochondrial and chloroplastic transit peptides. The lyso-

somal/vacuolar proteins do not seem to have a clear important region

across their sequences. Finally, for peroxisomal proteins, some regions

at the N-terminus and at the C-terminus are observed, which could

mean that the model is detecting PTS2 and PTS1 signals.

5 Conclusion

We have shown that convolutional BLSTM neural networks with at-

tention mechanism are able to accurately predict the protein subcellular

localization and if a protein is membrane-bound or soluble just using

the sequence information. Further we have introduced the DeepLoc

dataset. The DeepLoc model trained on this dataset is able to generalize

better than using previous datasets for subcellular localization. In

Fig. 3. Sequence importance across the protein sequence of DeepLoc test set when making the prediction. The x-axis is the sequence position and alomg the

y-axis we have the proteins in the test set sorted according to protein localization. For visualization proteins shorter than 1000 amino acids are padded from the

middle, so the N-terminus and C-terminus align. Proteins longer than 1000 amino acids have the middle part removed

Table 7. Accuracy and Gorodkin measure achieved by current

predictors and the final DeepLoc model on the DeepLoc test set

Method Accuracy Gorodkin

LocTree2 0.6120 0.5250

MultiLoc2 0.5592 0.4869

SherLoc2 0.5815 0.5112

YLoc 0.6122 0.5330

CELLO 0.5521 0.4543

iLoc-Euk 0.6820 0.6412

WoLF PSORT 0.5671 0.4785

DeepLoc 0.7797 0.7347

The highest scores are shown in bold.
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addition, DeepLoc obtained the highest accuracy using the independent

test set, when compared with the current methods.

There are several perspectives of this project that we would like

to pursue in the future. One of those is to make better use of existing

knowledge about sorting signals. DeepLoc 1.0 is trained in a rela-

tively ‘naive’ way, where the networks have been provided only

with protein profiles and their location labels. It would be beneficial

to explicitly model known sorting signals such as N-terminal signal

peptides and transit peptides.

In addition, it should be investigated whether performance can

be enhanced by training several models with a narrower taxonom-

ical scope instead of treating all eukaryotes by one model.

Obviously, animals and fungi do not have plastids, and some false

predictions could be avoided by disallowing plastid predictions for

these groups, but more subtle differences between sorting signals are

also known to exist. However, there is a trade-off between the preci-

sion of the taxonomical scope and the sizes of the training datasets.

For taxonomic groups with limited numbers of data with experi-

mentally known subcellular location, it may be necessary to employ

semisupervised learning, where unlabelled data from genome se-

quences are used along with labelled data.
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