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DeepLocBIM: Learning Indoor Area Localization
Guided by Digital Building Models
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Abstract—Fingerprinting-based indoor localization is a cost-
effective approach to provide coarse-grained indoor location
information for pedestrian mass-market applications without the
requirement of installing additional positioning infrastructure.
While most solutions aim at pinpointing the exact location of a
user, estimating a zone/area is a promising approach to achieve a
more reliable prediction. Area localization predominantly utilizes
a predetermined building model segmentation to obtain zone/area
labels for collected fingerprints. We propose a novel approach to
multifloor indoor area localization by directly predicting poly-
gon zones that contain the position of the user. Our model
learns to construct the zones from the wall segments and thus
predicted areas have a high conformity to the underlying build-
ing model (semantic expressiveness). On a self-collected as well
as on a public fingerprinting data set, we compare our model
with two reference approaches. We demonstrate that the uti-
lized surface areas of the polygons are on average up to 50%
smaller than those of the reference models and provide a high
semantic expressiveness without requiring manual floor plan
segmentation.

Index Terms—Area localization, building information modeling
(BIM), deep learning, fingerprinting, indoor localization,
multifloor.

I. INTRODUCTION

OBTAINING the location of a user or entity is the key
requirement to realize location-based services (LBSs).

Within indoor environments, common localization approaches
that utilize global navigation satellite systems (GNSSs) do
not function as required, since the signals are attenuated by
building components [1]. Due to the estimated potential of
indoor location-based services [2], the development of alterna-
tive indoor localization approaches has emerged as a research
field of particular interest. Several technologies [e.g., WLAN,
Bluetooth, and ultrawideband (UWB)] have been used with a
variety of techniques [received signal strength (RSS), Time of
Arrival (ToA), fingerprinting, etc.] [1]. Their main discrim-
inative features are the provided localization accuracy and
reliability as well as the accompanied costs due to dedicated
infrastructure, development or maintenance of the system.
Indoor localization systems that utilize UWB as base technol-
ogy provide the highest accuracy (submeter). However, they
require the installation of several dedicated UWB transmitters
and localization devices that support UWB. Therefore, they
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are mainly suitable for deployments where accuracy is critical
(e.g., industrial context) [3].

On the other hand, WLAN fingerprinting provides a much
lower localization accuracy but usually does not require addi-
tional hardware to be installed [4]. Instead, it uses the existing
RSS of installed WLAN access points (APs). Those differ
based on the location within a building, which can be used
as a location fingerprint to estimate the position. In an offline
phase, the map is scanned at certain reference locations and
the collected fingerprints are stored within a database. Those
are used to build a model that learns the relation between fin-
gerprints and location and is capable of estimating the location
for unseen fingerprints during the online phase [4].

Most fingerprinting-based indoor localization systems aim
to pinpoint the exact location of a user, which is challenging
since, indoors, RSS suffers from several radio signal prop-
agation defects such as multipath propagation [1]. However,
especially for many LBS aimed at pedestrians (e.g., within a
shopping mall), coarse-grained localization is sufficient under
the premise that the system is easily deployable. Therefore,
fingerprinting-based solutions have been proposed that explic-
itly determine the area/zone the user is located at [5].

Usually, the floor plan is segmented into areas (e.g., rooms)
during preprocessing. The fingerprints are then partitioned
into classes that serve as labels for training a classifier. The
segmentation of the environment clearly affects the resulting
classification accuracy as well as the knowledge gain of the
user (expressiveness). On a really coarse-grained segmenta-
tion, a classifier might offer high classification accuracy but
few advantages for the user. However, a fine-grained segmenta-
tion yields a high knowledge gain for the user but might cause
a lower classification accuracy. Furthermore, the conformity to
the underlying building structure affects the expressiveness of
the model. Area predictions that are in compliance with the
rooms, walls, etc., yield additional knowledge gain for the user.

Determining an a-priori segmentation before training an
area classifier has several limitations: 1) it fixes the introduced
tradeoff between accuracy and expressiveness of the model;
2) semantic segmentation (e.g., based on rooms) might be too
fine-grained for large-scale settings and result in a low clas-
sification accuracy; 3) adaptation to new data might require
resegmentation followed by time-consuming model retrain-
ing; and 4) determining a segmentation that ensures good
separation in signal space while adhering to the floor plan
structure is challenging [6]. Previously, we introduced a model
DeepLocBox (DLB) [7] that directly estimates an area via
bounding box regression, however, the boxes do not match
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with the existing building structure, which limits its semantic
expressiveness.

In this work, we introduce DeepLocBIM that leverages
the digital building model (building information modeling
(BIM) model) to achieve a higher semantic expressiveness
while preserving the benefit of no a-priori floor plan seg-
mentation. The model learns to estimate the area of the user
which it models as a polygon constructed from the walls that
are automatically obtained from the underlying BIM model.
The model is suitable for multibuilding/multifloor localization
and provides a much higher expressiveness than the standard
approach of a classifier trained on a predetermined floor plan
segmentation.

In summary, we claim the following contributions.
1) We propose a novel model (DeepLocBIM) for

fingerprinting-based indoor area localization.
2) Instead of classifying a presegmented area,

DeepLocBIM directly constructs polygon areas,
which gives the model a higher expressive power.

3) In contrast to its predecessor DLB [7], our new
model leverages the digital building model and thus its
predictions are more valuable, since they match with the
structure of the building (e.g., rooms).

4) DeepLocBIM can be used within multifloor settings and
its output can be interpreted as an ensemble that delivers
an uncertainty measure for the floor classification task.

5) At the same level of accuracy, our model achieves
higher geometric and semantic expressiveness compared
to related works.

The remainder of this article is structured as follows. In
Section II, related work is introduced with a focus on deep
learning for fingerprinting, area localization, and the potential
of digital building models for indoor localization. Section III
defines the quality constraints of area localization models. In
Section IV, our model (DeepLocBIM, DLBIM) is formally
introduced followed by a brief overview of two reference
models in Section V. Subsequently, DLBIM is evaluated
against the reference models in Section VI and the results
are concluded in Section VII.

II. RELATED WORK

A. Deep Learning for Fingerprinting

The success of deep learning in a variety of fields has
encouraged the application of related methods in the domain of
fingerprinting-based indoor localization [8]. The fingerprinting
method is applied in device-free [9], [10] as well as in device-
based [11], [12] settings, while we focus on the latter one in
this article.

The majority of fingerprinting localization approaches rely
on RSS for fingerprint construction. Those have the benefit of
being accessible via commodity smartphones. It was demon-
strated that deep neural networks can effectively cope with
the imperfections of RSS and outperform traditional methods
such as k-nearest neighbor [7], [13]. A variety of deep models
have been investigated. The unprocessed RSS vector can be
used as input for feedforward neural networks [13], [14] or
be preprocessed to obtain a low-dimensional embedding via

stacked autoencoders (SAEs) [12], [15]. Convolutional neural
networks can be applied using 1-D convolution on time-series
RSS [16] or directly over the RSS vector [12]. By constructing
2-D input images from the RSS vectors, 2-D CNNs adopted
from the field of image classification can be used [11]. Instead
of predicting static independent locations, the continuous posi-
tions of a user can be modeled as trajectory. Those trajectories
have been used for training long short-term memory (LSTM)
deep networks [17], [18].

B. Area Localization/Zone Detection

Pinpointing the exact position with RSS-based fingerprint-
ing is hardly possible due to the characteristics of RSS.
However, many location-based services do not require exact
position estimation [5], which led to several publications that
try to predict the area/zone of location rather than the exact
position of the user. Most approaches construct predefined
areas, which are then used to partition the fingerprints into
classes that serve as labels for training a classifier. The con-
struction of predefined areas can be done by either: 1) ignoring
the floor plan and the collected fingerprints (e.g., grid based);
2) utilizing the floor plan structure (e.g., room-based parti-
tioning); or 3) using the fingerprints to partition the space into
classes that can be separated well in the signal space (e.g.,
via clustering). Certain works follow a hybrid approach of
combining 1) and 3). Note that the segmentation is a prepro-
cessing step, which means that although a segmentation might
be done without considering the collected fingerprints, they
are still incorporated during classification as in the classical
fingerprinting approach. Finally, there exist works, where the
areas are not determined beforehand to apply a classification
model, but the model directly outputs the area/zone during
prediction (e.g., bounding box regression). In the following,
we will discuss relevant approaches following the introduced
classification framework.

1) RSS and Floor Plan Independent Presegmentation:
The partitioning into areas can be done without using the
collected fingerprints (RSS) nor knowledge about the floor
plan. Yean et al. [19] followed a grid-based zone localiza-
tion approach. They propose a random forest as an end-to-end
pipeline with auto-tuned hyperparameters. The system is eval-
uated on a self-collected data set and on the public data set.
Chiriki et al. [20] realized multiclass zoning localization by
applying support vector machines (SVMs). The model is eval-
uated on two closed data sets where details on the construction
of the zones are missing.

2) Floor Plan Aware Presegmentation: Several approaches
utilize the floor plan structure to obtain a partitioning during
preprocessing [5], [21], [22]. The resulting areas are mostly
composed of rooms or halls. This has the benefit that the areas
classified by the system provide a high semantic expressive-
ness. Liu et al. [21] proposed an algorithm for probability
estimation over possible areas by incorporating the user’s tra-
jectory and existing map information to filter unreasonable
results. Anzum et al. [5] similarly constructed zones in open
areas/spaces and train a counter propagation neural network to
classify the correct zone. AlShamaa et al. [22] applied belief
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functions theory to predict the correct zone and evaluate the
system in a small-scale setting.

Another approach is to use the rooms to partition an
indoor environment, which is especially suitable for large-scale
deployments within shopping malls. Lopez-pastor et al. [23]
obtained labeled fingerprints by randomly walking within
a shop. Similarly, Wei et al. [24] collected the fingerprint
while a customer is paying via a smartphone application.
They utilize the fact that the location is known at that point.
Rezgui et al. [25] proposed a normalized rank-based SVM to
cope with diverse collection devices to predict the shop within
a mall. Zhang et al. [26] applied a stacked denoising autoen-
coder variation to reduce the fingerprint dimension and use
gradient boosting decision trees for shop classification.

3) RSS Aware Presegmentation: In fingerprinting solutions,
the RSS signals are used to determine the location. Therefore,
their discriminative characteristics can be used to obtain the
underlying floor plan segmentation. Salazar et al. [27] assigned
fingerprints to zones via fuzzy c-means clustering. A fuzzy
inference system is subsequently used to determine the zone-
level localization. Zhang et al. [28] divided the map into zones
by k-means clustering on the RSS signals. Subsequently, they
train an extreme learning machine to classify the correct zone.
The method is compared to manual segmentation and refer-
ence point classification. Laska et al. [6] proposed an iterative
adaptive segmentation of the floor plan using crowdsourced
data that is perpetually collected. The segmentation is obtained
by using the floor plan structure and the RSS signals, whereas
its granularity can be adjusted toward the user’s demands.
A hierarchical clustering is utilized by Hernández et al. [29]
together with a classifier ensemble to detect the correct zone
on each level of the hierarchical clustering result.

4) Without Predetermined Segmentation: An a-priori floor
plan segmentation limits the expressiveness of a model, since
it only allows it to predict one of the presegmented areas.
Therefore, Laska and Blankenbach [7] proposed DLB, an
area/zone estimation that does not require a predetermined
floor plan segmentation. Instead, it directly estimates a bound-
ing box that contains the ground-truth location of the user. The
box size depends on the estimated prediction error. DLB does
not consider the building structure, which is tackled by the
model proposed in this article.

C. Building Information Modeling for Indoor Localization

Digitalization and automation are among the most important
trends in the architecture, engineering, and construction (AEC)
industry. A key element in this context is BIM [30], [31]. BIM
refers to a novel working method that relies on digital mod-
els, which are used for the consistent collection, management,
and exchange of all building-related data over the entire life
cycle including also the creation of BIM models for existing
buildings [32], [33].

Most indoor localization systems are targeted at provid-
ing localization services within a distinct building. Especially,
for infrastructure-based localization, already installed sensing
networks such as WLAN APs or nodes installed exclusively
for localization such as BLE beacons or UWB transmitters
heavily affect the resulting localization accuracy as well as

Fig. 1. Illustration of semantic expressiveness of two area/zone predictions.
The green point represents the ground-truth location.

the costs of the systems. Having information on the building
of interest can thus be effectively used to support planning and
installation of the system, as well as to impose geometric con-
straints on developed localization algorithms [34]. In the field
of automation in construction, BIM has gained momentum
over the past years [30]–[33] and its potential for enhanc-
ing indoor localization is increasingly acknowledged in the
field [35]. Liu et al. [35] provided a recent review of potential
application of BIM in the context of indoor localization and
navigation. They identify the generation of navigation mod-
els as the main application of BIM followed by the direct
application of BIM for enhancing indoor localization mod-
els. Li et al. [34] proposed a system for localizing trapped
occupants during fire emergencies. BIM is used to provide
building-aware beacon placement to minimize the amount of
nodes of the ad-hoc network while keeping room-level local-
ization accuracy. Herbers and König [36] utilized augmented
reality devices for spatial mapping and point cloud matching
of digital building models. Ha et al. [37] tackled the problem
of missing labeled training data for image-based indoor local-
ization. They train a CNN on rendered images of a BIM model
to predict the position from real images during the localization
phase. Chang et al. [38] proposed a system to simulate the vir-
tual sound field through BIM and train a CNN for sound-based
indoor localization.

III. QUALITY OF AREA LOCALIZATION MODEL

The nature of the predicted areas of an area localization
model affects the overall quality of the model. In [6], we
introduced the concepts of performance and expressiveness
for quantifying the quality of indoor area localization models.
The model performance characterizes the classification abil-
ity of the model, which can be measured by the classification
accuracy or related metrics such as the F1-score. The expres-
siveness represents the knowledge gain of the user obtained
by the predictions of the model. It was stated that coarse-
grained area localization provides a lower knowledge gain
than fine-grained area localization. As a consequence, the aver-
age surface area of predicted areas/zones has been proposed
as a metric to quantify the expressiveness. Finally, the area
classification score (ACS) was introduced to capture the inter-
play between performance and expressiveness, which can be
parameterized to favor models at each end of the spectrum [6].

In this work, we want to stress another component that
affects the expressiveness of area localization models. If pre-
dicted areas have a high conformity to the underlying floor
plan, the expressiveness of the model is higher. Assume the
two predictions visualized in Fig. 1. Although both predictions
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Fig. 2. Horizontal section (gray plane) in a BIM model for obtaining the
vectorial footprint of the walls as basis for the algorithm.

have a similar surface area, the green area prediction clearly
provides more benefit to the user, since it exactly matches the
room of the floor plan. In contrast, the red prediction indicates
that the real position might as well be in the hall above.

Therefore, we further refine expressiveness into geomet-
ric and semantic parts. Geometric expressiveness is quantified
by the average predicted surface area of the model, whereas
semantic expressiveness is given as the conformity to the
underlying floor plan. The latter is hard to quantify and can
only be qualitatively assessed. If we manually partition the
floor plan, we automatically guarantee a level of semantic
expressiveness. Otherwise, the underlying floor plan should be
incorporated during the prediction or segmentation to achieve
semantic expressiveness.

IV. DEEPLOCBIM (DLBIM)

A. Intuition

The goal of our model is to provide an area estimation
with high geometric and semantic expressiveness without
the prerequisite of a presegmented floor plan. Previous area
estimation models, which do not require prior floor plan
segmentation, such as DLB [7] suffer from low semantic
expressiveness, since the predictions have no relationship to
the underlying building structure. In this work, we propose
a novel approach to indoor area localization. The key idea is
that the model learns to predict zones as 2-D polygons contain-
ing the ground-truth location of the user. Those are defined by
four distinct boundary wall segments, which are a chosen sub-
set among the building walls. The building walls are extracted
from a vectorized floor plan, which can be derived from a hor-
izontal section of a BIM model as depicted in Fig. 2. The set
of vectorized walls is then divided into horizontal and vertical
ones and skeletonized subsequently, such that each wall can
be represented by a 4-tuple (xs, ys, xe, ye) consisting of start
and end point of the wall. Since building walls can be oblique,
we define the separation between horizontal and vertical walls
as follows. Let (xs, ys) be the origin of a Cartesian coordinate
system. The wall is said to be horizontal if the absolute angle
between �w = (xe, ye)

T and the unit vector (1, 0)T is smaller
than 45◦; otherwise, it is classified as vertical. The defined
angle is visualized in Fig. 3. The model selects a boundary
wall segment for each direction (top, bottom, left, and right).
By finding the intersection points of the vectors defined by the
line segments, we can construct the resulting polygon, which
is exemplarily shown in Fig. 4.

Fig. 3. Angle for classifying walls into horizontal/vertical.

Fig. 4. Polygon construction.

Fig. 5. Base architecture of the DeepLocBIM neural network.

B. Base Architecture

We assume a fingerprinting data set D = {fpn = (an, ln)}
for n = 1, . . . , N, where an is a D-dimensional fingerprint
an = (a1, . . . , aD)T that contains the RSS of the APs and the
tagged position ln = (lx, ly)T of the fingerprint. To implement
our model, we utilize a deep neural network, which produces
four separate outputs: p(ht) ∈ R

H is the predicted probability
distribution over H possible horizontal walls for the top bound-
ary line segments. p(hb) ∈ R

H is analogously defined for the
bottom boundary line segments. p(vl) ∈ R

V and p(vr) ∈ R
V

are the predicted probability distribution over V possible ver-
tical walls for the left and right boundary line segments. The
network input is given by the D-dimensional fingerprint vec-
tor an that holds the RSS to each AP. The base architecture
of the model is depicted in Fig. 5, where light blue compo-
nents are modular and dark blue parts are fixed. The model
utilizes a shared backbone neural network to extract knowl-
edge that is relevant across all outputs. The shared network
is followed by a separate neural network branch for produc-
ing the various outputs. Finally, each output branch produces
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a probability distribution over the possible wall segments via
softmax activation, where the size of the outputs depends on
the number of possible walls (H for top and bottom segment
and V for left and right segments). The exact neural network
architectures of the modular components remain interchange-
able and might depend on the given data set. In Section VI-B,
we present the chosen architecture of DLBIM for the studied
data sets.

C. Target Vector Construction

In order to guide the learning process of the network,
we supply the model with separate target probability vectors
(y(ht), y(hb) and y(vl), y(vr)) over the possible choices of walls.
Intuitively, the probability mass should be concentrated among
the closest walls to the ground truth position and weighted by
their distance d to it. Furthermore, we also want to consider
walls for which the projected point does not lie on the wall but
its distance r to the wall’s closest endpoint is small enough.
We will only cover the construction of the top and bottom
target vectors (y(ht), y(hb)) with horizontal walls (W(h)) being
possible candidates. The remaining two target vectors (y(vl),
y(vr)) can be derived analogously.

To determine the parameters d and r, we do the following.
We project the fingerprint location l = (lx, ly)T onto the walls
to obtain pr = (prx, pry)

T . Let wh = (xs, ys, xe, ye) be a tuple
defining the end and start points of any horizontal wall onto
which we project l. We want to perform an orthogonal pro-
jection, which requires that wh is defined as vector in a 2-D
vector space. By translating its start point to the origin, we
obtain the vectors

vh = (xe − xs, ye − ys)
T (1)

p′ = (
lx − xs, ly − ys

)T
. (2)

Now, we can project p′ onto vh

P ′ = vh · p′

vh · vh
vh (3)

and finally, obtain the projection in the original coordinate
system as

pr = P ′ + (xs, ys)
T . (4)

Subsequently, we can calculate d = pry−ly and r = min{|prx−
xe|, |prx − xs|}. The computation of d and r is visualized in
Fig. 6, where (a) shows a point-based representation of the
parameters and (b) illustrates the computation of the projection
(red point) by moving the origin of the coordinate system to
(xs, ys) and applying orthogonal projections. Using (4), we can
obtain the projected point (b) within the original coordinate
system (a) and compute d and r.

In case that d is smaller than max_dist and pr lies on the
wall or r is smaller than max_range, we set the entry in one
of the target vectors of that specific wall to d; otherwise, we
set it to 0. The sign of d is used to differentiate between,
whether we set the entry in y(ht) or y(hb). For the horizontal
walls, a positive value indicates that the wall lies above the
fingerprint position and thus represents a candidate for the top
boundary segment, the opposite holds for a negative value.
We repeat the process for all horizontal walls. Afterward, we

(a)

(b)

Fig. 6. Visualization of derivation of parameters d and r that are used
for target vector construction. (a) Point-based representation within origi-
nal coordinate system. (b) Vector-based method to obtain pr by using linear
projections, where the origin (gray arrows) is moved to (xs, ys).

(a) (b)

(c) (d)

Fig. 7. Visualization of target vector construction. (a)–(d) Resulting target
vector constructions for four example fingerprint positions. The color indicates
the probability mass of the wall within the target vector.

invert nonzero entries of the target vector and scale each entry
by the sum of the previously inverted entries. This ensures
that close walls receive a higher probability mass and that the
resulting entries sum to 1 and consequently form a valid prob-
ability distribution. Fig. 7(a)–(d) visualizes the target vectors
for four sample fingerprints, where we set max_dist = 25
and max_range = 10. The color of each wall indicates
its probability mass within the target vector. Note that, in
each subfigure, four target vectors (y(ht), y(hb), y(vl), y(vr)) are
shown and only a subset of the building walls is considered
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Algorithm 1 Get_Horizontal_Target_Vectors(l, W(h))

Input: l: fingerprint position, W(h): horizontal walls
Output: y(ht), y(hb)

Initialisation: y(ht) = [|W(h)|], y(hb) = [|W(h)|]
1: for k=0 to |W(h)| do
2: y(ht)[k], y(hb)[k] = get_horizontal_score(l, W(h)[k])
3: end for
4: for k=0 to |W(h)| do
5: if y(ht)[k] > 0 then
6: y(ht)[k] = (y(ht)[k])−1

7: end if
8: end for
9: y(ht) /= sum(y(ht))

10: for k=0 to |W(h)| do
11: if y(hb)[k] > 0 then
12: y(hb)[k] = (y(hb)[k])−1

13: end if
14: end for
15: y(hb) /= sum(y(hb))
16: return y(ht), y(hb)

Algorithm 2 Get_Horizontal_Score(l, w)
Input: l: fingerprint position, w: possible wall in target vector
Output: d(ht), d(hb)

Initialisation: d(ht), d(hb) = 0
1: pr = proj(l, w)
2: if lies_within_endpoints(pr, w) or

dist_to_closest_endpoint(pr, w) < max_range then
3: d = pry − ly
4: if |d_loss| < max_dist then
5: if d > 0 then
6: d(ht) = d
7: else
8: d(hb) = d
9: end if

10: end if
11: end if
12: return d(ht), d(hb)

as possible candidates. The pseudocode for obtaining the top
and bottom target vectors of the horizontal walls is given in
Algorithms 1 and 2.

D. Loss

We want the loss of the model to incorporate the distance
between the predicted probability distribution and the target
probability distributions y(ht), y(hb), y(vl), y(vr) as described in
the previous section. Therefore, we apply categorical cross-
entropy loss

L = −
H∑

i=1

y(ht)
i · log

(
p(ht)

i

)
+ y(hb)

i · log
(

p(hb)
i

)

−
V∑

j=1

y(vl)
j · log

(
p(vl)

j

)
+ y(vr)

j · log
(

p(vr)
j

)
. (5)

Furthermore, we want to avoid collapsing polygon predictions.
Those occur if either the predicted top and bottom wall
segments or the predicted left and right wall segments are
identical. Therefore, we add a regularization term to the loss,
which we define as

R =
H∑

i=1

p(ht)
i · p(hb)

i +
V∑

j=1

p(vl)
j · p(vr)

j . (6)

We obtain the final loss function as

L = L + λR (7)

where λ controls the importance of the regularization term.
The choice of λ is discussed in the evaluation section of the
model.

E. Multifloor Setting

The model can be slightly modified to support multifloor
environments, by letting the model choose among walls on any
floor. Thus, the prediction of the floor is implicitly defined by
the choice of the boundary wall segments. Given F floors, the
size of the output vector for top and bottom boundary segments
becomes

∑F
f =1 H(f ), where H(f ) is the amount of horizontal

walls on the f th floor. Analogously, the size of the output vec-
tor for left and right boundary segments is given as

∑F
f =1 V(f ).

The implicit floor prediction can be treated as an ensemble
classification. We take the majority of the floors associated
with the predicted line segments. Furthermore, we can cor-
rect the walls that fall out of line according to the majority
vote. For those, we can utilize the most likely prediction
by limiting options to the walls located on the floor that
is predicted by the majority of the ensemble. During the
evaluation, we study the impact of noncoincidental ensemble
predictions.

V. REFERENCE MODELS

In order to compare the proposed approach to existing
indoor area localization solutions, we briefly introduce
two approaches that we will utilize as reference models.
The first is based on a semantic floor plan segmentation,
whereas the second one requires no predetermined floor plan
segmentation.

A. Presegmented (Data and Floor Plan Aware) Area
Classification

The floor plan is manually partitioned into nonoverlapping
areas, where segments are constructed only within zones where
data were collected. We do not consider the RSS value for
partitioning as this might lead to overlapping areas that would
limit the semantic expressiveness of the resulting classifier.
Given the multifloor floor plan segmentation, we label the fin-
gerprints with the segment that they are located in. We train a
neural network-based classifier. Softmax is chosen as an output
activation function and categorical cross-entropy loss for train-
ing the model. The floor is implicitly given by the location of
the classified segment within the building. During subsequent
evaluation, we refer to this model as AC.
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B. DeepLocBox: Area Localization by Bounding Box
Estimation

DLB [7] can be seen as the predecessor of DLBIM. It esti-
mates the area of the user as a bounding box, where the width
and height of the box should depend on the certainty of the
model. It does not require a predetermined floor plan segmen-
tation. In contrast to DLBIM, the floor plan structure is not
utilized to determine the bounding boxes and thus the boxes
have a low semantic expressiveness.

The box prediction output is defined by its center (cx, cy)

and its width w and height h. The loss function of the model
consists of two components: 1) the center loss captures the
deviation of the predicted center of the box from the ground-
truth point and 2) the size loss regulates the box dimensions. In
order to support multibuilding/multifloor localization, the map
is divided into grid cells of fixed size and fingerprint locations
are encoded within the corresponding local coordinate system
of the grid cell. The model simultaneously classifies the grid
cell and estimates the bounding box within the cell. This is
realized by modeling the output as vector of length O = 5∗G

output =
(

c(1)
x , c(1)

y , w(1), h(1), g(1), . . .

c(G)
x , c(G)

y , w(G), h(G), g(G)
)

(8)

where G is the number of grid cells. Let t = (tx, ty, tg) be
the target vector with (tx, ty) being the encoded coordinates
within the tgth grid cell. Each fifth entry g(i) of the output
corresponds to the confidence of the model that the target
is within the ith cell. The largest g(i) determines the chosen
cell. Let 1i be 1 if i = tg and 0 otherwise, further let j =
argmax{g(1), . . . , g(G)} [7].

The final loss function of DLB is given as

L = α · −
G∑

i=1

1i · log(gi) // classification loss

+ sum

{(
c(j) − t

)2
// box center loss

+
(
|c(j) − t| − d(j)/β

))2
}

// box size loss

(9)

with d(j) = (w(j), h(j))T , c(j) = (c(j)
x , c(j)

y )T and t = (tx, ty)T [7].
The floor is implicitly given by the location of the classified
grid cell within the building.

VI. EVALUATION

We begin by analyzing the proposed DLBIM model
performance with emphasis on the choice of parameters.
Subsequently, it is compared to the previously introduced
reference models.

A. Data Sets

We choose two data sets for evaluation. The first data set
was self-collected at RWTH Aachen University. It is a mul-
tifloor crowdsourced data set that covers a total of 4 out
of 7 floors with more than 3000 collected fingerprints. The
data were collected over the period from December 2018

(b)

(a)

(c)

(d)

(e)

(f)

Fig. 8. Visualization of the RWTH data set. (a) RWTH floor 1. (b) RWTH
floor 2. (c) RWTH floor 3. (d) RWTH floor 4. (e) RWTH floor 4 (walls).
(f) RWTH floor 4 (rooms).

to August 2020 featuring multiple peak collection phases.
Using a self-implemented smartphone application, collected
fingerprints were manually tagged. The data distribution is
visualized in Fig. 8(a)–(d), where the heatmaps visualize the
amount of labeled data per 4 × 4 m grid cell. For the uti-
lized building, a georeferenced digital building model was
constructed via laser scanning and transformed into keyhole
markup language (KML). The walls that are utilized by the
DLBIM model are obtained from the registered walls of
the building model. In total, the building model contains 97
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horizontal walls where (30, 21, 22, 24) represents the tuple of
walls per floor in ascending floor order. The total amount
of contained vertical walls is 190 with a distribution over
floors as (48, 45, 48, 49). The predetermined areas/zones that
are used to train the regular area classification models (see
Section V-A) are also automatically extracted from the rooms
registered of the building model. Finally, all geometries are
transformed from world coordinates into a mutual local coor-
dinate system. The walls and rooms are exemplarily visualized
for the 4th floor in Fig. 8(e) and (f). For validation purposes,
we split the data set into five random folds to apply cross
validation.

The second data set is a publicly available WLAN
fingerprinting data set, composed of 4648 fingerprints col-
lected with 21 devices in a university building in Tampere,
Finland [39]. It was published with a predetermined split
into train (20%) and test (80%) data, which is adopted dur-
ing our evaluation. The data distribution is visualized in
Fig. 9(a)–(d), where the heatmaps illustrate the amount of
fingerprints per 6 × 6 m grid cell. The data set is pub-
lished with images of the floor plans. We utilize those to
manually extract the most characteristic walls for the train-
ing of DLBIM. In total, we have 97 horizontal walls where
(27, 21, 17, 18, 14) represents the tuple of walls per floor in
ascending floor order. The total amount of vertical walls is
194 with a distribution over floors as (41, 46, 44, 43, 20).
Furthermore, we manually select areas/zones based on data
coverage and the floor plan structure to train the regu-
lar area classification models (see Section V-A). The walls
and rooms are exemplarily visualized for the 1st floor in
Fig. 9(e) and (f).

B. Model Configurations

The configurations of the best performing neural networks
on the given data sets are introduced subsequently. We uti-
lize fully connected dense layers as the shared backbone as
well as in the output branches of the DLBIM model. More
precisely, the model has one shared dense hidden layer with
1024 hidden units and each output branch has one hidden
layer with 512 hidden units. The architecture is visualized in
Fig. 10, where D represents the dimension of the fingerprint
input vector. The DLB and the AC models also follow the
fully connected feedforward architecture. However, the cho-
sen configuration of hidden layers and units varies with the
data set and the type of model. The configuration is presented
in Table I. Every model utilizes a dropout layer after each
hidden layer with dropout probability 0.5. ReLU is chosen as
the activation function after hidden layers, whereas the out-
put activation function depends on the model. All models are
trained using the Adam optimization algorithm with a learning
rate of 0.001 for at most 100 epochs while early stopping on
a distinct validation data sets determines the exact number of
epochs.

C. DLBIM Evaluation

1) Effect of Label Preprocessing: The ground-truth labels
(target vectors) that we supply to the model mainly influence

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9. Visualization of the Tampere data set. (a) Tampere floor 1. (b) Tampere
floor 2. (c) Tampere floor 3. (d) Tampere floor 4. (e) Tampere floor 1 (walls).
(f) Tampere floor 1 (rooms).

the resulting performance. It has to be carefully selected,
which walls we want to supply to the model for a certain
fingerprint. Having too many possible choices might decrease
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Fig. 10. Chosen neural network architecture of the DLBIM model.

TABLE I
CONFIGURATIONS OF TUNED MODELS ON DATA SETS

the model performance, but too few walls will limit the
model’s options to make an optimal choice given the entire
training data. In Section IV-C, we introduced two main pre-
processing parameters to select the ground-truth boundary
segments: max_dist (d_th) and max_range (r_th).

We want to analyze their effects on four characteristics:
1) the number of fingerprints that end up with all-zero tar-
get vectors; 2) the average number of nonzero entries within
the target vectors; 3) the accuracy of the predicted polygons;
and 4) the mean surface area of the predicted polygons. The
results are presented in Fig. 11, where the top row [(a)–(d)]
reports the effects on the RWTH data set and the bottom
row [(e)–(h)] for the Tampere data set. It can be seen that
choosing d_th too low (< 15) results in a large percent-
age of target vectors with all-zero entries. Those cannot be
utilized during training of the model and thus the achieved
accuracy (Area ACC) is strongly affected. While this effect
can be seen for both data sets, it is particularly critical for
the RWTH data set in combination with a low r_th value.
A low range threshold r_th reduces the average amount of
nonzero entries per target vector [Fig. 11(b) and (f)], which
has a positive effect on the resulting accuracy but also lim-
its the model expressiveness which results in a larger average
surface area of the predicted polygons. On the RWTH data
set, a combination of r_th = 5 and d_th = 15 results in
the largest accuracy of 89% and an average surface area of
32 m2. This parameter selection is utilized throughout the sub-
sequent comparison with the introduced reference models. For

TABLE II
EFFECT OF NONCOINCIDENTAL ENSEMBLE PREDICTION ON VARIOUS

PERFORMANCE METRICS

the Tampere data set, we select a combination of r_th = 10
and d_th = 25.

2) Effect of Regularization Constant: In Section IV-D, we
introduced a regularization term to avoid collapsing polygon
predictions. The importance of the regularization term is
scaled by λ, which we investigate in the following. We
assess its effect on the relative number of collapsing poly-
gon predictions, while monitoring its effect on the average
area hit rate. The results on the Tampere data set are depicted
in Fig. 12. While the relative amount of collapsing polygon
predictions is already small without any regularization, it can
be significantly decreased by choosing λ > 2. Furthermore,
this has no real impact on the resulting area hit rate. For our
final DLBIM model, we choose λ = 3. Regarding the RWTH
data set, the effect of collapsing polygon is a minor threat.
Tested for multiple seeds, on average at most 1 out of 585
predicted polygons (on the test data) collapses, which prevents
drawing any conclusion on the choice of the regularization
constant.

3) Effect of Ensemble Learning: When using the DLBIM
model in a multifloor localization setting, the predicted bound-
ary wall segments can be implicitly used for classifying the
floor. Each wall prediction of the model is made independently,
which means that the implicitly predicted floors might differ.
We can interpret the model as an ensemble classifier for the
task of floor detection. The predicted floor is chosen based on
a majority voting of the different model outputs. Intuitively,
if the model’s independent floor predictions do not match, we
should be more curious whether the final floor prediction is
correct.

We validate this claim by separately analyzing the model
performance (floor hit rate, area hit rate, and average sur-
face area) for coincidental ensemble predictions and those
that have been corrected during post-processing (noncoinci-
dental). The results are shown in Table II. Only on a small
amount of predictions the ensemble does not reach a consen-
sus. However, in that cases, this has a strong impact on the
reported model metrics. The floor hit rate decreases to 50%
and 70% on the RWTH and Tampere data sets, respectively.
The area prediction is only correct in less than 37% on both
data sets. Furthermore, the average surface area of the cor-
rected polygon drastically increases. We can conclude that a
noncoincidental ensemble prediction is a strong indicator for
model uncertainty. While the total amount of cases without
ensemble consensus seems marginal, its magnitude becomes
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Effect of target vector selection on the (a)–(d) RWTH data set and (e)–(h) Tampere data set.

Fig. 12. Effect of the regularization constant on the percentage of collapsing
polygon predictions and the average area accuracy on the Tampere data set.

more relevant when comparing it to the amount of wrong floor
predictions, which are only 31 on the RWTH data set and 207
on the Tampere data set.

D. Comparison With Other Models

After having discussed the performance of the proposed
DLBIM model with emphasis on the choice of preprocess-
ing and parameter selection, we subsequently compare its
performance to the introduced reference models of Section V.
The results are presented in Table III. We asses the major
accuracy indicators comprising the prediction accuracy (Floor
ACC and Area ACC) and the deviation in case of false area
predictions. The floor detection rate is similar for all models,
while DLBIM has the highest on Tampere and DLB on the
RWTH data set. However, as discussed in Section VI-C, non-
coincidental ensemble predictions for the different boundary
segments can be interpreted as a warning indicator for a higher
chance of wrong floor predictions. This is a strong benefit of
DLBIM against the other models.

Both DLBIM and DLB deviate less in case of a wrongly
estimated area as opposed to the AC models. The accuracy
of area localization models can only be analyzed in context

TABLE III
COMPARISON OF AREA LOCALIZATION MODELS

with the expressiveness of the models. When choosing only
few areas, a model might easily achieve the area hit rate of
close to 100%, however, the information gain of such a model
would be limited.

All models achieve a similar area hit rate of above 85% on
the RWTH data set and roughly 70% on the Tampere data set,
which allows for comparison of the models with respect to
their expressiveness. The crucial difference between the intro-
duced DLBIM and the other models is the far narrower area
estimation (geometric expressiveness) that yields the same or
better accuracy than the other models. On the RWTH data
set, the median surface area of DLBIM to achieve an 89%
correct area estimation is 43% less than the surface area pre-
dicted by DLB, which only estimates the correct area in 86%.
When comparing DLBIM to AC, the required surface area to
achieve the same area estimation accuracy of DLBIM is 62%
less compared to AC. On the Tampere data set, the median
surface area of DLBIM to achieve a 70% correct area esti-
mation is 51% and 32% lower than those of DLB and AC,
respectively.

The distribution of surface areas predicted by the various
models is visualized in Fig. 13. Note that the comparison is
fully valid on the Tampere data set, since all model have the
same area estimation accuracy. On the RWTH data set, the
accuracy of the DLB model is slightly lower than those of
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(a)

(b)

Fig. 13. Cumulative distribution function (CDF) of the surface area predicted
by the various models. (a) CDF on the RWTH data set. (b) Results on the
Tampere data set.

the other models, which implicitly allows the surface area to
be smaller. It can be seen that the proposed DLBIM model
clearly outperforms the other models with respect to geometric
expressiveness. Finally, we discuss the semantic expressive-
ness of the three models. For the AC model, it is given due
to the manually predetermined areas/zones, which are how-
ever fixed and result in a lower geometric expressiveness. The
proposed DLBIM model utilizes the walls for area construc-
tion to achieve a high semantic expressiveness, which is a
strong benefit against its predecessor (DLB) that has no knowl-
edge on the floor plan structure. We illustrate this in Fig. 14
(RWTH data set) and Fig. 15 (Tampere data set), which exem-
plarily show the output of the three models for several test
fingerprints.

It can be observed that the polygons predicted by DLBIM
have a high conformity to the floor plan structure and thus
a much higher semantic expressiveness as the DLB model.
Furthermore, predictions are not tied to the predetermined floor
plan split but constructed on an individual basis.

E. Discussion and Limitations

To the best of our knowledge, DeepLocBIM is the first
approach that directly incorporates the building model within

Fig. 14. Visual comparison of semantic expressiveness of the different area
localization models on the RWTH data set. (a)–(t) depict selected examples,
where green predictions show DLBIM, red predictions show DLB, and blue
predictions show AC.

the learning phase of a neural network to provide indoor area
localization. A strict split into predetermined zones fixes the
expressiveness of the model as shown for the reference model
during the evaluation. In contrast, DeepLocBIM achieves a
high conformity to the underlying floor plan, while using its
flexibility in modeling area/zone during the prediction phase to
achieve a higher accuracy. This combination and its suitability
for large-scale deployments emphasize the practical impact of
DeepLocBIM for fingerprinting-based indoor area localization.

In the following, we discuss the potential limitations of
our approach and point out possible solutions. The proposed
position encoding scheme has limitations when encoding a
position outside the building. Given a location ln = (px, py)

T .
Assume that no enclosing horizontal bottom wall exists,
{wh = (xs, ys, xe, ye)|ys ≤ py} = ∅. The target vector y(hb)

would be all-zero, which results in the model learning unuse-
ful representations. However, that is only critical for those
points lying outside the convex hull that encloses all build-
ing walls. The Tampere data set contains a total of 7/697
of such critical fingerprints within the training partition and
45/3951 within the testing partition. We excluded the criti-
cal fingerprints from the training partition, however, we kept
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Fig. 15. Visual comparison of semantic expressiveness of the various area
localization models on the Tampere data set. (a)–(t) depict selected examples.

those within the test set to not artificially manipulate the eval-
uation. We believe that this limitation is nevertheless minor,
since we are particularly interested in localization within build-
ings. The issue of all-zero target vectors has also been studied
in Section VI-C and was presented in Fig. 11(a) (RWTH)
and Fig. 11(e) (Tampere). In addition to the inevitable all-
zero target vectors, we showed that a wrong parameterization
might increase this number and lead to excluding too many
fingerprints from the training data set. Therefore, the choice
of reasonable preprocessing parameters d and r is crucial.

The strict separation between horizontal and vertical walls
and the applied differentiation criterion might be unfavor-
able for buildings where the orientation of several walls
reside at the boundary of the decision criterion. Since we
did not encounter such examples in our tested settings, the
effect on the behavior of the model is not explicitly studied.
However, the Tampere data set features several walls close to
the decision criterion, which did not cause any problems.

We presented an approach for applying our model in mul-
tifloor environments using a single neural network. This has
several benefits such as the obtained uncertainty when inter-
preting the different model outputs as an ensemble for the task
of floor prediction (see Section VI-C3). However, it should
be noted that the size of the predicted target vectors of the

model grows with the number of walls and accordingly with
the number of floors. This might impact the performance for
really large settings by requiring output dimensions within the
order of thousands [40]. For such scenarios, an approach using
a dedicated network for each floor, which is then executed
simultaneously, might be beneficial.

In Section VI-C1, we thoroughly analyzed the construction
of the target vectors with respect to the parameters d and r and
concluded that a spread of the probability mass over a wider
range of wall candidates decreases the predicted area of the
model (higher geometric expressiveness) while simultaneously
lowering the accuracy of the model. We did, however, not
study the effect of the dimension of the target (total number
of walls) on the model outcome, which we believe would result
in a similar conclusion and can be investigated in future work.

VII. CONCLUSION

We proposed a novel approach to fingerprinting-based
indoor area localization that does not require a predeter-
mined floor plan segmentation. Our model (DeepLocBIM)
directly predicts polygon-areas that contain the position of
the user. In contrast to existing segmentation-free works, it
leverages the digital building model (BIM model) and thus
its predictions are more valuable, since they match with the
structure of the building (e.g., rooms). On two independent
data sets, we compared DeepLocBIM with a segmentation-free
and a segmentation-based approach. It has been shown that
the predicted areas of our DeepLocBIM are more fine-grained
while maintaining the same level of accuracy compared to the
reference models.

We believe that DeepLocBIM provides great potential for
indoor area localization. The segmentation-free approach has
several benefits: 1) the model can adapt its predicted areas
(shape and size) based on the input fingerprint; 2) it erases the
demand for resegmentation to alter the model expressiveness;
and 3) it avoids the challenge of computing a segmenta-
tion that also allows for separation in signal space (RSS).
Furthermore, our model is suitable for large-scale multifloor
deployments and, in contrast to existing segmentation-free
works, incorporates the building structure within the learning
phase.
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