
DeepLogic: Towards End-to-End Differentiable Logical Reasoning

Nuri Cingillioglu and Alessandra Russo
{nuric, a.russo}@imperial.ac.uk

Deparment of Computing
Imperial College London

Abstract

Combining machine learning with logic-based expert systems
in order to get the best of both worlds are becoming increas-
ingly popular. However, to what extent machine learning can
already learn to reason over rule-based knowledge is still an
open problem. In this paper, we explore how symbolic logic,
defined as logic programs at a character level, is learned to be
represented in a high-dimensional vector space using RNN-
based iterative neural networks to perform reasoning. We cre-
ate a new dataset that defines 12 classes of logic programs
exemplifying increased level of complexity of logical reason-
ing and train the networks in an end-to-end fashion to learn
whether a logic program entails a given query. We analyse how
learning the inference algorithm gives rise to representations
of atoms, literals and rules within logic programs and evaluate
against increasing lengths of predicate and constant symbols
as well as increasing steps of multi-hop reasoning.

Introduction

There has been increasing interest and attempts at combining
machine learning with logic-based expert systems in order
to get the best of both worlds: have an end-to-end trainable
system that requires little data to learn how to reason, possibly
using existing background knowledge, and is interpretable
by humans (Besold et al. 2017). However, it is not clear to
what extent machine learning can learn logic-based reasoning
without requiring any prior engineering. Thus, in this work
we provide a first insight into how symbolic logic, represented
as logic programs at a character level can be learned using
RNN-based iterative neural networks to perform reasoning.

A crucial component in existing logic-based expert sys-
tems is the ability to iteratively use a given knowledge base.
Framed as multi-hop reasoning, these tasks require an agent
to process information over several steps to reach a conclu-
sion. This paradigm of reasoning has been performed by
neural networks in domains such as story comprehension
with Dynamic Memory Networks (Xiong, Meity, and Socher
2016), graph problems with Differentiable Neural Comput-
ers (Graves et al. 2016) and visual question answering with

Copyright held by the author(s). In A. Martin, K. Hinkelmann, A.
Gerber, D. Lenat, F. van Harmelen, P. Clark (Eds.), Proceedings of
the AAAI 2019 Spring Symposium on Combining Machine Learn-
ing with Knowledge Engineering (AAAI-MAKE 2019). Stanford
University, Palo Alto, California, USA, March 25-27, 2019.

Relation Networks (Santoro et al. 2017) and Memory Atten-
tion Control Networks (Hudson and Manning 2018). Tradi-
tionally, inference systems over logic programs are manually
built on algorithms such as backward chaining (Apt and
Van Emden 1982) or forward chaining (Russell and Norvig
2016). There have been attempts to partially replace sym-
bolic components of these systems with neural networks
such as Neural Prolog (Ding 1995) which constructs net-
works through symbolic applications of logic rules. Another
vital component, unification of variables have been tackled by
Unification Neural Networks (Komendantskaya 2011). How-
ever, neither of these networks act as a complete inference
engine that can be trained end-to-end solely using examples
and learn corresponding representations of symbolic knowl-
edge.

Another important aspect of machine learning that allows
scalability is learning dense distributional representations
such as word embeddings (Pennington, Socher, and Manning
2014). This approach is used to learn embeddings of predi-
cates to perform knowledge base completion (Serafini and
Garcez 2016); however, an existing reasoning mechanism
such as backward chaining (Rocktäschel and Riedel 2017)
guides the machine learning component to learn such em-
beddings. We instead build on the prior work on iterative
neural networks that learn algorithmic tasks such as addition
of digits (Graves, Wayne, and Danihelka 2014) and sequence
processing (Zaremba et al. 2016). Resultantly, we learn rea-
soning tasks from scratch without prior engineering alongside
representations of knowledge bases expressed as logic pro-
grams. The key motivation is that if we can learn symbolic
reasoning using machine learning then we might be able
to minimise the extent to which they have to be combined
manually. The focus is not to extract the prior symbolic hy-
potheses but to learn how to utilise a given knowledge base;
thus, we do not compare within the domain of inductive logic
programming (Muggleton and De Raedt 1994).

This paper provides the following contributions, (i) a
new synthetic dataset consisting of 12 various classes of
normal logic programs, (ii) an iterative neural inference
network to learn end-to-end different reasoning tasks and
(iii) analysis of how these networks represent logic pro-
grams and handle multi-hop reasoning. Our implementation
is publicly available online at https://github.com/
nuric/deeplogic.



Table 1: Sample programs from tasks 1 to 7.

1: Facts 2: Unification 3: 1 Step 4: 2 Steps 5: 3 Steps 6: Logical AND 7: Logical OR

e(l).
i(u).
n(d).
v(h,y).
p(n).

o(V,V).
i(x,z).
y(w,d).
p(a,b).
t(A,U).

g(L,S) :- x(S,L).
x(a,m).
y(X) :- r(X).
p(h).
s(t,v).

x(G,B) :- k(G,B).
k(Z,V) :- g(Z,V).
g(k,k).
e(k,s).
p(L,G) :- v(G,L).

p(P,R) :- b(R,P).
b(A,L) :- a(A,L).
a(W,F) :- v(F,W).
v(t,i).
l(D) :- t(D).

f(P,U) :- b(P) , p(U).
b(x).
p(x).
p(y).
e(y,v).

e(D,X) :- n(D,X).
e(D,X) :- w(D,X).
e(w,y).
n(n,j).
w(t).

? e(l). 1
? i(d). 0

? o(d,d). 1
? o(b,d). 0

? g(m,a). 1
? g(a,m). 0

? x(k,k). 1
? x(k,s). 0

? p(t,i). 1
? p(i,t). 0

? f(x,x). 1
? f(y,x). 0

? e(n,j). 1
? e(i,j). 0

Background
A normal logic program (Apt and Bol 1994) is a set of rules
of the form:

A← L1, . . . , Ln (n ≥ 0) (1)

where A is an atom and each Li is a literal. A literal is either
an atom (a positive literal) or a negated atom of the form
not A where not is negation by failure (Clark 1978). Atom
A represents the head and L1, . . . , Ln the body of a rule. An
atom is a predicate with some arity, e.g. p(X,Y ), q(a), where
variables are upper case characters and predicates and con-
stants are lower case. If a rule does not contain any variables
we refer to it as ground rule and ground rules with empty bod-
ies as facts. We follow a similar syntax to Prolog (Clocksin
and Mellish 2003) and express normal logic programs as:

p(X) :- q(X), −r(X). (2)

q(a). (3)

As in equation 2, the← is replaced with :- and the negation
by failure not with− while maintaining the same semantics.
When there are no body literals we omit the implication
entirely, equation 3.

f(C,Q) =

{

1 if C ⊢ Q

0 otherwise
(4)

f(C, notQ) = 1− f(C,Q) (5)

We define the logical reasoning process as an inference func-
tion f , equation 4, that given a normal logic program (without
function symbols) as context C ∈ C and a ground atom as
query Q ∈ Q returns {1, 0} = B depending on whether
the context entails the query C ⊢ Q or not. We can now
define negation by failure notQ using the outcome of the
corresponding positive ground query Q, equation 5.

f(C,Q) , p(Q|C) (6)

In order to learn the reasoning process, we define an auxiliary
objective for the neural network and consider the inference
function f to be the conditional probability of the query
given the context, equation 6. This approach renders the
problem, from a machine learning perspective, as a binary
classification problem and allows training using standard
cross-entropy loss.

The Tasks
Inspired by the bAbI dataset (Weston et al. 2015), we lay-
out 12 tasks that cover various aspects of normal logic pro-
grams. The tasks are of increasing complexity building up

on concepts seen in prior tasks. Every task consists of triples
(context, query, target) following the signature of the in-
ference function in equation 4. For compactness a single
context can have multiple queries and are expressed in the
form ? query target after the context. The contexts
contain the simplest possible rules that cover the required
reasoning procedure and are not mixed together akin to unit
tests in software engineering.

Each task is generated using a fixed procedure from which
samples are drawn. For constants and predicates we use the
lower case English alphabet and for variables upper case. The
length of the character sequences that make up predicates,
constants and variables can be of arbitrary length (only ex-
amples of length 1 are shown) but we generate lengths up
to 2 for the training dataset and longer lengths for test data.
The arity of the atoms are selected randomly between 1 and
2. For every sample we also generate irrelevant rules as noise
that always have different predicates and random structure
while still preserving the semantics of the task.

Facts The simplest task consists only of facts. There is
only one successful case in which the query appears in the
context and can fail in 3 different ways: (i) the constant might
not match (shown in Table 1), (ii) the predicate might not
match or (iii) the query might not be in the context at all.
These failures can cascade and a query can fail for multiple
reasons with equal probability.

Unification These tasks contain rules with empty bodies
and an atom with variables in the head. The intended ob-
jective is to emphasise the semantics of unification between
different p(X,Y ) and same variables p(X,X). The query
succeeds if the corresponding variables unify and fail other-
wise. The failure case in which same variables do not match
different constants is in Table 1.

N Step Deduction One prominent feature of logical rea-
soning is the application of rules that contain literals in the
body. These tasks cover the case when there is a single posi-
tive atom in the body. All such rules contain only variables
and chains of arbitrary steps can be generated. For the train-
ing dataset, we generate up to 3 steps, samples in Table 1. The
query succeeds when the body of the last rule in the chain is
grounded with the same constant as in the query. We occa-
sionally swap the variables p(X,Y ):-q(Y,X). to emphasise
the variable binding aspect of rules which can happen at any
rule in the chain or not at all. The failure cases are covered
when the swapped constants do not match or when the final
body literal in the chain fails due to reasons covered in the
first task.



Table 2: Sample programs from tasks 8 to 12.

8: Transitivity 9: 1 Step NBF 10: 2 Step NBF 11: AND NBF 12: OR NBF

f(A,W) :- q(A,P) , d(P,W).
q(h,t).
d(t,j).
q(d,m).
d(n,g).
s(S,F) :- x(S,A) , e(A,F).

s(X,J) :- -p(J,X).
p(e,x).
v(V,Q) :- u(V,Q).
o(N) :- -q(N).
t(x,e).
m(y,c).

r(C) :- -o(C).
o(P) :- l(P).
l(o).
g(u).
p(U,L) :- e(U,L).
p(X,X).

b(G,B) :- -i(G) , u(B).
i(w).
g(a).
u(a).
f(t).
l(W) :- a(W) , d(W).

y(Z) :- -e(Z).
y(Z) :- b(Z).
y(r).
e(d).
s(a).
b(m).

? f(h,j). 1
? f(d,g). 0

? s(x,e). 0
? s(e,x). 1

? r(u). 1
? r(o). 0

? b(a,a). 1
? b(w,a). 0

? y(a). 1
? y(d). 0

Logical AND Building upon the previous deduction tasks,
we create rules with 2 body literals to capture the logical ∧
semantics in rules, sample in Table 1. The reasoning engine
now has to keep track of and prove both body literals to
succeed. A failure occurs when one randomly selected body
literal fails for reasons similar to the first task.

Logical OR Having multiple matching heads captures the
semantics of ∨ in logic programming by creating several
possible paths to a successful proof, sample in Table 1. In
this task we branch the query predicate 3 ways, 2 implications
and 1 ground rule. The query succeeds when any of the rules
succeed and fail when all the matching rules fail.

Transitivity Based on the previous 2 tasks, the transitive
case covers existential variable binding. It requires the model
to represent the conjunction of the body literals of a rule and
match multiple possible facts. The case succeeds when the
inner variable unifies with the ground instances or fails other-
wise. We expect an reasoning engine to solve the previous 2
tasks in order to solve this one, sample in Table 2.

N-Step Deduction with Negation These tasks introduce
the concept of negation by failure. The body literal of the first
rule in the chain is negated and a chain of arbitrary length
is generated. For the training dataset we only generate proof
chains of length 2, samples in Table 2. The query succeeds
when the negated body atom fails; the swapped variables do
not match the constants, or the body literal of the final rule in
the chain fails for reasons similar to the first task. The query
fails whenever the negated body atom succeeds following the
semantics described by equation 5.

Logical AND with Negation After introducing negation
by failure, we consider negation together with logical ∧ and
randomly negate one of the body literals, sample in Table 2.
As such, the query succeeds when the negated body atom
fails and the other literal succeeds. The query can fail when
either body literal fails similar to the non-negated case.

Logical OR with Negation Finally, we consider negation
together with the logical ∨ case and negate the body literal
of one rule. The query succeeds when any matching rule
except the negated one succeeds and fails if the negated rule
succeeds while other matching rules fail, sample in Table 2.

Neural Reasoning Networks

In this section we describe a RNN-based iterative neural
network for learning the inference function f , equation 4.
Broadly, we call networks that learn logical reasoning, Neu-

ral Reasoning Networks and the objective is to learn how
C ⊢ Q is computed solely from examples. The primary
challenge for these networks is to have a fixed network ar-
chitecture that must process all the tasks unlike tree based
recurrent networks (Tai, Socher, and Manning 2015) or graph
networks (Battaglia et al. 2018) which construct a different
network dependant on each input. We place this constraint
to avoid engineering any prior structural information into a
network. We gather inspiration from Memory Networks (We-
ston, Chopra, and Bordes 2015), in particular we wanted
to incorporate the end-to-end approach (Sukhbaatar et al.
2015) and the iterative fashion of Dynamic Memory Net-
works (DMN) (Kumar et al. 2016) while following the steps
of a symbolic reasoning method such as backward chain-
ing (Apt and Van Emden 1982).

Figure 1: Graphical overview of the iterative cell of the It-
erative Memory Attention (IMA) model. The context and
query are processed at the character level to produce literal
embeddings, then an attention is computed over the head of
the rules. A weighted sum of the unifier GRU outputs using
the attention, updates the state for the next iteration.

Design We can consider the logic program context a read-
only memory and the proof state a writable memory com-
ponent. In a similar fashion to Prolog’s backward chaining
algorithm (Clocksin and Mellish 2003), we aim to have (i) a
state to store information about the proof such as the query,
(ii) a mechanism to select rules via attention and (iii) a compo-
nent to update the state with respect to the rules. To that end,
we introduce the Iterative Memory Attention (IMA) network
that given a normal logic program as context and a positive
ground atom as query, embeds the literals in a high dimen-
sional vector space, attends to rules using soft attention and
updates the state using a recurrent network. IMA should be



Table 3: Results on easy test set (10k each), d = 64, sm = softmax.

Training Multi-task Curriculum
Model LSTM MAC DMN IMA MAC DMN IMA

Embedding - rule rule literal lit+rule rule rule literal lit+rule
Attention - sm σ σ sm sm sm σ σ sm sm

Facts 0.61 0.84 1.00 1.00 1.00 0.98 0.89 1.00 1.00 0.99 0.94
Unification 0.53 0.86 0.87 0.90 0.87 0.85 0.83 0.85 0.88 0.88 0.86

1 Step 0.57 0.90 0.74 0.98 0.94 0.95 0.77 0.62 0.96 0.93 0.92
2 Steps 0.56 0.81 0.67 0.95 0.95 0.94 0.70 0.58 0.95 0.91 0.89
3 Steps 0.57 0.78 0.77 0.94 0.94 0.94 0.64 0.64 0.93 0.86 0.87

AND 0.65 0.84 0.80 0.95 0.94 0.85 0.81 0.70 0.80 0.78 0.83
OR 0.62 0.85 0.87 0.97 0.96 0.93 0.75 0.75 0.96 0.93 0.90

Transitivity 0.50 0.50 0.50 0.50 0.52 0.52 0.50 0.50 0.50 0.50 0.50
1 Step NBF 0.58 0.92 0.79 0.98 0.94 0.95 0.65 0.58 0.96 0.91 0.92

2 Steps NBF 0.57 0.83 0.85 0.96 0.93 0.95 0.57 0.73 0.95 0.90 0.90
AND NBF 0.55 0.82 0.84 0.92 0.93 0.85 0.61 0.61 0.71 0.77 0.83

OR NBF 0.53 0.74 0.75 0.86 0.86 0.86 0.59 0.63 0.86 0.83 0.84

Easy Mean 0.57 0.81 0.79 0.91 0.90 0.88 0.69 0.68 0.87 0.85 0.85
Medium Mean 0.52 0.70 0.70 0.86 0.81 0.79 0.60 0.61 0.81 0.76 0.74

Hard Mean 0.51 0.63 0.66 0.83 0.75 0.72 0.55 0.58 0.76 0.70 0.68

considered a variant of Memory Networks, designed to suit
the logical reasoning process in which the recurrent compo-
nent is iterated over literals to perform reasoning, a graphical
overview is shown in Figure 1.

Literal Embedding

The inputs to the network are two sequences of characters

cC0 , . . . , c
C
m and c

Q
0 , . . . , c

Q
n for context and query respec-

tively. The principle motivation behind having character level
inputs rather than symbol tokens is to constrain the network
to learn sub-symbolic representations that could potentially
extend to previously unseen literals. We pre-process the con-
text sequence to separate it into literals and obtain an input

tensor I
C ∈ N

R×L×m′

of characters encoded as positive
integers where R is the number of rules, L number of liter-
als and m′ the length of the literals. The query is a single
ground positive atom encoded as a vector IQ ∈ N

n. This
pre-processing allows the network to consider each literal
independently when iterating over rules giving it finer control
over the reasoning process.

ht = GRU(O[I::t], ht−1) (7)

Each literal is embedded using a recurrent neural network that
processes only the characters of that literal I::t, equation 7
where O[I::t] is the one-hot encoding of the characters. We
use a gated recurrent unit (GRU) (Cho et al. 2014) starting

with h0 =
−→
0 to process the characters in reverse order to

emphasise the predicate and take the final hidden state ht

to be the embedding of the literal l ∈ R
d where d is the

fixed dimension of the embedding. The context and query are
embedded using the same network yielding a context tensor
C ∈ R

R×L×d where R is the number of rules and L number
of literals in a rule; for the query we obtain vector q ∈ R

d.
In order for the network to propagate the state unchanged,

we append a null sentinel φ =
−→
0 which allows the network

to ignore the current reasoning step by carrying over the

state. We also append a blank rule () that acts as a learnable
parameter and is often attended when no other rule is suitable.

Iteration

The iterative step consists of attending to the rules, computing
a new state using each rule and updating the old state. The
network is iterated for T steps, fixed in advance, with the
initial state s0 ∈ R

d set to the query vector s0 = q.

cati = [st ; q ; ri ; (s
t − ri)

2 ; st ⊙ ri] (8)

αt
i = σ(W 1× d

2 (U
d

2
×dcati + b

d

2 ) + b1) (9)

At any time step t, we compute a feature vector cati ∈ R
5d

for every head of a rule ri = Ci0 using the current state
st ∈ R

d, equation 8 where [; ] is the concatenation operator.
We also experiment with embedding rules using another GRU
over literals h′

ij = GRU(Cij , h
′

i,j−1) and take the final state

ri = h′

iL as the representation of the rule. To compute the
final attention vector αt

i, we use a two layer feed-forward
network, equation 9 where σ is the sigmoid function. We
also experiment with the softmax formulation of the attention
vector αt

i after the two layer feed-forward network.

ut
ij = GRU(Cij , u

t
i(j−1)) (10)

st+1 =

R
∑

i

αt
iu

t
iL (11)

To apply a rule, we use another recurrent neural network
that processes every literal of every rule Cij . The initial
hidden state ut

i0 = st is set to the current state st, then for
every rule a GRU is used to compute the new hidden state
ut
ij , equation 10. Finally, the new state st+1 becomes the

weighted sum of the final hidden states ut
iL, equation 11. We

call the inner GRU unifier as it needs to learn unification
between variables and constants as well as how each rule
interacts with the current state.



Figure 2: Attention maps produced for query p(a) for IMA with softmax attention performing backward chaining in the left
column and IMA with literal + rule embedding forward chaining in the right column on tasks 5 to 7.

Experiments

We carry out experiments on individual tasks with variations
on our model. As a baseline, we use a LSTM (Hochreiter and
Schmidhuber 1997) to process the query and then the context
to predict the answer. We also compare our model against the
Dynamic Memory Network (DMN) (Kumar et al. 2016) and
the Memory Attention Control (MAC) (Hudson and Manning
2018) network which both incorporate iterative components
achieving state-of-the-art results in visual question answering
datasets. With DMN and MAC, the context is separated into
rules and the entire rule is embedded using a GRU at the
character level. Unlike DMN which uses another GRU to
accumulate information over the rule embeddings and the
current state, our variant IMA processes literal embeddings
using a GRU to compute the new state as a weighted sum
over each rule.

Training We use two training regimes: curriculum learn-
ing (Bengio et al. 2009) and multi-task. With curriculum
learning the model is trained in an incremental fashion start-
ing with tasks 1 and 2 with only 1 iteration. Then tasks
accumulate with increasing number of iterations with tasks
3, 7, 9, 12 with 2 iterations and tasks 4, 6, 8, 11 using 3
iterations. We determine the minimum number iterations re-
quired for a task based on Prolog (Clocksin and Mellish
2003). Finally all tasks are introduced with a maximum of
4 iterations. The multi-task approach trains on the entire
dataset with 4 iterations fixed in advance. Models are trained
via back-propagation using Adam (Kingma and Ba 2014)
for 120 epochs (10 per task) with a mini-batch size of 32
and a training dataset size of 20k logic programs per task.
We ensure a mini-batch contains at least 1 sample from each
training task to avoid any bias towards any task in a given
mini-batch. Logic programs are shuffled after each epoch and
rules within a context are also shuffled with every mini-batch.
Since we have access to the data generating distribution, we
do not use any regularisation in any of the models and have
increased the training dataset size accordingly to avoid over-
fitting (Goodfellow, Bengio, and Courville 2017).

We generate 4 test sets of increasing difficulty: validation,
easy, medium and hard which have up to 2, 4, 8 and 12 char-
acters for predicates and constants as well as added number
of irrelevant rules respectively. Each test set consists of 10k

generated logic programs per task and results for the best
single training run out of 3 for each model with state size
d = 64 on the easy set are shown in Table 3.

We observe that all iterative models perform better than
the baseline except for task 8, transitivity which all models
fail at. We speculate the reason is that the models have not
seen existential variable binding for more than 2 character
constants and fail to generalise in this particular case. We
note that the curriculum training regime has no benefit for
any model most likely because we introduce new, unseen
tasks with each iteration such that models with prior train-
ing have no advantage, ex. solving OR in 2 iterations does
not improve the solution for AND in 3 iterations. Embed-
ding literals seems to provide an advantage over embedding
rules since all IMA models outperform both DMN and MAC
when we consider the mean accuracy over every test set. We
postulate literal embeddings give a finer view and allow for
better generalisation over increasing lengths as embedding
rules with literals (lit+rule) also degrades the performance.
Although our variant IMA performs the best on all the test
sets, all models quickly degrade in mean accuracy as the dif-
ficulty increases. We speculate that a finite sized state vector
stores limited information about unseen unique sequences of
increasing lengths and analyse this behaviour further in the
next section.

Figure 2 portrays the attention maps produced by IMA
with softmax attention. Although by default models converge
to backward chaining, by (i) reversing the direction of the
unifier GRU, equation 10, and (ii) skipping task 2, we can
create a bias towards ground facts that have a matching con-
stant. This approach encourages our model IMA with rule
embeddings (lit+rule) to converge to forward chaining (Rus-
sell and Norvig 2016), albeit with more training time (thus
results for forward chaining are not included in Table 3). This
observation emphasises the fact that a fixed network architec-
ture can be flexible enough to learn two different solutions
for the same domain of problems given the right incentives.

Analysis

Since models are trained in an end-to-end fashion, the repre-
sentations for logical constructs that help perform reasoning
must also be learned. In this section, we scrutinise the learnt



Figure 3: First, second and last principal components of
embeddings of single character literals form a lattice like
structure with predicates clustered in vertical columns and
constants on horizontal surfaces; from IMAsm.

representations of the embedding GRU, equation 7 for IMA
and the rule embeddings of DMN.

An important assumption made in the dataset is that every
predicate and constant combination is unique. We expect this
setup to create a formation that would allow every literal to
be differentiated. As such, we observe a lattice like structure
when the embeddings of single and double character atoms
are visualised in 3 dimensions using principle component
analysis (PCA), Figure 3. The first two components select
the predicate and the final the constant to uniquely identify
the literal with a clear distinction between single and double
character predicates. This arrangement is in contrast with
distributional representations that exploit similarities between
entities such as in natural language embeddings (Mikolov et
al. 2013). In our case, p(a) might be more similar to p(b)
than to pp(a) although all are deemed unique.

Figure 4: Repeating character predicates saturate the embed-
ding and converge to respective points, equidistant lines are
plotted in grey; from IMAsm.

As the embedding sizes are finite, we also expect a satu-
ration in the embedding space as the length of the literals
increase. We capture this phenomenon by repeating the char-
acter p 64 times and observe a converging pattern shown in
Figure 4. We take note how odd and even length predicates
converge to their own respective point suggesting that the
embeddings produced by the GRU, equation 7, learn parity.

If we take structurally different literals we observe a pref-
erence towards whether literals are negated or grounded then
the arity of the atoms, Figure 5a. We believe this clustering
captures the literal semantics available in the dataset within 4
major clusters (grey lines). Furthermore, if we look at the rule
embeddings learnt by DMN, we notice a similar clustering
based on rule structure with again groundedness, negation,
arity and number of body literals as learnt distinguishing
features, Figure 5b. The multiple points within a cluster cor-
respond to different predicates following a similar ordering,
for example predicate p is often the upper most point.

To evaluate multi-hop reasoning, we generate logic pro-
grams that require increasing number of steps of deduction.
While the training data contains up to 3 steps, we generate
up to 32 steps and the networks are run for n+ 1 iterations.
We obtain similar results to other recurrent neural network
based systems (Zaremba et al. 2016) and observe a steady de-
crease in accuracy beyond the training line (grey dashed line),
shown in Figure 6 in which imasm and imarsm indicate
IMA with softmax attention and rule embedding respectively.
We speculate that with each iteration step the state represen-
tation degrades eventually losing information since models
tend to produce noisy attention maps or state transformations.
Our IMA model with softmax attention maintains the high-
est accuracy most likely due to the sparsity created by the
softmax operation.

To evaluate generalisation to unseen symbols, we take
task 3 and generate increasing character lengths of random
predicate or constant symbols up to 64, well beyond the train-
ing dataset length of 2. Although we observed that literal
embeddings can saturate, models can cope with longer ran-
domly generated predicate or constant symbols, Figure 7a,
since looking at only a few characters can determine unique-
ness. This reflects on our intuition that looking at portions of
sequences might be enough to determine equality rather than
memorising them entirely, ex. looking at last few digits of
phone numbers to check if they are same.

In order to understand how the embedding and state di-
mensions d affect the models, we experimented with sizes 32,
48, 64, 96 and 128 running each curriculum training session
3 times for our IMA model. Figure 7b shows that increasing
the dimension size does not contribute to a clear increase in
mean accuracy over all tasks and the drop in accuracy across
easy, medium and hard test sets follow a similar pattern for
every dimension. Despite the initial increase beyond d = 32,
we get the highest upper bound in accuracy with d = 64, for
which the individual results are in Table 3.

We designed the tasks to be of increasing difficulty build-
ing on previously seen problems such as unification before
deduction. We expected models trained using an iterative
scheme would generalise better as the network depth would
increase gradually. However, when we average the mean



(a) Structurally different literals first cluster by whether they are
negated or grounded then by arity (grey lines added as visual aids);
from IMAsm.

(b) Rule embeddings form clusters based on their structure with a
distinction between negated and non-negated rules (grey line added
as visual aid), from DMN.

Figure 5: Principle component analysis (PCA) of learnt representations.

Figure 6: When models are iterated beyond the training num-
ber of steps (grey line) to perform increasing steps of deduc-
tion, the accuracy degrades for all models.

accuracy for all dimensions, for all 3 runs of IMA with soft-
max attention across the test sets, we do not discern any
advantage for curriculum training over multi-task training
beyond the validation set. Figure 7c shows a similar decrease
in performance across the test sets for both training regimes.
We believe this result stems from introducing new tasks with
each iteration and models not having any incentive to abstract
subtasks until the next set of unseen tasks are incorporated
into the training dataset.

Discussion

Given the simple, unit test like nature of the logic programs
generated, the lack of robust results for iterative neural net-
works further encourages a combination of machine learning

and symbolic systems rather than encompassing one with the
other. In this section, we try to provide additional discussion
and insight into why one might or might not learn symbolic
reasoning from scratch using iterative neural networks.

Whilst the basic logic programs presented in this paper
can all be solved using existing symbolic systems such as
Prolog (Clocksin and Mellish 2003), we struggle to see a
comparable performance from neural networks. Increasing
the number of steps in task 3, as shown in Figure 6, demon-
strates the fragile nature of using continuous representations
for rigid symbolic reasoning. The embedding space is inher-
ently limited in capacity as it has fixed number of dimensions.
Although a 64 dimensional vector can in theory encode a
lot of information, in practice neural networks trained using
back-propagation do not seem to have any guarantees on how
efficiently they will learn representations in a vector space.
We speculate that this creates an accumulative noise with
each iteration which eventually degrades the performance.
On the other hand, the learnt continuous representations scale
to very long previously unseen symbols, Figure 7a, which is
a desirable property of neuro-symbolic systems.

Attention mechanisms allow state-of-the-art memory
based networks to address and operate an external mem-
ory (Weston, Chopra, and Bordes 2015). In the case of nueral
reasoning networks, the attention components provide the
means to select rules. An interesting outcome is that all neu-
ral reasoning models try to attend to multiple rules when
applicable, for example when there are two matching rules
as shown in Figure 2. Unlike Prolog, this approach allows
the neural networks to simultaneously explore multiple pos-
sible branches completing the reasoning task in fewer steps.
However, we speculate such an attention mechanism will
become the bottleneck when there are large numbers, possi-
bly hundreds of matching rules such as in knowledge base
completion tasks since it will try to aggregate all matching



(a) The models can cope, in particular IMA
with literal embeddings, when predicate and
constant symbols of increasing length are ran-
domly generated.

(b) Mean accuracy over all tasks against in-
creasing embedding dimension d shows no
clear increase beyond d = 64.

(c) Mean accuracy of training regimes applied
to IMAsm against test sets across all dimen-
sions show no advantage of curriculum train-
ing for generalisation.

Figure 7: Accuracy plots over increasing symbol lengths, state dimension and training regime.

rules in a single step. An explicit strong supervision of the
attention mechanism, similar to the original DMN (Kumar et
al. 2016) work or a hierarchical architecture might be needed
to encourage a form of iterative backtracking.

Lack of abstraction between seemingly related tasks limits
the performance on unseen logic programs. During curricu-
lum training, we noticed models which solve tasks 1, 2 and 3
have no advantage on solving task 4 because the final state
representation from task 3 specifically looks for a ground
instance such as p(a) to complete the task. However, in task
4 the model needs to match another rule p(X):- and iterate
once more. When presented with task 4, models most likely
have to adjust the intermediate state representation to check
for the second rule case; as a result Figure 7c can also be
interpreted as the lack of abstraction over increasingly com-
plex tasks in the dataset since curriculum learning provides
no clear advantage. In other words, the neural models do not
seem to learn a reasoning process that is general enough to
be compared to existing symbolic systems; consequently we
were unable to run them on existing logic program bench-
marks or against Prolog.

Related Work

There have been many attempts to combine symbolic reason-
ing with machine learning techniques under the name neural-
symbolic systems (Garcez, Broda, and Gabbay 2012). Lifted
Relational Neural Networks (Sourek et al. 2015) ground
clauses turning them into propositional programs when con-
structing networks as a set of weighted definite clauses. We
do not pre-process programs to ground variables and Neural
Reasoning Networks must learn unification. TensorLog (Co-
hen 2016) constructs “factor graphs” from logic rules which
in return create the network that run on one-hot encoded
constants. Our approach does not factor, compile or use any
implicit knowledge about first-order logical inference or rule
applications. We also only one-hot encode characters, not
entire predicates or constants, and only give labels 1 or 0
as targets to train end-to-end using the same neural network
with same architecture and weights for every normal logic

program. Logic Tensor Networks (Serafini and Garcez 2016)
tackle knowledge completion “on a simple but representative
example” also grounding every term in the program prior to
performing reasoning.

Following the above mentioned works, Neural Theorem
Provers (Rocktäschel and Riedel 2017) learn distributional
representations of predicates and constants by symbolically
constructing the relationship between embeddings using an
existing symbolic inference engine. We design our tasks such
that the neural networks attempt to learn not only represen-
tations at a character level but also the reasoning algorithm
with no help or knowledge of existing reasoning engines and
methods.

Learning similarities between constants can be used to
perform link-prediction tasks (Nickel et al. 2016) and knowl-
edge base completion (Socher et al. 2013) but creates un-
wanted inferences when similar constants should indeed be
unique (Rocktäschel et al. 2014). Although we set every con-
stant to be unique, we expect embeddings of similar constants
to cluster during training if the data entails the same conclu-
sions. Creating differentiable logical inference networks can
also induce rules (Evans and Grefenstette 2018); however, at
this stage we do not learn logical rules along side reasoning
tasks and assume they are given to the model. Possible World
Net (Evans et al. 2018) follows a unique approach to learn-
ing propositional logic entailment using semantic, worlds
interpretation; however, they exploit the syntax of logical for-
mulae by parsing them and constructing the neural network
in a tree like manner in which nodes correspond to logical
operators. The works mentioned so far are designed for either
deductive databases, relation learning, link prediction, knowl-
edge base completion or propositional programs; thus our
task of learning reasoning over and embeddings of normal
logic programs using a fixed RNN-based iterative network
is inherently different making a direct empirical comparison
unreasonable.

Neural Reasoning Networks can be seen as interpreters
of logic programs as rules can act like instructions. This
perspective reflects on systems such as Neural Program In-
terpreters (Reed and De Freitas 2015) and Neural Symbolic



Machines (Liang et al. 2016). These systems contain discrete
operations that allow more complex actions to be performed
overcoming the problem of a degrading state representation;
however, they require a reinforcement learning setting to
train. We believe a reinforcement learning approach applied
on our dataset would learn a similar algorithm to that of
Prolog (Clocksin and Mellish 2003).

Conclusion

We presented a new synthetic dataset and provided insights
into how machine learning might encompass symbolic rea-
soning, defined as logic programs using RNN-based iterative
neural networks. Fully differentiable models trained end-to-
end have their inherent disadvantages: they seem to lose track
when the number of iterations is increased and the embedding
space is limited in capacity. However, such networks might
still hold the key to incorporate symbolic prior knowledge
into a continuous space by understanding how that embed-
ding space is organised to store symbolic information.

Since such neural networks provide a differentiable but
approximate reasoning engine over logic programs, in the
future we hope to induce rules using continuous embeddings
of logical rules by propagating gradients back to the context.
However, initially if possible, a more robust neural reasoning
network must be learned, one that is comparable in perfor-
mance to existing logic-based expert systems.

References

Apt, K. R., and Bol, R. N. 1994. Logic programming and
negation: A survey. The Journal of Logic Programming
19:9–71.

Apt, K. R., and Van Emden, M. H. 1982. Contributions to the
theory of logic programming. Journal of the ACM (JACM)
29(3):841–862.

Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-Gonzalez,
A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.; Raposo, D.;
Santoro, A.; Faulkner, R.; et al. 2018. Relational inductive
biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261.

Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J. 2009.
Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning, 41–48. ACM.

Besold, T. R.; Garcez, A. d.; Bader, S.; Bowman, H.; Domin-
gos, P.; Hitzler, P.; Kühnberger, K.-U.; Lamb, L. C.; Lowd,
D.; Lima, P. M. V.; et al. 2017. Neural-symbolic learning and
reasoning: A survey and interpretation. arXiv:1711.03902.

Cho, K.; Van Merriënboer, B.; Bahdanau, D.; and Bengio,
Y. 2014. On the properties of neural machine translation:
Encoder-decoder approaches. arXiv:1409.1259.

Clark, K. L. 1978. Negation as failure. In Logic and data
bases. Springer. 293–322.

Clocksin, W. F., and Mellish, C. S. 2003. Programming in
PROLOG. Springer Science & Business Media.

Cohen, W. W. 2016. Tensorlog: A differentiable deductive
database. arXiv:1605.06523.

Ding, L. 1995. Neural prolog-the concepts, construction
and mechanism. In Systems, Man and Cybernetics, 1995.
Intelligent Systems for the 21st Century., IEEE International
Conference on, volume 4, 3603–3608. IEEE.

Evans, R., and Grefenstette, E. 2018. Learning explana-
tory rules from noisy data. Journal of Artificial Intelligence
Research 61:1–64.

Evans, R.; Saxton, D.; Amos, D.; Kohli, P.; and Grefenstette,
E. 2018. Can neural networks understand logical entailment?
arXiv:1802.08535.

Garcez, A. S. d.; Broda, K. B.; and Gabbay, D. M. 2012.
Neural-symbolic learning systems: foundations and applica-
tions. Springer Science & Business Media.

Goodfellow, I.; Bengio, Y.; and Courville, A. 2017. Deep
Learning. The MIT Press.

Graves, A.; Wayne, G.; Reynolds, M.; Harley, T.; Danihelka,
I.; Grabska-Barwińska, A.; Colmenarejo, S. G.; Grefenstette,
E.; Ramalho, T.; Agapiou, J.; et al. 2016. Hybrid comput-
ing using a neural network with dynamic external memory.
Nature 538(7626):471.

Graves, A.; Wayne, G.; and Danihelka, I. 2014. Neural turing
machines. arXiv:1410.5401.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9(8):1735–1780.

Hudson, D. A., and Manning, C. D. 2018. Compositional
attention networks for machine reasoning. arXiv:1803.03067.

Kingma, D. P., and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv:1412.6980.

Komendantskaya, E. 2011. Unification neural networks:
unification by error-correction learning. Logic Journal of the
IGPL 19(6):821–847.

Kumar, A.; Irsoy, O.; Ondruska, P.; Iyyer, M.; Bradbury, J.;
Gulrajani, I.; Zhong, V.; Paulus, R.; and Socher, R. 2016.
Ask me anything: Dynamic memory networks for natural
language processing. In ICML, 1378–1387.

Liang, C.; Berant, J.; Le, Q.; Forbus, K. D.; and Lao, N.
2016. Neural symbolic machines: Learning semantic parsers
on freebase with weak supervision. arXiv:1611.00020.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In NIPS, 3111–3119.

Muggleton, S., and De Raedt, L. 1994. Inductive logic
programming: Theory and methods. The Journal of Logic
Programming 19:629–679.

Nickel, M.; Rosasco, L.; Poggio, T. A.; et al. 2016. Holo-
graphic embeddings of knowledge graphs. In AAAI, 1955–
1961.

Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In EMNLP, 1532–
1543.

Reed, S., and De Freitas, N. 2015. Neural programmer-
interpreters. arXiv:1511.06279.

Rocktäschel, T., and Riedel, S. 2017. End-to-end differen-
tiable proving. In NIPS, 3791–3803.



Rocktäschel, T.; Bošnjak, M.; Singh, S.; and Riedel, S. 2014.
Low-dimensional embeddings of logic. In Proceedings of
the ACL 2014 Workshop on Semantic Parsing, 45–49.

Russell, S., and Norvig, P. 2016. Artificial Intelligence: A
Modern Approach (3rd Edition). Pearson.

Santoro, A.; Raposo, D.; Barrett, D. G.; Malinowski, M.;
Pascanu, R.; Battaglia, P.; and Lillicrap, T. 2017. A simple
neural network module for relational reasoning. In NIPS,
4974–4983.

Serafini, L., and Garcez, A. d. 2016. Logic tensor networks:
Deep learning and logical reasoning from data and knowl-
edge. arXiv:1606.04422.

Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. 2013.
Reasoning with neural tensor networks for knowledge base
completion. In NIPS, 926–934.

Sourek, G.; Aschenbrenner, V.; Zelezny, F.; and Kuzelka, O.
2015. Lifted relational neural networks. arXiv:1508.05128.

Sukhbaatar, S.; Weston, J.; Fergus, R.; et al. 2015. End-to-end
memory networks. In NIPS, 2440–2448.

Tai, K. S.; Socher, R.; and Manning, C. D. 2015. Improved
semantic representations from tree-structured long short-term
memory networks. arXiv preprint arXiv:1503.00075.

Weston, J.; Bordes, A.; Chopra, S.; Rush, A. M.; van
Merriënboer, B.; Joulin, A.; and Mikolov, T. 2015. To-
wards ai-complete question answering: A set of prerequisite
toy tasks. arXiv:1502.05698.

Weston, J.; Chopra, S.; and Bordes, A. 2015. Memory
networks. ICLR.

Xiong, C.; Meity, S.; and Socher, R. 2016. Dynamic memory
networks for visual and textual question answering. In ICML,
2397–2406.

Zaremba, W.; Mikolov, T.; Joulin, A.; and Fergus, R. 2016.
Learning simple algorithms from examples. In ICML, 421–
429.


