
Deeply-supervised Knowledge Synergy

Dawei Sun1,2∗ Anbang Yao1∗ Aojun Zhou1 Hao Zhao1,2

1Intel Labs China 2Tsinghua University

{dawei.sun, anbang.yao, aojun.zhou, hao.zhao}@intel.com

Abstract

Convolutional Neural Networks (CNNs) have become

deeper and more complicated compared with the pioneer-

ing AlexNet. However, current prevailing training scheme

follows the previous way of adding supervision to the last

layer of the network only and propagating error informa-

tion up layer-by-layer. In this paper, we propose Deeply-

supervised Knowledge Synergy (DKS), a new method aim-

ing to train CNNs with improved generalization ability for

image classification tasks without introducing extra com-

putational cost during inference. Inspired by the deeply-

supervised learning scheme, we first append auxiliary su-

pervision branches on top of certain intermediate network

layers. While properly using auxiliary supervision can im-

prove model accuracy to some degree, we go one step fur-

ther to explore the possibility of utilizing the probabilistic

knowledge dynamically learnt by the classifiers connected

to the backbone network as a new regularization to im-

prove the training. A novel synergy loss, which consid-

ers pairwise knowledge matching among all supervision

branches, is presented. Intriguingly, it enables dense pair-

wise knowledge matching operations in both top-down and

bottom-up directions at each training iteration, resembling

a dynamic synergy process for the same task. We evaluate

DKS on image classification datasets using state-of-the-art

CNN architectures, and show that the models trained with it

are consistently better than the corresponding counterparts.

For instance, on the ImageNet classification benchmark,

our ResNet-152 model outperforms the baseline model with

a 1.47% margin in Top-1 accuracy. Code is available at

https://github.com/sundw2014/DKS.

1. Introduction

Deep Convolutional Neural Networks (CNNs) have large

numbers of learnable parameters, which makes them have

*Equal contribution. This work was done when Dawei Sun was an

intern at Intel Labs China, supervised by Anbang Yao who is responsible

for correspondence. Interns Aojun Zhou and Hao Zhao contributed to early

theoretical analysis.

Synergy loss

Shallow, intermediate & deep layers

Auxiliary layers

Knowledge generation nodes

... Training data

Auxiliary supervision branches

Pairwise knowledge matching

Figure 1: Illustration of the proposed method. In the figure,

we add three auxiliary supervision branches on top of some

intermediate layers of the backbone network. Every branch

will output a class probability distribution conditioned on

the training data, which is used as the knowledge. We use

circles to indicate the nodes for calculating these knowledge

outputs, and propose a synergy loss term to enable the pair-

wise matching among them. Best viewed electronically.

much better capability in fitting training data than tradi-

tional machine learning methods. Along with the grow-

ing availability of training resources including large-scale

datasets, powerful hardware platforms and effective de-

velopment tools, CNNs have become the dominant learn-

ing models for a variety of visual recognition tasks [21,

26, 7, 42]. In order to get more compelling perfor-

mance, CNNs [39, 10, 47, 17, 44, 15, 1] are designed to

be considerably deeper and more complicated in compar-

ison to the seminal AlexNet [21] which has 8 layers and

achieved groundbreaking results in the ImageNet classifi-

cation competition 2012 [37]. Despite that modern CNNs

widely use various engineering techniques such as careful

hyper-parameter tuning [39], aggressive data argumenta-

tion [44, 49], effective normalization [18, 9] and sophisti-

cated connection path [10, 17, 44, 15, 1] to ease network

training, their training remains to be difficult.

We notice that state-of-the-art CNN models such as

ResNet [10], WRN [47], DenseNet [17], ResNeXt [44],

SENet [15], DPN [1], MobileNet [14, 38] and Shuf-

fleNet [51, 27] adopt the training scheme of AlexNet. More

6997

specifically, during training, the supervision is only added

to the last layer of the network and the training error is

back propagated from the last layer to earlier layers. Be-

cause of the increased complexity in network depth, build-

ing blocks and network topologies, this might pose a risk of

insufficient representation learning, especially to the layers

from which there are long connection paths to the supervi-

sion layer. This problem may be alleviated by the deeply-

supervised learning scheme proposed in [41] and [22] in-

dependently. Szegedy et al. [41] add auxiliary classifiers

to two intermediate layers of their proposed GoogLeNet,

while Lee et al. [22] propose to add auxiliary classifiers to

all hidden layers of the network. During network training,

although different types of auxiliary classifiers are used in

these two methods, they adopt the same optimization strat-

egy in which the training loss is the weighted sum of the

losses of all auxiliary classifiers and the loss of the clas-

sifier connected to the last layer. Such methodology has

proven to be notably effective in combating the vanishing

gradient problem and overcoming the convergence issue for

training some old deep classification networks. However,

modern CNN backbones usually have no convergence is-

sue, and rarely use auxiliary classifiers. Recently, Huang

et al. [16] present a two-dimensional multi-scale CNN ar-

chitecture using early-exit classifiers for cost-aware image

classification. In [16], empirical results show that naively

attaching simple auxiliary classifiers to the early layers of

a state-of-the-art CNN such as ResNet or DenseNet leads

to decreased performance, but this issue can be alleviated

with a combination of multi-scale features and dense con-

nections from the architecture design perspective.

In this paper, we revisit the deeply-supervised learn-

ing methodology for image classification tasks, and present

a new method called Deeply-supervised Knowledge Syn-

ergy (DKS) targeting to train state-of-the-art CNNs with

improved accuracy and without introducing extra compu-

tational cost during inference. Inspired by the aforemen-

tioned works [41, 22, 16], we first append auxiliary super-

vision branches on top of certain intermediate layers during

network training as illustrated in Fig. 1. We show that us-

ing carefully designed auxiliary classifiers can improve the

accuracy of state-of-the-art CNNs to a certain extent. This

empirically indicates that the information from the auxil-

iary supervision is beneficial in regularizing the training of

modern CNNs. We conjecture there may still exist room

for performance improvement by enabling explicit informa-

tion interactions among all supervision branches connected

to the backbone network, thus we go one step further to

explore the possibility of utilizing the knowledge (namely

the class probability outputs evaluated on the training data)

dynamically learnt by the auxiliary classifiers and the clas-

sifier added to the last network layer as a new regulariza-

tion to improve the training. In the optimization, a novel

synergy loss, which considers pairwise knowledge match-

ing among all supervision branches, is added to the training

loss. This loss enables dense pairwise knowledge match-

ing operations in both top-down and bottom-up directions

at each training step, resembling a dynamic synergy pro-

cess for the same task. We evaluate the proposed method

on two well-known image classification datasets using the

most prevalent CNN architectures including ResNet [10],

WRN [47], DenseNet [17] and MobileNet [14]. We show

that the models trained with our method have impressive ac-

curacy improvements compared with their respective base-

line models. For example, on the challenging ImageNet

classification dataset, even to very deep ResNet-152 archi-

tecture, there is a 1.47% improvement in Top-1 accuracy.

2. Related Work

Here, we summarize related approaches in the literature,

and analyze their relations and differences with our method.

Deeply-Supervised Learning. The deeply-supervised

learning methodology [41, 22] was released in 2014. It uses

auxiliary classifiers connected to the hidden layers of the

network to address the convergence problem when training

some old deep CNNs for image classification tasks. Re-

cently, it has also been used in other visual recognition tasks

such as edge detection [45], human pose estimation [31],

scene parsing [54], semantic segmentation [53], keypoint

localization [23], automatic delineation [29] and travel time

estimation [50]. Despite these recent advances in its new

applications, modern CNN classification models rarely use

auxiliary classifiers. As reported in [16], directly append-

ing simple auxiliary classifiers on top of the early layers

of a state-of-the-art network such as ResNet or DenseNet

hurts its performance. In this paper, we present DKS, a

new deeply-supervised learning method for image classi-

fication tasks, which shows impressive accuracy improve-

ments when training state-of-the-art CNNs.

Knowledge Transfer. In the recent years, Knowledge

Transfer (KT) research has been attracting increasing inter-

est. A pioneering work is Knowledge Distillation (KD) [11]

in which the soft outputs from a large teacher model or an

ensemble of teacher models are used to regularize the train-

ing of a smaller student network. [36], [46] and [48] further

show that intermediate feature representations can also be

used as hints to enhance knowledge distillation process. KD

techniques have also been used in other tasks, for instance,

improving the performance of low-precision CNNs for im-

age classification [28] and designing multiple-stream CNNs

for video action recognition [5]. Unlike KD and its vari-

ants in which knowledge is only transferred from teacher

models to a student model, [52] extends KD by presenting

a mutual learning strategy, showing that the knowledge of

the student model is also helpful to improve the accuracy

of the teacher model. Later, this idea was used in person

6998

re-identification [55] and joint human parsing and pose es-

timation [32]. Li and Hoiem [24] address the problem of

adapting a trained neural network model to handle new vi-

sion tasks while preserving the old knowledge through a

combination of KD and fine-tuning. An improved method is

proposed in [12]. Qiao et al. [35] propose a deep co-training

method for semi-supervised image classification. In their

method, all models are considered as students and trained

with different data views containing adversarial samples. In

this paper, the proposed deeply-supervised knowledge syn-

ergy method is a new form of knowledge transfer within

one single neural network, which differs from the aforemen-

tioned methods both in focus and formulation.

CNN Regularization. ReLU [30], Dropout [40] and

BN [18] are proven to be the keys for modern CNNs to com-

bat over-fitting or accelerate convergence. Because of this,

many improved variants [9, 43, 4, 8, 6] have been proposed

recently. Over-fitting can also be reduced by synthetically

increasing the size of existing training data via augment

transformations such as random cropping, flipping, scaling,

color manipulation and linear interpolation [21, 13, 41, 49].

In addition, pre-training [39] can assist the early stages of

the neural network training. These methods are widely

used in modern CNN architecture design and training. Our

method is compatible with them. As can be seen in Fig. 3,

the model trained with DKS has the highest training error

but the lowest test error, showing that our method behaves

like a regularizer and reduces over-fitting for ResNet-18.

3. The Proposed Method

In this section, we present the formulation of our method,

highlight its insight, and detail its implementation.

3.1. DeeplySupervised Learning

We begin with the formulation of the deeply-supervised

learning scheme as our method is based on it. Let Wc be

the parameters of a L-layer CNN model that needs to be

learnt. Let D = {(xi, yi)|1 ≤ i ≤ N} be an annotated

data set having N training samples collected from K image

classes. Here, xi is the ith training sample and yi is the

corresponding ground truth label (a one-hot vector with K
dimensions). Let f(Wc, xi) be the K-dimensional output

vector of the CNN model for a training sample xi. For the

standard training scheme, the supervision is only added to

the last layer of the network, and the optimization objective

can be defined as

argmin
Wc

Lc(Wc, D) + λR(Wc), (1)

where Lc is the default loss, R is the regularization term,

and λ is a positive coefficient. Here, Lc is defined as

Lc(Wc, D) =
1

N

N∑

i=1

H(yi, f(Wc, xi)),

where H is a cross-entropy cost function

H(yi, f(Wc, xi)) = −

K∑

k=1

yki log f
k(Wc, xi).

As λR is a default term and has no relation with our method,

we omit this term in the following description for simplicity.

Now, the objective function (1) can be reduced into

argmin
Wc

Lc(Wc, D). (2)

This optimization problem can be readily solved by SGD

and its variants [3, 19, 2]. To the best of our knowledge,

most of the well-known CNNs [21, 39, 10, 47, 17, 44, 14,

38, 15, 1, 51, 27, 56, 34, 25] adopt this optimization scheme

in the model training. By contrast, the deeply-supervised

learning scheme explicitly proposed in [22] adds auxiliary

classifiers to all hidden layers of the network during train-

ing. Let Wa = {wl
a|1 ≤ l ≤ L − 1} be a set of auxiliary

classifiers attached on the top of every hidden layer of the

network. Here, wl
a denotes the parameters of the auxiliary

classifier added to the lth hidden layer. Let f(wl
a,Wc, xi)

be the K-dimensional output vector of the lth auxiliary clas-

sifier. Without loss of generality, the optimization objective

of the deeply-supervised learning scheme can be defined as

argmin
Wc,Wa

Lc(Wc, D) + La(Wa,Wc, D), (3)

where

La(Wa,Wc, D) =
1

N

N∑

i=1

L−1∑

l=1

αlH(yi, f(w
l
a,Wc, xi)).

The auxiliary loss La is the weighted sum of the losses

of all auxiliary classifiers evaluated on the training set and

αl weights the loss of the lth auxiliary classifier. By in-

troducing auxiliary loss La, the deeply-supervised learn-

ing scheme allows the network to gather gradients not only

from the last layer supervision but also from the hidden

layer supervision during training. This is thought to com-

bat the vanishing gradient problem and enhance conver-

gence [22, 41].

As for the contemporary work [41], its optimization ob-

jective can be thought as a special case of (3) as it only adds

auxiliary classifiers to two intermediate layers of the pro-

posed GoogLeNet. The other difference lies in the structure

of auxiliary classifiers. In the experiments, [22] used sim-

ple classifiers with a zero-ing strategy to dynamically con-

trol the value of αl during training, while [41] used more

complex classifiers with a fixed value of αl. We find that

setting a fixed value for αl gives similar performance to the

zero-ing strategy when training state-of-the-art CNNs, thus

we use fixed values for αl in our implementation.

6999

3.2. Deeplysupervised Knowledge Synergy

Now, we present the formulation of our DKS which fur-

ther develops the deeply-supervised learning methodology

from a new perspective. DKS also uses auxiliary classifiers

connected to some hidden layers of the network, but unlike

existing methods, it introduces explicit information inter-

actions among all supervision branches. Specifically, DKS

uses the knowledge (i.e., the class probability outputs eval-

uated on the training data) dynamically learnt by all classi-

fiers to regularize network training. Its core contribution is

a novel synergy loss which enables dense pairwise knowl-

edge matching among all classifiers connected to the back-

bone network, making optimization more effective.

In this section, we follow the notations in the last section.

We only add auxiliary classifiers to certain hidden layers.

Let A ⊆ {1, 2, · · ·, L−1} be a pre-defined set with |A| layer

indices, indicating where auxiliary classifiers are added. Let

Â = A ∪ {L}, where L is the index of the last layer of the

network, so that Â indicates the locations of all classifiers

connected to the network including both the auxiliary ones

and the original one. Let B ⊆ Â×Â be another pre-defined

set with |B| pairs of layer indices, indicating where pair-

wise knowledge matching operations are activated.

Now, following the definition of (3), the optimization ob-

jective of our DKS is defined as

argmin
Wc,Wa

Lc(Wc, D) + La(Wa,Wc, D) + Ls(Wa,Wc, D). (4)

Here, the default loss Lc is the same as in (3), the auxiliary

loss La is defined as

La(Wa,Wc, D) =
1

N

N∑

i=1

∑

l∈A

αlH(yi, f(w
l
a,Wc, xi)),

and the proposed synergy loss Ls is defined as

Ls(Wa,Wc, D) =
1

N

N∑

i=1

∑

(m,n)∈B

H(fm, fn).

The pairwise knowledge matching from the classifier m to

n is evaluated with H(fm, fn) which is defined as

H(fm, fn) = −βmn

K∑

k=1

fk
m log fk

n ,

where fm and fn are the class probability outputs of the

classifier m and n evaluated on the training sample xi re-

spectively, and βmn weights the loss of the pairwise knowl-

edge matching from the classifier m to n. We use a Softmax

function to compute class probability. In the experiments,

we set αl = 1, βmn = 1 and keep them fixed, which means

there is no extra hyper-parameter in the optimization of our

method compared with the optimization (2) and (3). For

Top-down Bottom-up Bi-directional

Figure 2: Illustration of three pairwise knowledge match-

ing strategies. In each strategy, the red circle denotes the

classifier connected to the last layer of the network, and the

purple circles denote three auxiliary classifiers connected to

certain intermediate layers, and the curved arrows represent

the pairwise knowledge matching directions.

the synergy loss, the knowledge matching between any two

classifiers is a modified cross-entropy loss function with a

soft target. In principle, taking the current class probabil-

ity outputs from the classifier m as soft labels (which are

considered as constant values and the gradients w.r.t. them

will not be calculated in the back-propagation), it forces

the classifier n to mimic the classifier m. In this way, the

knowledge currently learnt by the classifier m can be trans-

ferred to the classifier n. We call this term a directional

supervision. Intriguingly, enabling dense pairwise knowl-

edge matching operations among all supervision branches

connected to the backbone network resembles a dynamic

synergy process for the same task.

Pairwise Knowledge Matching. For DKS, a critical

question is how to configure the knowledge matching pairs

(i.e., set B). We provide three options including the top-

down, bottom-up and bi-directional strategies, as illustrated

in Fig. 2. With the top-down strategy, only the knowledge

of the classifiers connected to the deep layers of a back-

bone network are used to guide the training of the classi-

fiers added to the earlier layers. The bottom-up strategy

reverses this setting and the bi-directional strategy includes

both of them. A comparison study (see experiments sec-

tion) shows that the bi-directional strategy has the best per-

formance, thus we adopt it in the final implementation.

Auxiliary Classifiers. Another basic question for DKS

is how to design the structure of auxiliary classifiers. Al-

though the deeply-supervised learning scheme has proven

to be effective in addressing the convergence issue when

training some old deep networks for image classifica-

tion tasks [22], state-of-the-art CNNs such as ResNet and

DenseNet are known to be free of convergence issue, even

for models having hundreds of layers. In view of this, di-

rectly adding simple auxiliary classifiers to the hidden lay-

ers of the network might not be helpful, which has been

empirically verified by [16] and [53]. From the CNN ar-

chitecture design perspective, [41] and [16] propose to add

7000

0 10 20 30 40 50
Iterations (1e4)

0

20

40

60

80

100

Er
ro

r (
%

)

baseline
DS with simiple aux. classifiers
DS with complex aux. classifiers
DKS with complex aux. classifiers

Figure 3: Curves of Top-1 training error (dashed line) and

test error (solid line) of the ResNet-18 models trained on

the ImageNet classification dataset. Compared with the

baseline model, simple auxiliary classifiers (added after the

block Conv3 x and Conv4 x) lead to 1.17% drop in Top-1

accuracy and complex designs bring a 0.60% improvement,

while our method achieves 2.38% gain. Remarkably, our

method converges with the lowest accuracy on training set

but achieves the best accuracy on test set, showing better

capability in suppressing over-fitting.

complex auxiliary classifiers to some intermediate layers of

the network to alleviate this problem. Following them, in

the experiments, we append relatively complex auxiliary su-

pervision branches on top of certain intermediate layers dur-

ing network training. Specifically, every auxiliary branch is

composed of the same building block (e.g., residual block

in ResNet) as in the backbone network. As empirically veri-

fied in [16], early layers lack coarse-level features which are

helpful for image-level classification. In order to address

this problem, we use a heuristic principle making the paths

from the input to every classifier have the same number of

down-sampling layers. Comparative experiments show that

these carefully designed auxiliary supervision branches can

improve final model performance to some extent but the

gain is relatively minor. By enabling dense pairwise knowl-

edge matching via the proposed synergy loss, we achieve

much better results. Fig. 3 shows some illustrative results,

and more results can be found in experiments section.

Comparison with Knowledge Distillation. In the DKS,

the pairwise knowledge matching is inspired by the knowl-

edge distillation idea popularly used in knowledge trans-

fer [11, 48, 36, 46, 28, 52, 24, 12, 35]. Here, we clarify

their differences. First, our method differs with them in fo-

cus. This line of research mainly addresses the network

compression problem following a student-teacher frame-

work, but our method focuses on advancing the training

of state-of-the-art CNNs by further developing the deeply-

supervised learning methodology. Second, our method dif-

fers with them in formulation. Under the student-teacher

framework, large teacher models are usually supposed to be

available beforehand, and the optimization is defined to use

the soft outputs from teacher models to guide the training of

smaller student networks. That is, teacher models and stu-

dent models are separately optimized, and there is no direct

relation between them. In our method, auxiliary classifiers

share different-level feature layers of the backbone network,

and they are jointly optimized with the classifier connected

to the last layer. In this paper, we also conduct experiments

to compare their performance.

To the best of our knowledge, DKS is the first work that

makes a compact association of deeply-supervised learn-

ing and knowledge distillation methodologies, enabling the

transfer of currently learned knowledge between different

layers in a deep CNN model. In the supplemental materi-

als, we provide some theoretical analysis attempting to bet-

ter understand DKS.

4. Experiments

In this section, we first apply DKS to train state-of-the-

art CNNs on the CIFAR-100 [20] and ImageNet [37] classi-

fication datasets, and compare it with the standard training

scheme and the Deeply-Supervised (DS) learning scheme.

We then provide experiments for a deep analysis of DKS

and more comprehensive comparisons. All algorithms are

implemented with PyTorch [33]. For fair comparisons, the

experiments of these three methods are conducted with ex-

actly the same settings for data pre-processing, batch size,

number of training epochs, learning rate scheduling, etc.

4.1. Experiments on CIFAR100

CIFAR-100 dataset [20] contains 50000 training images

and 10000 test images, where instances are 32 × 32 color

images drawn from 100 object classes. We use the same

data pre-processing method as in [10, 22]. For training, im-

ages are padded with 4 pixels to both sides first, and then

32 × 32 crops are randomly sampled from the padded im-

ages or their horizontal flips, and are finally normalized with

the per-channel mean and std values. For evaluation, we re-

port the error on the original-sized test images.

Backbone Networks and Implementation Details. We

consider four state-of-the-art CNN architectures including:

(1) ResNets [10] with depth 32 and 110; (2) DenseNets [17]

with depth 40/100 and growth rate 12; (3) WRNs [47] with

depth 28/28 and widening factor 4/10; (4) MobileNet [14]

as used in [52]. We use the released code by the authors and

follow the standard settings to train each backbone network.

During training, for ResNets and MobileNet, we use SGD

with momentum, and we set the batch size as 64, the weight

decay as 0.0001, the momentum as 0.9 and the number of

training epochs as 200. The initial learning rate is 0.1, and

7001

it is divided by 10 every 60 epochs. For DenseNets, we

use SGD with Nesterov momentum, and we set the batch

size as 64, the weight decay as 0.0001, the momentum as

0.9 and the number of training epochs as 300. The initial

learning rate is set to 0.1, and is divided by 10 at 50% and

75% of the total number of training epochs. For WRNs, we

use SGD with momentum, and we set the batch size as 128,

the weight decay as 0.0005, the momentum as 0.9 and the

number of training epochs as 200. The initial learning rate

is set to 0.1, and is divided by 5 at 60, 120 and 160 epochs.

Inspired by [41, 16], we append two auxiliary classifiers

to certain intermediate layers of these CNN architectures.

Specifically, we add each auxiliary classifier after the cor-

responding building block having a down-sampling layer.

All auxiliary classifiers have the same building blocks as in

the backbone networks, a global average pooling layer and

a fully connected layer. The differences are the number of

building blocks and the number of convolutional filters (see

supplementary materials for details). All models are trained

on a server using 1 GPU. For each network, we run each

method 5 times and report ‘mean(std)’ error rates.

Results Comparison. Results are summarized in Ta-

ble 1 where baseline denotes the standard training scheme,

and DS denotes the deeply-supervised learning scheme [41,

22] using our designed auxiliary classifiers. Generally, with

our designed auxiliary classifiers, DS improves model ac-

curacy in all cases compared to the baseline method, and

its accuracy gain ranges from 0.08% to 0.92%. Compara-

tively, our method performs the best on all networks, bring-

ing at least 0.67% and at most 3.08% accuracy gain to

DS. As the network goes to much deeper (e.g., ResNet-110

and DenseNet-100)/much wider (e.g., WRN-28-10)/much

smaller (e.g., MobileNet), our method also has noticeable

accuracy improvements over all counterparts. These ex-

periments clearly validate the effectiveness of the proposed

method when training state-of-the-art CNNs.

4.2. Experiments on ImageNet

ImageNet classification dataset [37] is much larger than

CIFAR-100 dataset. It has about 1.2 million training images

and 50 thousand validation images, consisting of 1000 ob-

ject classes. For training, images are resized to 256 × 256
first, and then 224× 224 crops are randomly sampled from

the resized images or their horizontal flips normalized with

the per-channel mean and std values. For evaluation, we re-

port Top-1 and Top-5 error rates using center crops of the

resized validation data.

Backbone Networks and Implementation Details. We

use popular ResNets as the backbone networks for evalua-

tion. Specifically, ResNet-18, ResNet-50 and ResNet-152

are considered. All models are trained with SGD for 100

epochs. We set the batch size as 256, the weight decay as

0.0001 and the momentum as 0.9. The learning rate starts

Model Method Error(%) Average

gain(%)

ResNet
(d=32)

baseline 29.97(0.33) -

DS 29.89(0.26) 0.08

DKS 26.81(0.36) 3.16

ResNet
(d=110)

baseline 27.66(0.60) -

DS 26.95(0.51) 0.71

DKS 24.98(0.35) 2.68

DenseNet
(d=40, k=12)

baseline 24.91(0.18) -

DS 24.46(0.22) 0.45

DKS 23.61(0.20) 1.30

DenseNet
(d=100, k=12)

baseline 20.92(0.31) -

DS 20.34(0.23) 0.58

DKS 19.67(0.29) 1.25

WRN-28-4

baseline 21.39(0.30) -

DS 20.47(0.21) 0.92

DKS 18.91(0.08) 2.48

WRN-28-10

baseline 18.72(0.24) -

DS 18.32(0.13) 0.40

DKS 17.24(0.22) 1.48

WRN-28-10
(0.3 dropout)

baseline 18.64(0.19) -

DS 17.80(0.29) 0.84

DKS 16.71(0.17) 1.93

MobileNet

baseline 23.60(0.22) -

DS 22.98(0.17) 0.62

DKS 21.26(0.16) 2.34

Table 1: Accuracy comparison on the CIFAR-100 dataset.

For each network, we run each method 5 times and report

‘mean(std)’ error rates. Our method achieves state-of-the-

art accuracy when training each backbone network.

at 0.1, and is divided by 10 every 30 epochs. To show the

compatibility of DKS with data augmentation methods, we

train ResNet-18 and ResNet-50 with a simple data augmen-

tation method, and train ResNet-152 with a more aggressive

data augmentation method as in [41]. For each network, we

add two auxiliary classifiers after the block Conv3 x and

Conv4 x. The auxiliary classifiers are constructed with the

same building block as in the backbone network. The dif-

ferences are the number of residual blocks and the number

of convolutional filters (see supplementary materials for de-

tails). All models are trained on a sever using 8 GPUs.

Results Comparison. Table 2 shows the results. Sim-

ilar to the results on the CIFAR-100 dataset, on the Im-

ageNet classification dataset, DS also shows minor accu-

racy improvements over the baseline models, even using our

designed auxiliary classifiers. Its gain in Top-1/Top-5 ac-

curacy is 0.60%/0.33%, 0.38%/0.11% and 0.46%/0.25%
for ResNet-18, ResNet-50 and ResNet-152, respectively.

These results are consistent with the results reported in [41].

Benefiting from the proposed synergy loss, DKS achieves

the best performance which outperforms DS with a margin

of 1.78%/1.25%, 1.56%/1.07% and 1.01%/0.41% in Top-

1/Top-5 accuracy, respectively. Even using simple data aug-

mentation, the ResNet-18/ResNet-50 model trained by our

7002

Model Method Top-1/Top-5 Error(%) Gain(%)

ResNet-18

baseline 31.06 / 11.13 -

DS 30.46 / 10.80 0.60 / 0.33

DKS 28.68 / 9.55 2.38 / 1.58

ResNet-50

baseline 25.47 / 7.58 -

DS 25.09 / 7.47 0.38 / 0.11

DKS 23.53 / 6.40 1.94 / 1.18

ResNet-152

baseline 22.45 / 5.94 -

DS 21.99 / 5.69 0.46 / 0.25

DKS 20.98 / 5.28 1.47 / 0.66

Table 2: Accuracy comparison on the ImageNet dataset.

method shows 1.75%/0.48% Top-1 accuracy gain against

the models released at Facebook github1, which are trained

with much stronger data augmentations. Furthermore, it can

be seen that the accuracy improvement from our method de-

creases slightly as network depth increases. Curves of Top-

1 training and test error rates can be found in supplemental

materials.

4.3. Ablation Study

Analysis of Auxiliary Classifiers. Given a backbone

network, the questions of how to design auxiliary classi-

fiers and where to place them are critically important for

the deeply-supervised learning methods [22, 41] and our

method. We perform experiments on the ImageNet clas-

sification dataset with ResNet-18 to study these two ques-

tions. To the first question, we compare our designed aux-

iliary classifiers and the relatively simple ones suggested

in [22]. In the experiments, auxiliary classifiers are added

on top of the block Conv3 x and Conv4 x. With simple

auxiliary classifiers, DS introduces 1.17%/0.80% drop in

Top-1/Top-5 accuracy. Comparatively, with our designed

auxiliary classifiers, DS brings 0.60%/0.33% increase and

DKS achieves 2.38%/1.58% gain. The training and test

curves are shown in Fig. 3. We also perform extensive ex-

periments on the CIFAR-100 dataset using ResNet-32 to an-

alyze the effect of auxiliary classifiers with different levels

of complexity to DS and our method. Results are shown in

Table 3. With very simple auxiliary classifiers, DS shows

accuracy drop and DKS further decreases model accuracy.

Along with the increased complexity of auxiliary classifiers,

DKS outperforms DS with improved margin. Please see

supplementary materials for details. To the second ques-

tion, we consider different settings by adding our designed

auxiliary classifiers to at most three intermediate layer loca-

tions (including the block Conv2 x, Conv3 x and Conv4 x)

of ResNet-18. Detailed results are shown in Table 4 where

C1, C2, C3 and C4 denote the auxiliary classifiers con-

nected on top of the last layer, the block Conv4 x, Conv3 x

and Conv2 x, sequentially. From Table 4, we can make fol-

lowing observations: (1) With only one auxiliary classifier,

an early location is better than a relatively deep location;

1https://github.com/facebook/fb.resnet.torch

Aux.Classifiers Error(%)

(DS)

Error(%)

(DKS)

Avg Gain(%)

(DKS to DS)

AP+2FC 31.85(0.42) 35.09(0.54) -3.24

AP+1Conv+2FC 30.24(0.05) 32.52(0.27) -2.28

Narrow Blocks 29.52(0.30) 29.18(0.28) 0.34

Shallow Blocks 29.39(0.09) 28.69(0.28) 0.70

Ours 29.89(0.26) 26.81(0.36) 3.08

Table 3: Accuracy comparison of DKS and KD using aux-

iliary classifiers with different levels of complexity. The

baseline ResNet-32 model trained on CIFAR-100 shows

29.97%(0.33%) ‘mean(std)’ error rates over 5 runs. In the

table, AP denotes average pooling layer, Conv denotes con-

volutional layer and FC denotes fully connected layer.

Model Top-1/Top-5 Error(%) Gain(%)

baseline(C1) 31.06 / 11.13 -

C1C2 29.64 / 10.09 1.42 / 1.04

C1C3 29.30 / 9.86 1.76 / 1.27

C1C4 29.36 / 9.91 1.70 / 1.22

C1C2C3 28.68 / 9.55 2.38 / 1.58

C1C2C3C4 29.00 / 9.79 2.06 / 1.34

Table 4: Accuracy gains of DKS with auxiliary classifiers

connected to different intermediate layers of ResNet-18.

Model Top-1/Top-5 Error(%) Gain(%)

C1 31.06 / 11.13 2.38 / 1.58

C2 30.69 / 11.05 3.23 / 2.16

C3 31.89 / 11.51 2.39 / 1.68

Table 5: Accuracy gains of DKS training against separate

training of each individual auxiliary classifier connected to

the corresponding intermediate layer of ResNet-18.

(2) Adding two or all of three auxiliary classifiers obtains

larger gain than adding only one; (3) Adding C4 connected

to an earlier intermediate layer into the combination of C2

and C3 decreases its accuracy. According to these results,

we choose to add C2 and C3 for all experiments on the Im-

ageNet classification dataset. In addition, we also analyze

whether DKS is beneficial to auxiliary supervision branches

or not. To this end, we train each individual auxiliary su-

pervision branch separately, and compare it with the cor-

responding one trained with DKS. According to the results

shown in Table 5, we can see that our method also brings

obvious accuracy gain to each auxiliary supervision branch.

Comparison of Knowledge Matching Strategies. We

also compare the performance of three pairwise knowledge

matching strategies shown in Fig. 2. Experiments are con-

ducted on the ImageNet classification dataset with ResNet-

18 using our best auxiliary classifier setting just discussed.

Compared with the baseline model, our method obtains

0.50%/0.45%, 2.22%/1.19% and 2.38%/1.58% increase

in Top-1/Top-5 accuracy by using the top-down, bottom-up

and bi-directional pairwise knowledge matching strategies,

7003

respectively. As the bi-directional strategy shows the best

results, we adopt it as the default choice for DKS. Another

interesting observation is that they all achieve improved re-

sults compared with the baseline method, showing that the

pairwise knowledge transfer among the supervised classi-

fiers connected to the backbone network is really helpful in

regularizing model training.

DKS on Very Deep Network. Next, we conduct a set

of experiments to analyze the performance of DKS on very

deep CNNs. In the experiments, we consider the training of

a ResNet variant with 1202 layers [10] on the CIFAR-100

dataset. Unlike auxiliary classifiers used in the other experi-

ments, we study DKS with shallow but wide auxiliary clas-

sifiers in this experiment (see supplementary materials for

details). Remarkably, although the network depth is signifi-

cantly increased, the average accuracy of the models trained

with our method is 69.54%, showing a 3.76%/2.04% mar-

gin compared with the baseline/DS method.

DKS with Strong Regularization. In order to explore

the compatibility of DKS and strong regularization meth-

ods, we conduct the experiments on the CIFAR-100 dataset

following [47]. We add a dropout layer with a ratio of 0.3

after the first layer of every building block of WRN-28-10.

The results are shown in Table 1. It can be seen that the

models trained with DKS show a mean accuracy of 16.71%,

bringing 0.53% gain to the DKS case without dropout.

DKS vs. Knowledge Distillation. Further, we compare

the performance of DKS, Knowledge Distillation (KD) and

its variants. Experiments are conducted on the ImageNet

classification dataset using ResNet-18. We use a pre-trained

ResNet-50 model as the teacher and consider three different

KD settings: (1) KD on C1 (the standard KD as in [11]); (2)

KD on C1+DS; (3) KD on C2C3+DS. We evaluate temper-

ature values of [1, 2, 5, 10, 20] and choose the best choice

for each KD setting. From the results shown in Table 6,

we can make following observations: (1) KD can improve

model training in all cases; (2) Distilling learnt knowledge

into auxiliary classifiers connected to the earlier layers has

small gain to DS, and larger gain can be achieved by apply-

ing KD on auxiliary classifiers added to the deep layers; (3)

DKS achieves the best performance, showing the effective-

ness of the proposed synergy loss.

DKS on Noisy Data. Finally, we explore the capabil-

ity of our method to handle noisy data. Following [49],

we use CIFAR-10 dataset and DenseNet (d=40, k=12) as

a test case. Before training, we randomly sample a fixed

ratio of training data and replace their ground truth labels

with randomly generated wrong labels. Results show that

the average accuracy of the baseline model decreases from

94.62% to 82.07%, while DS further decreases it to 80.47%
and ours is 83.73%, when 50% training data are corrupted.

As the ratio of the corrupted training data goes to 80%, our

model still has 67.19% mean accuracy, outperforming the

Model Top-1/Top-5 Error(%) Gain(%)

baseline 31.06 / 11.13 -

DS 30.46 / 10.80 0.60 / 0.33

KD on C1 [11] 29.71 / 10.33 1.35 / 0.80

KD on C1+DS 29.38 / 10.10 1.68 / 1.03

KD on C2C3+DS 30.32 / 10.64 0.74 / 0.49

DKS 28.68 / 9.55 2.38 / 1.58

Table 6: Accuracy comparison of DKS, KD and its variants

on the ImageNet classification dataset using ResNet-18.

baseline/DS with a margin of 2.51%/2.27%. These exper-

iments partially show that our method has good capability

to suppress noise disturbance and behaves like a strong reg-

ularizer.

4.4. Discussion

Although the CNNs used in our experiments have so-

phisticated building block designs which increase the flex-

ibility of feature connection path and show stable conver-

gence, our DKS can impressively improve their training in

comparison to the standard training scheme and DS. This

is first benefitted from adding proper auxiliary classifiers to

the intermediate layers of the network, but we believe it is

more benefitted from the proposed synergy loss which en-

ables comprehensive pairwise knowledge matching among

all supervised classifiers connected to the network, enhanc-

ing learnt feature representation. On the other hand, we ob-

serve substantial time increase for model training. For in-

stance, a baseline ResNet-18 model is trained for about 20

hours on a server with 8 GPUs (an SSD is used to acceler-

ate data accessing process), while our method needs about

37 hours, nearly doubling the training time. Besides, the

training time for DS is almost the same as our method. We

believe this mainly correlates with the number of auxiliary

classifiers and their complexity. Therefore, there is a trade-

off between the required training time and the expected ac-

curacy improvement. Achieving larger accuracy gain needs

auxiliary classifiers to be more complex, while simple ones

usually worsen model accuracy. Since increasing the num-

ber of auxiliary classifiers does not always bring higher ac-

curacy gain, as shown in our ablation study, we think the

current increase in training time is reasonable. More im-

portantly, all auxiliary classifiers are discarded at inference

phase, thus there is no extra computational cost.

5. Conclusion

In this paper, we revisit the deeply-supervised learning

research and propose a new optimization scheme called

DKS for training deep CNNs. It introduces a novel synergy

loss which regularizes the training by considering dense

pairwise knowledge matching among all supervised clas-

sifiers connected to the network. Extensive experiments on

two well-known image classification tasks validate the ef-

fectiveness of our method.

7004

References

[1] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng. Dual

path networks. In NIPS, 2017. 1, 3

[2] T. Dozat. Incorporating nesterov momentum into adam. In

ICLR-W, 2016. 3

[3] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradi-

ent methods for online learning and stochastic optimization.

Journal of Machine Learning Research, 12(7):2121–2159,

2011. 3

[4] Y. Gal and Z. Ghahramani. Dropout as a bayesian approxi-

mation: Representing model uncertainty in deep learning. In

ICML, 2016. 3

[5] N. C. Garcia, P. Morerio, and V. Murino. Modality distilla-

tion with multiple stream networks for action recognition. In

ECCV, 2018. 2

[6] G. Ghiasi, T.-Y. Lin, and Q. V Le. Dropblock: A regular-

ization method for convolutional networks. In NIPS, 2018.

3

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 1

[8] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,

and Y. Bengio. Maxout networks. In ICML, 2013. 3

[9] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In ICCV, 2015. 1, 3

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 1, 2, 3, 5, 8

[11] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. arXiv preprint arXiv:1503.02531, 2015.

2, 5, 8

[12] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin. Life-

long learning via progressive distillation and retrospection.

In ECCV, 2018. 3, 5

[13] A. G. Howard. Some improvements on deep convolutional

neural network based image classification. arXiv preprint

arXiv:1312.5402, 2013. 3

[14] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017. 1, 2, 3, 5

[15] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation net-

works. In CVPR, 2018. 1, 3

[16] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and

K. Q. Weinberger. Multi-scale dense networks for resource

efficient image classification. In ICLR, 2018. 2, 4, 5, 6

[17] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In CVPR, 2017.

1, 2, 3, 5

[18] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 1, 3

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In ICLR, 2015. 3

[20] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Handbook of Systemic Autoim-

mune Diseases, 2009. 5

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 1, 3

[22] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-

supervised nets. In AISTATS, 2015. 2, 3, 4, 5, 6, 7

[23] C. Li, M. Z. Zia, Q.-H. Tran, X. Yu, G. D. Hager, and

M. Chandraker. Deep supervision with intermediate con-

cepts. arXiv preprint arXiv:1801.03399, 2018. 2

[24] Z. Li and D. Hoiem. Learning without forgetting. In ECCV,

2016. 3, 5

[25] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li,

L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy. Progressive

neural architecture search. In ECCV, 2018. 3

[26] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 1

[27] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2:

Practical guidelines for efficient cnn architecture design. In

ECCV, 2018. 1, 3

[28] A. Mishra and D. Marr. Apprentice: Using knowledge dis-

tillation techniques to improve low-precision network accu-

racy. In ICLR, 2018. 2, 5

[29] A. Mosinska, P. Márquez-Neila, M. Kozinski, and P. Fua.

Beyond the pixel-wise loss for topology-aware delineation.

In CVPR, 2018. 2

[30] V. Nair and G. E. Hinton. Rectified linear units improve re-

stricted boltzmann machines. In ICML, 2010. 3

[31] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-

works for human pose estimation. In ECCV, 2016. 2

[32] X. Nie, J. Feng, and S. Yan. Mutual learning to adapt for

joint human parsing and pose estimation. In ECCV, 2018. 3

[33] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. In NIPS-W, 2017. 5

[34] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Ef-

ficient neural architecture search via parameter sharing. In

ICML, 2018. 3

[35] S. Qiao, W. Shen, Z. Zhang, B. Wang, and A. Yuille. Deep

co-training for semi-supervised image recognition. In ECCV,

2018. 3, 5

[36] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,

and Y. Bengio. Fitnets: Hints for thin deep nets. In ICLR,

2015. 2, 5

[37] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and F.-F. Li. Imagenet large scale visual recog-

nition challenge. International Journal of Computer Vision,

115(3):211–252, 2015. 1, 5, 6

[38] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In CVPR, 2018. 1, 3

[39] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1, 3

[40] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neu-

ral networks from overfitting. Journal of Machine Learning

Research, 15(1):1929–1958, 2014. 3

7005

[41] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, et al.

Going deeper with convolutions. In CVPR, 2015. 2, 3, 4, 6,

7

[42] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:

Closing the gap to human-level performance in face verifica-

tion. In CVPR, 2014. 1

[43] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus. Reg-

ularization of neural networks using dropconnect. In ICML,

2013. 3

[44] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. In CVPR,

2017. 1, 3

[45] S. Xie and Z. Tu. Holistically-nested edge detection. In

ICCV, 2015. 2

[46] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowl-

edge distillation: Fast optimization, network minimization

and transfer learning. In CVPR, 2017. 2, 5

[47] S. Zagoruyko and N. Komodakis. Wide residual networks.

In BMVC, 2016. 1, 2, 3, 5, 8

[48] S. Zagoruyko and N. Komodakis. Paying more attention to

attention: Improving the performance of convolutional neu-

ral networks via attention transfer. In ICLR, 2017. 2, 5

[49] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz.

mixup: Beyond empirical risk minimization. In ICLR, 2018.

1, 3, 8

[50] H. Zhang, H. Wu, W. Sun, and B. Zheng. Deeptravel: a

neural network based travel time estimation model with aux-

iliary supervision. arXiv preprint arXiv:1802.02147, 2018.

2

[51] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An

extremely efficient convolutional neural network for mobile

devices. In CVPR, 2018. 1, 3

[52] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu. Deep

mutual learning. In CVPR, 2018. 2, 5

[53] Z. Zhang, X. Zhang, C. Peng, D. Cheng, and J. Sun. Ex-

fuse: Enhancing feature fusion for semantic segmentation.

In ECCV, 2018. 2, 4

[54] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene

parsing network. In CVPR, 2017. 2

[55] X. Zhuang, H. Luo, X. Fan, W. Xiang, Y. Sun, Q. Xiao,

W. Jiang, C. Zhang, and J. Sun. Alignedreid: Surpass-

ing human-level performance in person re-identification. In

CVPR, 2018. 3

[56] B. Zoph and Q. V. Le. Neural architecture search with rein-

forcement learning. In ICLR, 2017. 3

7006

