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ABSTRACT

In sponsored search it is critical to match ads that are relevant to

a query and to accurately predict their likelihood of being clicked.

Commercial search engines typically use machine learning models

for both query-ad relevance matching and click-through-rate (CTR)

prediction. However, matching models are based on the similarity

between a query and an ad, ignoring the fact that a retrieved ad may

not attract clicks, while click models rely on click history, being

of limited use for new queries and ads. We propose a deeply su-

pervised architecture that jointly learns the semantic embeddings

of a query and an ad as well as their corresponding CTR. We also

propose a novel cohort negative sampling technique for learning

implicit negative signals. We trained the proposed architecture us-

ing one billion query-ad pairs from a major commercial web search

engine. This architecture improves the best-performing baseline

deep neural architectures by 2% of AUC for CTR prediction and by

statistically signi�cant 0.5% of NDCG for query-ad matching.

CCS CONCEPTS

• Information systems → Sponsored search advertising; •

Computing methodologies→ Neural networks;
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1 INTRODUCTION

Sponsored search has been a major monetization model for com-

mercial web search engines, contributing a signi�cant portion to the

multi-billion dollar industry of online advertising. Given a query, it

is critical for search engines to retrieve relevant ads and to accu-

rately predict their CTR in order to maximize the expected revenue

while ensuring good user experience. Both overpredicting and un-

derpredicting CTR would result in revenue loss.
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Machine learning models made great success in predicting CTR

for sponsored search. Most of the models adopted in the indus-

try rely on a large set of well-designed features to predict CTR.

Features extracted from click history have been proved very ef-

fective [5]. However, models that heavily rely on click features

often fail to generalize to new queries and new ads with insu�-

cient history [27]. To make predictions in such cases, models resort

to syntactic or semantic features extracted from queries, ads, and

advertisers [21, 27]. Deep neural networks were also proposed to

learn features from traditional models [17] or to learn CTR from

existing features [36]. In spite of the existing success, designing and

selecting appropriate features remains a very challenging problem

for CTR prediction [14].

Following the progress of deep learning in natural language

processing, recent e�orts rely on deep neural networks to capture

semantic similarities between queries and ads to predict CTR with-

out any feature engineering [7]. Suchmodels are learned end-to-end

from clicks without explicit supervision for capturing the semantic

similarity between a query and an ad, and as we show in this work,

they have not achieved their full potential in CTR prediction.

A number of recent works [11, 16] used deep neural networks

to model the semantic similarity between a query and an ad. These

models were shown e�ective in a query to ad relevance matching.

However, as they do not directly model clicks, retrieved ads are only

weakly correlated to the ads presented to users based on expected

revenue (which highly depends on the predicted CTR).

In this work, we propose a deeply supervised end-to-end archi-

tecture for CTR prediction in sponsored search. This architecture

jointly learns CTR and discriminative representations of queries

and ads such that clicked query-ad pairs are also mapped closer in

the embedded space. Speci�cally, this architecture takes the texts

of a query and an ad as input to bi-directional recurrent neural net-

works (bi-RNNs) and attention networks to learn discriminative dis-

tributed embeddings. Query and ad embeddings are then matched

together and fed into convolutional neural networks (CNNs) to

predict CTR. Two losses, speci�c to semantic matching and CTR

prediction, are jointly optimized at di�erent levels of the architec-

ture to provide a deep supervision for both tasks. This architecture

has the advantages of (i) not relying on any feature engineering; (ii)

directly optimizing CTR prediction; (iii) directly learning semantic

representations to enable query-ad matchings more correlated with

clicks and expected revenue. The key contributions are:

ar
X

iv
:1

80
3.

10
73

9v
1 

 [
cs

.I
R

] 
 2

8 
M

ar
 2

01
8

https://doi.org/10.1145/nnnnnnn.nnnnnnn


, , J. Gligorijevic et al.

• We propose a novel deep architecture that jointly learns CTR

and discriminative representations of queries and ads. To the

best of our knowledge, this is the �rst attempt to simultane-

ously learn CTR and semantic embeddings using click data. By

optimizing two logistic losses speci�c to CTR prediction and se-

mantic matching instead of using only one CTR speci�c logistic

loss, we were able to achieve statistically signi�cant lift in AUC.

• We propose a novel cohort negative sampling technique that

naturally draws information from implicit negative signals in

the data. We assess the impact of this technique in terms of

performance and prove the convergence of our method through

theoretical analysis.

• We conduct an extensive empirical evaluation of the proposed

architecture using about one billion query-ad samples from the

Yahoo! web search engine. Comparison with state-of-the-art

CTR prediction models shows that our model improves the AUC

of the best-performing baseline model by 2%.

• We evaluate the quality of the query and ad embeddings learned

by our model through a query-ad matching task using a large-

scale editorially labeled dataset. Comparison with state-of-the-

art matching models shows that our model improves the NDCG

of the best-performing baseline by statistically signi�cant 0.5%,

con�rming its ability to learn meaningful semantic embedding.

2 RELATED WORK

We �rst present problems and challenges in sponsored search and

review most recent advances in deep learning approaches. Subse-

quently, we review other relevant advances in deep learning, which

have previously been applied only on tasks di�erent than ours.

2.1 Related Work in Sponsored Search

The frequently tackled problems of improving the sponsored search

include CTR prediction, query rewriting and query to ad matching.

A large body of work focused on predicting probability that

an ad would be clicked, if shown as a response to a submitted

query [10, 14, 22]. State-of-the-art approaches have mainly used

handcrafted features of ad impressions obtained from historical

impressions (i.e. ad and query CTR’s, users’ historical features, etc.)

and semantic similarities of queries and ads [27]. These approaches

range from Bayesian [10] to feature selection approaches [14], how-

ever, a common challenge for all is creating and maintaining a large

number of sparse contextual and semantic features [22].

Focusing on the broad matching of queries and ads that have

similar semantic meaning is another line of research [8]. The task

is to retrieve ads that are semantically similar to the query [11]

without exactly matching keywords (i.e. query “running machine”

and ad “elliptical trainer”). This task has been commonly addressed

by query rewriting models [18] or by semantic matching [8, 11, 15].

More recently, many approaches for CTR prediction utilize vari-

ous deep learning techniques. Deep learning primarily alleviates

issues of creating and maintaining handcrafted features by learning

them automatically from the “raw” query and ad text data.

It is common to learn query and ad semantics from ad impres-

sions for a given query with click information. In [15] authors

proposed a deep structured semantic model (DSSM) with dual ar-

chitecture that embedded a query on the one side and an ad on

the other and learned matching between the two given the click

information. In order to improve quality of the learned semantic

match and capturing query intent, a word attention mechanism

was successfully used for the query and ad representations [34].

Some of the approaches are de�ned as a CTR prediction task

rather than as a matching task. In [31], features of an impression

(query text, ad text, ad landing page, campaign ID, keywords, etc.)

are learned automatically from the impression, in a deep architec-

ture, to predict click probability. Other models, DeepMatch [7] and

MatchTensor [16] proposed very deep dual network architectures

for query and ad embeddings with a matching layer to learn ad

impression representations useful for CTR prediction.

Both groups of approaches, learning semantics of queries and

ads and learning to predict CTR are widely used in systems for

serving ads. However, they pose a trade-o�, while semantic learning

learns relations between queries and ads, it has no direct click

probability notion, CTR prediction models, on the other hand, may

su�er from not capturing the semantics of queries and ads implicitly

thus a�ecting their prediction quality. The approach we propose in

this study is a well-rounded framework for ad systems capable of

both learning quality semantics of queries and ads as well as being

able to accurately predict click probability.

The two mentioned approaches, DeepMatch and MatchTensor

have shown great results in practice and will, thus, be the main base-

lines and building blocks for the model proposed in this study. The

two approaches are conceptually very similar as both learn indepen-

dent representations of a query and an ad, and use a matching layer

to associate their words, and �nally learn to predict CTR. However,

the di�erence between them is in way they learn representations of

words, i.e. DeepMatch primarily uses temporal convolutional layers,

while MatchTensor uses bi-RNNs. Also, they propose slightly di�er-

ent matching layers, DeepMatch proposes a cross-feature matrix,

while MatchTensor proposes cross-feature tensor. As both mod-

els perform exceptionally well, we present a detailed analysis of

performance of both models experimentally in Section 4.

The model proposed in this study further extends on the ad-

vances described above by addressing their shortcomings by intro-

ducing novel ways of learning semantically rich representations. As

such, the proposed model demonstrates the state-of-the-art results

on both CTR prediction and query2ad matching tasks, traditionally

modeled by di�erent families of models. This is achieved by means

of (i) learning new blocks in the deep architectures to improve

modeling capacity, (ii) adding deep supervision to improve quality

of learned representations deep in the model and (iii) learning pa-

rameters in an e�cient and information-rich way to capture more

of the available semantics in the dataset.

2.2 Related Work in Deep Learning

Many approaches for mathematical characterization of language,

that model sequence data, were proposed to advance the �eld of nat-

ural language processing. Initially, distributed low-dimensional rep-

resentations of words were introduced in [29] and recently success-

fully applied for learning semantic and syntactic relations among

words [23]. The idea of using distributed representations of words

was further exploited in approaches as RNNs, capable of learning

an embedded high-dimensional representation of sequences.
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Recurrent Neural Networks. RNNs are a popular family of

models for sequential problems. While previous approaches have

often modeled word sequence as an order-oblivious sum, RNNs

learn representations of word sequences by maintaining internal

states, which are updated sequentially and are used as a proxy for

predicting the target. The ability to stack multiple layers allows

building deeper representations that result in great improvements

on many tasks. In particular, an architecture of RNNs called long

short-term memory (LSTM) cell achieved the biggest success [13].

A�ention Network Models. Attention models dynamically re-

weight the importance of various elements (words, phrases or char-

acters) in the text during the decoding process, thus altering the

learned representation. Use of attention demonstrated considerable

improvements in performance [2]. An attention mechanism was

developed as a separate neural network that takes a sequence of

word embeddings and learns attention scores for each word, where

more “important” words in the document have higher attention

leading to a more focused higher-order representation of the se-

quence. Attention models were recently adapted for the general

setting of learning compact representations of documents [34].

bi-RNNs. Another successful paradigm is the bi-RNN, where

two RNNs (i.e. LSTM, thus bi-LSTM) independently encode the text

sequence in both forward and in backward direction [30] computing

representation that captures complex relations between words in

the text. Final sentence representation is obtained by aggregating

representations of the two single-directional LSTMs, and it was

observed that bi-LSTM’s perform well on datasets where there is

no strict order in the sequences, such as the case with Web queries.

Convolutional Text Models. Recently, architectures for se-

quence modeling increasingly include temporal convolutions as

building blocks. Temporal convolutions are capable of learning rep-

resentations of sequences which proved as a good building block

for several deep architectures. Good examples being ConvNet for

text classi�cation [35] and the Very Deep CNN (VDCNN) model [6],

both of which use temporal convolutions to model a sequence of

words/characters with aim to perform classi�cation. These models

successfully outperformed RNN based models. In this study, we

use word-level VDCNN as one of the baselines, as it consists of

equivalent blocks as the DeepMatch model, save the matching layer.

Deeply supervised models. Recently, several models drew ben-

e�ts from utilizing deep supervision [20, 32, 37]. The key idea is

to use supervision at various layers across the model to enforce

discriminativeness of the features [20] and potentially resolve ex-

ploding/vanishing gradients [32, 37]. However, existing approaches

mostly use the same predictive task in deeper layers as in the �nal

layer [20, 32] and in some cases use reconstruction loss [36]. We

build upon these advances proposing a novel approach of using

deep supervision speci�cally designed to extract information from

the data in an explicit way, which would not be possible otherwise.

Learning from implicit negative signals. This has for a long

time been a challenging task for domains with implicit negative

signals. Recently, search2vec model for learning with implicit nega-

tive signals from sponsored search sessions was proposed [12] with

improved performance and speed of the algorithm. Furthermore,

[3] have con�rmed this approach and applied it on the special case

of bipartite graphs. We exploit implicit negatives in our model and

consider comparing to search2vec algorithm in Section 4.2.

Figure 1: Proposed DSM model block diagram

3 PROPOSED MODEL

Graphical representation of the proposed model, which we call the

Deeply Supervised Matching (DSM) model is given in Figure 1.

The model takes query text and ad text as inputs, and it learns

their separate embeddings through a series of layers, including

bi-direction LSTM and attention layers. Learned embeddings are

then used in two-fold matching: (1) embeddings of query and ad

words are used in an elementwise product to construct a matching

tensor, and (2) matching of dense representations of query and

ad is learned using a novel matching loss designed for sponsored

search. Learned matching tensor is then passed through series of

convolutional and pooling blocks to learn CTR prediction.

3.1 Blocks of the proposed model

3.1.1 �ery and Ad text embedding. Embeddings of query and

ad texts are done in two networks. First lq words in the query and

la words in the ads are embedded into a d
(1)
qa = 300 dimensional

space. Then, a fully connected layer is used to learn linear com-

binations of words in a d
(2)
qa = 40 dimensional space. These two



, , J. Gligorijevic et al.

layers share weights for both queries and ads. Embeddings of query

and ad are passed to the respective bi-LSTM layers such that the

model learns complex relations between words, which is in partic-

ular important for queries that may have a di�erent order of words

but the same meaning (i.e. “best restaurants in Boston” vs. “Boston

best restaurants”). Due to di�erent lengths of query and ad text

embedding sizes are now d
(3)
q = 30 and d

(3)
a = 140, as suggested in

the literature [16, 34]. Finally, fully connected layers are used to

reduce representations of all words in the same, reduced, dimen-

sional space d
(4)
qa = 50, resulting in representations vq = lq × d

(4)
qa

and va = la × d
(4)
qa , for query and ad, respectively.

3.1.2 A�ention learning. In order to learn rich representations
of queries and ads, it is imperative to focus on words that carry the
most information. In order to learn representations that focus on
important parts of queries and ads we employ the attention models
from machine translation and adapt them to a more general case
of using word scores for learning compact (vector) representations
[34]. Two attention blocks are used, one for query text and one
for ad text. These blocks yield word scores, that signify attentions
the model will give to di�erent words. Both attention models are
implemented as two-layered individual neural networks sq (vq ;θq )
and sa (va ;θa ) with softmax at their �nal layer

t
(i )
q =

exp(sq (v (i )
q ; θq ))

∑ln
i=1 exp(sq (v

(i )
q ; θq ))

. (1)

Neural networks sq (v(i)q ;θq ) and sa (v(i)a ;θa ) learn real valued scores
for each ith word in a given query and ad, respectively. Attentions

learning in DSM is coupled with the entire network (end-to-end).

Attentions t
(i)
q for a query word, and t

(i)
a for an ad word, are

then used to re-weight their input representations vq and va to

obtain compact representations of query and ad used for learning

to match as hq =
∑

i t
(i)
q ∗ v(i)q and ha =

∑

i t
(i)
a ∗ v(i)a . There are

other ways of obtaining compact representations hq and ha , such

as sum, average or max of individual word vectors. However, our

experiments, as well as available literature [34], demonstrate that

such strategies are inferior to using attention.

3.1.3 �ery and Admatching. Manymodels for sponsored search

advertising have either the capability to learn good quality seman-

tic representations of queries and ads, or the capability to perform

CTR prediction well without explicitly modeling semantics, thus

(over-)specializing in only one of the tasks. To address this, we have

two matching processes in our framework.

First, similarly to MatchTensor [16], we build a tensor for implic-

itly matching words in a query and an ad. lq words in a query and

la words in an ad, with d
(4)
qa -dimensional embeddings, are matched

in a cross product tensor of shape lq × la × d
(4)
qa . Each word in a

query will be matched to each word in an ad, and the element-wise

product of their vectors will be a thread in the matching tensor.

Finally, an exact-match lq × la slice is added to the tensor, with all

zeros except for words that co-occur in a query and an ad, where we

put ones. This slice serves as a bias and yields slight improvement

as opposed to the model that does not use exact matches [16].

Second, we propose explicit matching to capture semantic simi-

larity between a query and an ad. We propose a way to match the

vectors hq and ha , where we aim to embed them such that they

are closer in the embedded space if there was a click and farther

away if there was no click, similarly to [11]. To achieve this, we

optimize scores between hq and ha vectors, where scores are posed

as an inner product of the vectors. To avoid introducing the com-

putational complexity of negative sampling, we introduce a cohort

negative sampling approach to optimize the matching function.

The detailed description, as well as convergence analysis of the

proposed optimization strategy, are given in Sections 3.2.1 and 3.2.2.

Bene�ts of using multiple learning tasks for the samemodel have

recently been recognized [20]. Deep models bene�t from enforcing

the middle layers to be discriminative, which is bene�cial for the

�nal predictive task, as discriminative classi�ers trained on highly

discriminative features will perform better than a discriminative

classi�er trained on less discriminative features. In our case, repre-

sentations of query and ad should be close for semantically similar

pairs and distant for dissimilar ones. Such representations bene�t

the classi�cation task as the semantic relations have been well cap-

tured deep in the model. Due to adding such deep supervision, our

model is named the Deeply Supervised Matching (DSM) model.

3.1.4 Learning to predict frommatched representation. Thematch-

ing tensor from the previous block is then convolved through the

entire depth d
(4)
qa + 1 by three convolutional blocks with di�erent �l-

ter sizes: 3 for query words; and 3, 4, and 5 words for ad �lters. The

number of �lters is �xed to 6 for the �rst set of convolution blocks

and 20 for the �nal convolutional layer. Complex representations

between a query and ad words are learned here, and they are passed

through the ReLU layer, after which another 1 convolution with

ReLU was used before the two-dimensional max-pool layer that

embeds the whole query-ad impression in a single vector. Finally,

the vector is fed to a fully connected layer and passed through a

sigmoid layer σ (·) to obtain the logits of the model.

3.2 Logistic and Matching Losses

Finally, to optimize the parameters of DSM, we have logistic loss P
for the CTR prediction based on logits from the topmost layer:

P(W ) = − 1

N

N
∑

n=1

(ynloд(ŷn ) + (1 − yn )loд(1 − ŷn )), (2)

where ŷn are obtained logits after �nal sigmoid layers and yn is

click label for the nth ad impression. The matching loss Q for

query and ad vectors, as a negative sampling approximation, can

be generalized as a composition of positive and negative pairs [24]:

Q(W ) =
B
∑

b=1

(
∑

j ∈D(b)
p

Q+(W ) +
∑

k ∈D(b)
n

Q−(W ))

=

B
∑

b=1

(
∑

j ∈D(b)
p

− logσ (h(j)Tq h
(j)
a ) +

∑

k ∈D(b)
n

logσ (−h(k )Tq h
(k )
a )),

(3)

where B is the total number of batches, while Dp and Dn are

positive and negative impressions within each batch, respectively.

In our implementation, we use a variant of the negative sampling
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loss for learning to match query and ad vectors, called cohort1

negative sampling. As will be discussed later in the paper, this loss

di�ers from the negative sampling loss proposed in [24], as negative

samples are used within the cohort but not sampled ad-hoc, thus

saving computational time.

The �nal loss function becomes the sum of Eq. 2 and Eq. 3

L(W ) = P(W ) + Q(W ). (4)

We useW to annotate the set of all parameters in the DSM.

Based on the Lemma 1 in [20], a good solution forQ is also a good

solution for P. However, conversely is not necessarily true. This

clearly states that features learned for P may not be optimal for Q.

In the case of our application, features learned for the classi�cation

task may not capture semantic similarities between queries and

ads that may carry considerable amounts of information. Another

interesting aspect of using multiple optimization functions is that it

is reasonable to assume that L and P share the same optimum [20],

while Q can be observed as a regularizer.

Therefore, it is important to notice that Q is not used for learning

to match explicitly, but as stated before, to enforce discriminative

embeddings of the lower layers such that �nal logits re�ect semantic

information found in the data. To demonstrate this, we used the

DSM model for query to ad matching and compared it to well-

established models for the task in Section 4.2.

Weights are initialized by a truncated normal initializer. To opti-

mize L, we use Adam [19] with a decaying gradient step.

3.2.1 Cohort Negative Sampling for Matching Loss. The nature

of ad serving in sponsored advertising is that for each query, the

publisher (search engine in this case) can provide a set of ads on

di�erent positions on the search result page. The most impactful

position is called “north” (ads placed above organic links) and it

yields the largest click-through rate for ads [4]. Up to �ve ads can be

presented at this location (n1 – n5), and users may or may not click

on any of them. Click/No-click information provides an implicit

information on a query and ad relevance that we can learn from.

Thus, to learn matching we need to focus on a group of query–ad

pairs that were served to the user for a given search, and we can pull

several such searches in the cohort we use for training. Such data

allows us to learn a semantic match of a query and an ad implicitly,

based on users’ feedback. In the past, learning such implicit relations

between queries and ads has shown great bene�t in sponsored

search ad recommendations [11], while its computational bene�ts

were supported in [3]. In this study, unlike in [3], implicit negative

samples naturally occur as signals from the users, furthermore

they do not consider that complete ground-truth bipartite graph

is needed to obtain the good working model, as arti�cial negative

samples can be harmful if a pair is semantically related. The later

issue is leveraged with matching tensor layer, while matching loss

merely plays a role of discriminativeness enforcing regularizer. An

example of a cohort of users’ search query impressions used for

training our models is given in Figure 2.

Traditionally, techniques such as negative sampling [24] were

proposed as a speedup for costly partition functions while learning

to match. However, in negative sampling for each positive sample

1We use word cohort to disambiguate our sampling strategy from the traditional
mini-batch i.i.d. sampling.

(in our case query-ad (q,a) pair with click) m there needs to be

k sampled ads from some distribution Pn that provide negative

pairs for a given query, thus ending up with a total ofm +m ∗ k
embedding operations prior to matching. In our case, we do not

sample k negative ads, thus the computation is decreased bym ∗ k
in addition to capturing implicit signals from users.

In cohorts with insu�cient negative pairs for the partition func-

tion to provide satisfactory approximation of true distribution, we

resort to negative cross-referencing queries with ads that are found

in cohort and were not served for those queries (dotted gray links

in the Figure 2), obtaining up to < m ∗ (m − 1) negative pairs.
For further analysis, it is useful to characterize the matching loss

function in terms of expected values over query q, and ad a pairs as

positive (click) and negative (no click) examples drawn from their

respective distributions Pd and Pn :

Q(W ) = E(q,a)∼Pp (q,a)[Q
+(q,a;W )] + E(q, à)∼Pn (q, à)[Q

−(q, à;W )]

= Eq∼Pp (q)
[

Ea∼Pp (a |q)Q
+(q,a;W )] + Eà∼Pn (à)[Q

−(q, à;W )]
]

,

(5)

Due to the nature of the data, we assume that the query is ob-

served �rst and then ads are provided (conditioned on the query).

Obviously, we do not assume independence between two random

variables. However, for sampling negative samples (q, à), we as-

sume that the distribution Pn (q, à) = Pp (q)Pp (à) is approximately

scaled by
Pn (à)
Pp (à) to allow the factorization Pn (q, à) = Pp (q)Pn (à).

It is important to formalize the sampling strategy EB [QB (W t )]
that is di�erent from the simple i.i.d. sampling:

EB [QB (W t )] =

E(q,a)∼Pp (q,a)[Q
+(q,a;W )] + E(q,a)∼Pp (q)Pp (à)[

Pn (à)
Pp (à)

Q−(q, à;W )]

+

1

m(m − 1)

m(m−1)
∑

j=1

E(q,a)∼Pp (q, à)[
Pn (à)
Pp (à)

Q−(q, à;W )] =

Eq∼Pp (q)[Ea∼Pp (a |q)[Q
+(q,a;W )] + Eà∼Pn (à)[Q

−(q, à;W )]

+ Eà∼Pp (à)[
Pn (à)
Pp (à)

Q−(q, à;W )]] =

Eq∼Pp (q)
[

Ea∼Pp (a |q)[Q
+(q,a;W )] + 2Eà∼Pn (à)[Q

−(q, à;W )]
]

=

Q(W t ).
(6)

We can de�ne samples in the cohort as taking positive and neg-

ative samples from the Pp (q,a) and Pn (q, à) distributions, respec-
tively. As shown in Figure 2, the �rst expectation is for positive,

clicked pairs, the second is for ads not clicked, and the third is for

negative query–ad pairs created within the cohort. Due to proper-

ties of expectation and joint distribution, we are allowed to factorize

the expectation to obtain the result equivalent to Eq. 5. Using the

gradient property of expectation, we obtain the following lemma:

Lemma 3.1 (Cohort negative sampling is an unbiased sto-

chastic gradient estimator). Given samples in B generated by

the cohort negative sampling algorithm, the stochastic gradient is
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unbiased as the expected cohort gradient equals the true gradient:

EB [▽LB (W t )] ≡ ▽L(W t )

3.2.2 Stochastic Gradient Descent View. To optimize our objec-

tive we use the stochastic gradient descent (SGD) algorithm. The

update at the t th iteration of SGD is in the form:

W t+1
=W t − ηt ▽ Lt (W ). (7)

For examples chosen randomly in iteration t , SGD provides an

unbiased estimate of the gradient: EB [▽LB (W t )] ≡ ▽L(W t ).
Analyzing the convergence of the SGD algorithm for non-convex

problems has been a big research question. However, it was shown

in [9, 26] that SGD follows a local convergence bound. Furthermore,

[9] provide the following theorem showing that SGD will converge

within T steps, based on the assumptions that ▽L(W t ) is an un-

biased estimator and that the expected variance of the gradient

▽L(W t ) is upper-bounded by σ 2.

Theorem 3.2 (Local convergence of non-convex SGD [9, 26]).

Suppose L has a σ -bounded gradient; let ηt = η = c/
√
T where

c =

√

2(L(W 0)−L(W ∗))
Lσ 2 , andW ∗ is an optimal solution to (4). Then,

the iterates of SGD satisfy

min
0<t<T−1

E[∥ ▽L(W t ) ∥2] ≤
√

2(L(W 0) − L(W ∗))L
T

σ . (8)

Although L is a composite of P and Q, the theorem still applies ac-

cording to Lemma 2 from [20]. Thus, we only need to show that the

proposed sampling strategy in Section 3.2.1 yields an unbiased min-

imizer Q, which follows from the Lemma 3.1. Satis�ed assumptions

conclude the convergence of our algorithm.

4 EXPERIMENTS

We conducted an extensive empirical evaluation for the CTR pre-

diction task on a large dataset (about one billion query-ad samples)

from a major commercial search engine (Section 4.1). We also eval-

uate the quality of the query and ad embeddings learned by our

model through a query-ad matching task using a large-scale edi-

torial labeled dataset (Section 4.2). The data and the experimental

set-up used for both tasks are described in each of these sections.

4.1 CTR prediction

For the CTR prediction task, the aim is to estimate, as accurately as

possible, the probability P(click |ad,query) that a user would click

on an ad displayed after submitting a query.
4.1.1 Click-through rate data. To train and test the proposed

model and baselines for this task, we collected a random sample

of logged query-ad pairs served by a popular commercial search

engine. The sample comprises of 987,734,146 query-ad pairs for

training and 16,881,864 for testing, containing only advertisements

placed at the top (north) of search result page (ads that are served

above organic search links). The data consists of a query text on one

side, and ad title, ad description and ad display URL on the other

side. The query and ad texts are processed and normalized using an

in-house tool to remove special characters and punctuations, make

letters lower case, �x common typos, split URLs, etc. All example

pairs are accompanied with information whether the ad was clicked

or not, which we use as supervised information to train all models.

Figure 2: Cohort negative sampling (an example with

queries and served ads in the position “north”, n1 up to n5)

Red links are ad clicks, blue links are ads displayed but not

clicked, and negative pairs we create by coupling queries

and ads that were not displayed for that ad - dotted links.

To better characterize the dataset, we comment on its distribution of

the queries. A majority (75%) of queries are infrequent (tail queries),

i.e. appearing less than �ve times overall, and if measured in the test

set only there are more than 90% them. As discussed before, this is

a major limitation of most of the traditional CTR prediction models,

and given the volume of the tail queries, this rea�rms the necessity

for predictive models that can generalize when insu�cient or no

click history is available. For a subset of queries that are seen often

(appear more than 20 times, called head queries) we expect all the

models to perform better, even though they make up only about

3% of the training set and less than 1% of the testing dataset.

4.1.2 Baselines. We compare our proposed Deeply Supervised

Matching (DSM) approach against several alternatives described in

Section 2.2: A linear logistic regression learned on top of the word

embedding layer (LM), Very Deep CNN (VDCNN) [6], DeepMatch

(DM) [7], and MatchTensor (MT) [16].

All deep learning models were trained in two ways: (i) with the

use of pre-trained word embedding vectors (obtained from [25]);

and (ii) when the word embeddings are learned speci�cally for

the task, directly from the training dataset. All the models were

implemented in the Tensor�ow framework, and were run on a

distributed cluster with multiple GPU machines (Nvidia p80) due

to the size of the data. The initial learning rate of 0.0001 was set

for the Adam Optimizer, while the mini-batch size was set to 512.

4.1.3 Metrics. For assessing the quality of the estimated CTR

probabilities, we use a common classi�cation performance measure

of area under the ROC curve (AUC), as well as Accuracy obtained

after choosing the appropriate classi�cation threshold. In addition,

we study the bias of the predicted probabilities. Unbiasedness is

a desirable property, as positive bias leads to overly-optimistic

estimates and a waste of resources, and negative bias leads to overly-

conservative estimates and a waste of opportunity.

4.1.4 Results. Prediction performance results, on the holdout

testing dataset, are presented in Fig. 3. Results in the Table1 are the

best results obtained by the respective model. The DSM approach

outperforms all the alternatives with the highest AUC of 0.775.

We �rst evaluate the simplest way (LM) of learning to predict

CTR from combined text data of query and ad, and we observe a

decent performance of such an approach, which resonates well with
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Table 1: Performance of the proposed models vs baselines

Model DSM MT DM VDCNN LM

AUC 0.775 0.745 0.755 0.744 0.711

Bias 0.991 1.046 1.033 0.974 0.965

Accuracy 0.742 0.703 0.719 0.734 0.711

the word embedding approaches described in Section 2. Further-

more, we see that by introducing deep models, such as VDCNN, we

are able to achieve signi�cant lifts in performance (3% lift in AUC).

However, by introducing individual embeddings of query and ad to

capture speci�cities of both, and learning to match the two, such

as in the case of the DM or MT models, we see that the results are

further improved (1% lift in AUC). Finally, when a model is capable

of capturing discriminative features deep in the architecture, we

obtain further improvements (additional 2% of AUC lift). Accuracy

measure consistently sets DSM as the best performing model.

Furthermore, we evaluate the bias of predictions made by di�er-

ent models, and observe that the DSM model is the most unbiased

model in the experiment (closest to the ratio of 1). This implies

that the expected number of clicks deviates the least from the exact

number of clicked ads, thus achieving better monetization. The

results show that the DSM model’s click expectation would on

average be wrong for 9 clicks, out of 1000, which is 17 clicks better

compared to the next best VDCNN model, with 26 out of 1000.

This signi�cantly impacts revenue due to a volume of served ads.

Learnword embeddings vs. use pre-trainedword vectors. As

all baselines suggest using pretrained word embeddings in their

original approaches, we examined the e�ect of learning embeddings

in an end-to-end manner, rather than using pretrained ones. Results

in Figure 3 show that the models where the word embeddings are

learned directly on the task of CTR prediction, in a majority of cases

are superior to their counterparts which use pre-trained vectors.

Thus, we argue that it is important for such models to capture word

speci�cities of the domain rather than using external embedding.

The following two experiments show results obtained by the

best version (using pretrained word vectors vs. learning word em-

bedding) of the respective model.

Figure 3: Models with learned embeddings (on the right) per-

formbetter thanmodelswith pretrained vectors (on the left)

CTR prediction for Head, Torso and Tail Queries. It is ex-

pected that predictability of CTR depends on the query frequency.

For example, for less frequent queries there may not be enough

data to generalize properly. Therefore, in this subsection, we ana-

lyze the in�uence of the query frequency on the model predictive

performance. For that purpose, examples were divided into three

categories: the most frequent “head” (">20" occurrences), least fre-

quent “tail” ("<5" occurrences), and “torso” in-between.

Figure 4: AUC for CTR decomposed by query frequency

Results presented in Figure 4 align with the common sense ex-

pectation that the most frequent queries (“query head”) will be

more predictable. The less frequent “torso” and “tail” queries have

expectedly lower AUC (more than 10% less than “head”), where the

least frequent queries (from “tail”) seems to have slightly higher

predictive performance, compared to the “torso”.

CTR prediction over di�erent Ad Positions. It was acknowl-

edged that Ad position plays an important role in CTR prediction [4].

For example, ads placed in the north section are more likely to be

clicked than those in the south or east sections, both because it

was considered the most relevant (by algorithm), and because its

position is the most favorable (convenient) one. Therefore, we also

analyze the in�uence of the ad position on the model predictive

performance. For that purpose, we segregated the examples into 5

groups based on their positions in the north section (top one is no. 1,

and up to 5, as it goes down). Results presented in Fig. 5 convey that

predictability decays with the rise in the position number. From

the �rst to the second position it displays the sharpest decrease in

the AUC, and from-then-on it goes more gradually until the last,

�fth position. Still, the proposed model is the best on all sections.

CTR prediction - training set scale impact. We also studied

models training on datasets of di�erent scales, small with millions

of examples, and large with billion of examples. As shown in Fig. 6,

scale matters when trying to characterize models for ad impression

data. For example, models that use pretrained word vectors perform

Figure 5: AUC for CTR decomposed by impression position
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Figure 6: E�ect of Data set scale on models’ CTR prediction performance

better on smaller dataset than their learn-embeddings alternatives,

as the models that learn embeddings require more data to learn

meaningful representations of words. We also note that batch nor-

malization algorithms on smaller datasets perform much worse

than their non-batch-normalizing alternatives, which is not the

case on the larger dataset, suggesting that algorithms that are using

batch normalization need more data to learn good representations.

Robustness of the DSM model. Additionally, for the proposed

methodology ablation analysis, we study the e�ect of batch normal-

ization, loss normalization, and attention pooling when we remove

the deep supervision from the DSM model. Hence, we had four

varieties of our model: plain DSM , DSM with normalization of the

two losses (trying to prevent one of the losses dropping too fast)

DSMn , DSMwith batch normalization on the fully connected layers

DSMbn to prevent large �uctuations of the logistic loss and DSM

with both batch normalization and normalized losses DSMn_bn .

Results of all exploited normalization strategies yield comparable

prediction performance with 0.7754, 0.7734, 0.7743 and 0.7727 AUC

for DSM , DSMn , DSMbn and DSMn_bn , respectively.

Logistic loss vs. matching loss. Finally, we removed thematch-

ing loss from the model to evaluate the gain obtained by it. Further-

more, we noticed that the matching loss drops much faster than

the logistic loss, even after losses normalization. That con�rms

that the surrogate loss served as a form of regularization [20] that

forces the hidden layer of a query and ad representations to be

semantically discriminative thus yielding higher quality CTR pre-

dictions and enabling the model to excel on matching tasks. We see

a larger drop when removing the matching loss with 0.7671 AUC

(the Wilcoxon signed-rank test p–value 8.63e−05 ), thus validating
that the matching loss bene�ts the quality of the CTR prediction.

4.2 Query2Ad Matching

Finally, we assess the quality of the learned representations. The

proposed DSM learn semantic matching of a query-ad pair as an

e�ect of the matching layer and deep supervision. To validate this,

we evaluate our model on the query to ad (query2ad) matching task,

traditionally used for performance assessment. Note that this is not

the primary task of the DSM, however, due to the nature of the

proposed matching, it has the ability to perform it well. The scores

between query and ad used for matching are the �nal layer’s logits,

that re�ect query-ad semantics as well as the click probability.

4.2.1 Relevance data. To evaluate the quality of query and ad

embeddings, we used an in-house dataset consisting of a query-

ad pair that was graded editorially. The editors were instructed to

grade 65, 446 query-ad pairs as either Perfectly Relevant, Highly Rel-

evant, Relevant, Somewhat Relevant, Barely Relevant, or Irrelevant

as in [1]. For each ad, the editors had access to ad title, descrip-

tion, and display URL to help them reach their judgment. For each

query (8, 315 unique queries) there was on average ∼ 7 graded ads,

allowing us to evaluate ranking of ads in addition to relevance.

4.2.2 Baselines. We compared our method to traditional rele-

vance models: Gradient boosted decision trees (with 1000 trees) [38]

(GBDT1000), with 185 text-based features [1] (trained on 700, 000

editorial query-ad pairs) and the BM25 [28]. We also use other CTR

prediction task baselines (described in Section 4.1.2), where, as for

the DSM, logits of the models were used as matching scores. Finally,

we evaluated the search2vec [11] for the matching task. Since the

model is only trained for known queries and clicked ads, the cover-

age of the model on our editorial dataset was small (2,167 unique

queries coming from 8,725 query ad pairs out of 65,446 records) and

as such model yielded only fairish results ( [0.7, 0.8] for NDCG@2

to NDCG@7), so we do not show them in Figure 7.

For matching quality, we use precision@K and Normalized Dis-

counted Cumulative GainNDCG@K [33] averaged across all queries.

Figure 7: NDCG@K on editorial 65K query-ad pairs

4.2.3 Matching Results. NDCG. Relevance was assessed using

the NDCG@K [33], and the results are given in Figure 7. We ob-

serve that the DSM approach improves over the alternatives (higher

values of NDCG). Even though the di�erence is not obvious because
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of the NDCG@2 to NDCG@7 scores’ scale, Wilcoxon signed-rank

test p-value of 2.69e−05 measured on NDCG@1 to NDCG@100

shows that the improvement of the DSM model over alternatives is

statistically signi�cant. DSM improves the NDCG@7 of the GBDT

model by 2% and the best deep learning baselineMT by 0.5%. In addi-

tion, we measure Precision@K for all the models, but for the lack of

space we report here statistically signi�cant average improvement

of 1.5% over the next best alternative.

Precision. We also measure Precision@K to further characterize

models, as shown in Figure 8. The DSM model is still the best

performing model. However for this metric, traditional BM25 model

performs as the second best model. Statistical signi�cance test of

the improvement of the DSM over the BM25 model returns p-value

of 8.85e−05, con�rming that observed improvements are indeed

statistically signi�cant.

Figure 8: precision@K measured on editorial judgments of

65K query-ad pairs

5 FINAL REMARKS

The results of our extensive experiments demonstrate that the

proposed DSM model outperforms state-of-the-art approaches on

CTR prediction tasks, as measured by multiple metrics. It was the

most accurate, and had the least bias of all the approaches. Our

model also outperformed other competitive algorithms on a query

to ad matching task, as measured by the NDCG. Ablation study

con�rmed that the dual loss architecture (statistically signi�cant)

enhances the model performance. Moreover, our DSM model was

the best performer over di�erent scales of data, frequencies of the

queries, ad positions and embedding choices. Above mentioned

suggests that joint training of two complementary tasks, as query

to ad matching and CTR prediction are, through deep supervision,

yields high quality, versatile models.
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