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Figure 1: Learned meta-handles for a single chair. Each column indicates a meta-handle and shows three deformations along the direction

of that meta-handle, with red arrows highlighting the deformed region. Our method learns intuitive and disentangled meta-handles in an

unsupervised fashion, which factorize all the plausible deformations for the shape.

Abstract

We propose DeepMetaHandles, a 3D conditional gen-

erative model based on mesh deformation. Given a col-

lection of 3D meshes of a category and their deformation

handles (control points), our method learns a set of meta-

handles for each shape, which are represented as combina-

tions of the given handles. The disentangled meta-handles

factorize all the plausible deformations of the shape, while

each of them corresponds to an intuitive deformation. A

new deformation can then be generated by sampling the co-

efficients of the meta-handles in a specific range. We em-

ploy biharmonic coordinates as the deformation function,

which can smoothly propagate the control points’ transla-

tions to the entire mesh. To avoid learning zero deforma-

tion as meta-handles, we incorporate a target-fitting mod-

ule which deforms the input mesh to match a random tar-

get. To enhance deformations’ plausibility, we employ a

soft-rasterizer-based discriminator that projects the meshes

to a 2D space. Our experiments demonstrate the superiority

of the generated deformations as well as the interpretabil-

ity and consistency of the learned meta-handles. The code

is available at https://github.com/Colin97/

DeepMetaHandles.

1. Introduction

3D Meshes can store sharp edges and smooth surfaces

compactly. However, Learning to generate 3D meshes is

much more challenging than 2D images due to the irregu-

larity of mesh data structures and the difficulty in designing

loss functions to measure geometrical and topological prop-

erties. For such reasons, to create new meshes, instead of

generating a mesh from scratch, recent work assumes that

the connectivity structure of geometries is known so that the

creation space is restricted to changing the geometry with-

out altering the structure. For example, [37, 36, 48] create

new shapes by deformations of one template mesh. They,

however, limit the scope of the shape generation to possible

variants of the template mesh. We thus propose a 3D condi-

tional generative model that can take any existing mesh as

input and produce its plausible variants. Our approach in-

tegrates a target-driven fitting component and a conditional

generative model. At test time, it allows both deforming

the input shape to fit the given target shape and exploring

plausible variants of the input shape without a target.

Our main design goals are two-fold: improving the plau-

sibility of the output shapes and enhancing the interpretabil-

ity of the learned latent spaces. To achieve the goals, the key

is to choose a suitable parameterization of deformations.

One option is to follow the recent target-driven deformation

network [39, 9, 46, 35], which parameterizes the deforma-

tion as new positions of all the mesh vertices. However,

such a large degree of freedom often results in the loss of

fine-grained geometric details and tends to cause undesir-

able distortions. Instead of following the above works, we

leverage a classical idea in computational geometry, named
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deformation handles, to parameterize smooth deformations

with a low degree of freedom. Specifically, we propose to

take a small set of control points as deformation handles and

utilize a deformation function defined on the control points

and their biharmonic coordinates [41].

Not all the translations of the control points lead to plau-

sible deformations. Based on the control-point handles, we

aim to learn a low-dimensional deformation subspace for

each shape, and we expect the structure of this subspace

to exhibit interpretability. In contrast to typical genera-

tive models, where shape variations are embedded into a la-

tent space implicitly, our method explicitly factorizes all the

plausible deformations of a shape with a small number of

interpretable deformation functions. Specifically, for each

axis of our input-dependent latent space, we assign a defor-

mation function defined with the given set of control points

and offset vectors on them so that each axis corresponds to

an intuitive deformation direction. Since each axis is ex-

plicitly linked to multiple control-point handles, we thus

call them meta-handles. We enforce the network to learn

disentangled meta-handles, in the sense that a meta-handle

should not only leverage the correlations of the control-

point handles, but also correspond to a group of parts that

tend to deform altogether according to the dataset. We hope

that the disentangled meta-handles allow us to deform each

part group independently in downstream applications.

Beyond choosing the parameterization of deformations,

we have to overcome the challenge of examining the plau-

sibility. In the popular adversarial learning framework, a

straightforward approach would be converting the output

mesh to voxels or point clouds and exploiting voxel or point

cloud based discriminators. The conversions, however, may

discard some important geometric details. In our method,

we instead project the shapes into a 2D space with a differ-

entiable soft rasterizer [25] and employ a 2D discriminator.

We found that this architecture can be trained more robustly,

and it captures local details of plausible shapes.

Our deformation-based conditional generative model,

named DeepMetaHandles, takes random pairs of source

and target shapes as input during training. For the source

shape, the control points are sampled from its mesh ver-

tices by farthest point sampling, and the biharmonic coorid-

nates [41] for control-point handles are pre-computed. Our

network consists of two main modules: MetaHandleNet

and DeformNet. The MetaHandleNet first predicts a set of

meta-handles for the source shape, where each meta-handle

is represented as a combination of control-point offsets. A

deformation range is also predicted for each meta-handle,

describing the scope of plausible deformations along that

direction. The learned meta-handles, together with the cor-

responding ranges, define a deformation subspace for the

source shape. Then, DeformNet predicts coefficients multi-

plied to the meta-handles, within the predicted ranges, so

that the source shape deformed with the coefficients can

match the target shape. To ensure the plausibility of varia-

tions within the learned subspace, we then randomly sample

coefficients within the predicted ranges and apply both geo-

metric and adversarial regularizations to the corresponding

deformations.

Fig. 1 shows examples of the learned meta-handles,

which interestingly resemble natural deformations of se-

mantic parts, such as lifting the armrests or bending the

back of a chair. Our experiments also show that the learned

meta-handles are consistent across various shapes and well

disentangle the shape variation space. Finally, we compare

our approach with other target-driven deformation tech-

niques [13, 39, 9, 46] and demonstrate that our method pro-

duces superior fitting results.

Key contributions:

• We propose DeepMetaHandles, a 3D conditional genera-

tive model based on mesh deformation.
• We employ a few control points as deformation handles.

Together with their biharmonic coordinates, we can pro-

duce smooth but flexible enough deformations.
• We propose to factorize the deformation space with

a small number of disentangled meta-handles, each of

which provides an intuitive deformation by leveraging the

correlations between the control points.
• We improve the plausibility of the deformations by ex-

ploiting a differentiable renderer and a 2D discriminator.

2. Related Work

Learning 3D Shape Deformations. 3D shape deforma-

tion is a classic subject in computational geometry that

has been studied extensively for decades. The problem is

typically formulated as an optimization problem minimiz-

ing the fitting error from the source to target shape and

also some regularization errors (e.g., local rigidity). Recent

work, however, has demonstrated how neural networks can

be leveraged in the shape deformation not only for improv-

ing the fitting accuracy but also for multiple other purposes

such as: to fit the source shape to a partial target shape [11]

or 2D images [15, 22, 39], to find point-wise correspon-

dences through deformation [8, 9], to predict customized

deformation handles for each input shape [46], to cluster

shapes given a collection [27], to learn semantic deforma-

tions [47], and to transfer deformations [44, 35]. While our

approach can also perform target-driven deformation, our

main goal is different: to learn a deformation-based condi-

tional generative model. We also remark that our method

does not utilize any semantic supervision such as part seg-

mentation, as done by some recent works [35, 45].

3D Shape Generative Models. In light of the success in

the 2D image case, deep generative models have also been

widely investigated for 3D data. Wu et al. [42] was the

first proposing a 3D GAN with voxel representation, and
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Achlioptas et al. [1] and their subsequent work [38, 34]

also proposed point-cloud-based GANs. However, these

approaches are not able to produce fine-grained geometric

details due to the limit of the resolution.While mesh is a

preferable representation, generating meshes is very chal-

lenging in particular when preventing the generation of non-

manifold faces or disconnected components [30]. Hence,

previous work, such as the one of Tan et al. [37, 36], con-

siders generating novel shapes by deforming a given tem-

plate mesh, limiting the scope of the generation to the pos-

sible variations of the template shape. We propose to over-

come this limitation with our conditional generative model,

which takes any 3D mesh as input to deform. Genera-

tive models for 3D shapes have also been investigated to

learn possible variations of compositional structures with

or without semantic annotations [7, 33, 4, 43, 45, 23, 29].

In this work, we focus on learning geometric variations of

the given shape while preserving its topological structure.

3. Method

In this section, we will first briefly review the

control-point-based deformation and the biharmonic coor-

dinates [41] technique we use, and introduce how the meta-

handles are defined with the control-point handles (Sec-

tion 3.1). We will then present how we learn the meta-

handles in an unsupervised fashion and our neural network

architectures (Section 3.2). Lastly, we will introduce our

loss functions that guide the emergence of plausible defor-

mations and intuitive factorizations (Section 3.3).

3.1. Biharmonic Coordinates and MetaHandles

Mesh deformation through directly moving individual

vertex is cumbersome and may easily lead to unwanted dis-

tortions. We thus leverage deformation handles to parame-

terize the deformations with a low degree of freedom. The

key in the handle-based deformation is to define a proper de-

formation function that features several desired properties.

For instance, no change of handles should result in no defor-

mation; each handle should produce local and smooth de-

formation; the deformation function should be expressed in

closed form. Numerous previous work has introduced dif-

ferent handle-based deformation functions. Many of them

are based on solving the biharmonic equation defined over

the mesh with boundary constraints (given from handles).

The resulting deformation functions of these approaches

satisfy many desired properties [16, 19]. Also, closed-form

expressions with respect to the handles can be easily calcu-

lated after a pre-computation. (Please refer to Jacobson et

al. [17] for more details.)

In our method, we employ a subset of mesh vertices

as the deformation handles (control points) and restrict the

transformations of the handles to pure translations. Given

the mesh vertices V ∈ R
n×3 (n vertices) and a set of c con-

trol points C ∈ R
c×3, the linear map W ∈ R

n×c between

them (V = WC) is often called ‘generalized barycentric

coordinates’ [28, 21, 20, 26]. Wang et al. [41] proposed

one way to define W based on the biharmonic functions,

which is thus dubbed biharmonic coordinates, and we uti-

lize it as our deformation function. Without requiring that

control points form a cage enclosing the input shape, our

deformation handles are flexible and intuitive.

Specifically, we sample c control points from the mesh

vertices by farthest point sampling (FPS) over the geodesic

distances. The biharmonic coordinates W are also precom-

puted. However, the deformation function f : R
c×3 →

R
n×3 defined over the given control points C, f(C) =

WC, has 3c degrees of freedom. It may overparame-

terize the plausible shape variation space, which means

there may be lots of implausible deformations, if we ran-

domly translate the control points (see Fig. 2). Also, there

Figure 2: Two deformations re-

sulted from moving the red con-

trol point along the arrow direc-

tions.

may exist strong corre-

lations across the defor-

mations from moving

individual control points.

For a specific shape (e.g.,

a chair), all the plausible

variants may reside in a

lower-dimensional sub-

space and can be factorized

into several meaningful deformation directions (e.g.,

scaling all chair legs and bending the chair back).

To this end, we propose to find a smaller number of meta-

handles to factorize the subspace covering all the plausible

deformations. Specifically, each meta-handle Mi ∈ R
c×3

is represented as offsets over the c control points:

Mi = [~ti1, · · · ,~tic]
T , (1)

where ~tij ∈ R
3 indicates the offset of the j-th control point

for the i-th meta-handle. In contrast to a single control

point that mainly affects a local region of the mesh, each

meta-handle is expected to provide a more intuitive defor-

mation direction, which may even correspond to some se-

mantic meanings (See Figs. 1 and 8).

We now use the linear combination of the meta-handles

to represent a deformation. Specifically, a new deforma-

tion function g : Rm → R
n×3 is defined with respect to

the meta-handles {Mi}i=1···m and their linear combination

coefficients a = [a1, · · · , am]:

g (a; {Mi}i=1···m) = W(C0 +

m∑

i=1

aiMi), (2)

where C0 ∈ R
c×3 denotes the rest positions of the given

control points. In the context of the conditional generative

model, it can be interpreted as that each shape has a m-

dimensional input-dependent latent space, where each axis

corresponds to a meta-handle describing a specific defor-

mation function in 3D space. A latent code a can thus be
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Figure 3: Architecture of MetaHandleNet: it incorporates the information from the shape (point cloud), control-point handles, and bihar-

monic coordinates by building a 3D tensor, and predicts a set of meta-handles with the corresponding coefficient ranges for the shape.
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Figure 4: Overview of our method. We learn the meta-handles in

an unsupervised fashion.

directly decoded to a deformation of the input mesh as a

linear combination of the meta-handles.

Along with the meta-handles, our method also predicts

ranges {[Li, Ri]}i=1···m of the coefficients associated with

each meta-handle. The ranges describe the scope of plau-

sible deformations along the direction of each meta-handle.

Any set of coefficients within the ranges {[Li, Ri]}i=1···m

is thus expected to produce a plausible deformation.

We utilize a small number of meta-handles to learn a

low-dimensional compact deformation space. The degrees

of freedom of the deformation function g is typically much

smaller than that of the deformation function f , i.e., m ≪
3c. As a result, the meta-handles are required to not only

leverage the correlations of the control-point handles, but

also discover the underlying properties of the shape struc-

ture (e.g., chair legs are symmetric and should thus be de-

formed together).

3.2. Network Architecture

We propose to learn the meta-handles in an unsupervised

fashion without taking semantic annotations or correspon-

dences across the shapes as input or supervision. As shown

in Fig. 4, our method mainly includes three networks: Meta-

HandleNet, DeformNet, and a discriminator network (dis-

cussed in Section 3.3). Taking a pair of randomly sampled

shapes within the same category as input, the method pre-

dicts a deformation space for the source shape, and finds

a deformation within the space to match the target shape.

Specifically, MetaHandleNet takes a source shape, its con-

trol points, and the precomputed biharmonic coordinates as

input and predicts a set of meta-handles as well as the cor-

responding coefficient ranges. DeformNet then predicts co-

efficients of the meta-handles so that the resulting deforma-

tion of the source shape matches the target shape.

To ease encoding, in MetaHandleNet, we convert the in-

put source mesh to a point cloud (denoted as P ∈ R
p×3)

by uniformly sampling p points over the mesh surface. The

precomputed biharmonic coordinates are also interpolated

from the mesh vertices to the point cloud (i.e., W ∈ R
p×c)

according to the barycentric coordinates. Fig. 3 illustrates

the architecture of MetaHandleNet. It first encodes the point

cloud with PointNet [31] and obtains 64-dimensional fea-

tures per point, which is denoted as D ∈ R
p×64. Then, the

point features D, the biharmonic coordinates W, and the

rest positions of the control points C0 ∈ R
c×3 are consol-

idated in a 3D tensor (a purple volume in Fig. 3). Specifi-

cally, the 3D tensor has a size of p × c × 68, and the first

p × c × 64 is packed with the point features D (repeating

for the control points), the next p × c × 1 is filled with the

biharmonic coordinates W, and the last p × c × 3 is filled

with the rest positions of the control points C0 (repeating

for the point cloud). Hence, in this tensor, each pair of a

point in P and a control point has a 68-dimensional feature,

which is processed with an MLP. We then aggregate the fea-

tures across the points through a symmetric function (i.e.,

max-pooling) to produce 64-dimensional features per con-

trol point. The control-point feature is combined again with

the rest position of the control point and is then converted

to a 3m-dimensional vector through another MLP, which

becomes the offsets for the m meta-handles. We then nor-

malize each metal-handle to unit length to facilitate train-

ing. The predicted meta-handles and the 67-dimensional

control-point features are then fed into a range prediction

module, which outputs a coefficient range [Li, Ri] for each

meta-handle. Please refer to the supplementary materials

for the details of the module.

As for the DeformNet, it takes the source shape, tar-

get shape, the predicted meta-handles with the coefficient

ranges, and the control-point features (extracted from Meta-

HandleNet) as input, and predicts a coefficient vector a ∈
R

m within the predicted ranges Πm
i=1

[Li,Ri]. The pre-
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Figure 5: We utilize a soft rasterizer [25] and a 2D discriminator

network to penalize unrealistic deformations.

dicted coefficient vector and the meta-handles are then fed

into the deformation function g (Equation 2) to decode

the deformation for the source shape, which is expected to

match the target shape. Similar to MetaHandleNet, Deform-

Net also builds a 3D tensor to incorporate all the informa-

tion and utilize shared-weight MLPs and max-pooling to

process and aggregate the features. Please refer to the sup-

plementary materials for the details.

3.3. Loss Functions

We consider three objectives when training our network:

1) the deformed input (source) shape matches the given tar-

get shape; 2) any deformation sampled from the learned

ranges is plausible; 3) the learned meta-handles properly

disentangle the deformation space. We thus train our net-

work with the following joint loss function:

L = Lfit + Lgeo + Ladv + Ldisen. (3)

Among the four terms, the fitting loss Lfit corresponds

to the first objective and minimizes the Chamfer distance [5]

between the deformed source point cloud and the target

point cloud.

Lgeo and Ladv are geometry loss and adversarial loss,

respectively, added for the second objective. In each iter-

ation, we randomly sample a deformation within the pre-

dicted ranges, and apply these two losses to penalize im-

plausible deformations.

Specifically, Lgeo is further decomposed into:

Lgeo = Lsymm + Lnor + LLap, (4)

where Lsymm is symmetry loss minimizing the Chamfer

distance [5] between the deformed point cloud and its re-

flection along the x-axis (also used in previous works [39,

46]). Given the mesh connectivity, normal loss Lnor and

Laplacian loss LLap are computed to prevent distortions.

Lnor minimizes the angle difference between the face nor-

mals of the source mesh and the deformed mesh. LLap min-

imizes l1-norm of the difference of Cotangent Laplacian.

It is not enough to guarantee plausible deformation with

only geometric regularization. We thus leverage an adver-

sarial loss Ladv , which is defined with a soft rasterizer and

a 2D discriminator. (A similar adversarial training idea us-

ing 2D projection is also introduced by Li et al. [24].) As

shown in Fig. 5, we feed both randomly deformed shapes

and shapes without deformation into a soft rasterizer [25].

The renderer captures a soft silhouette image for each shape

from a random view. The images are then fed into a sim-

ple 2D convolution neural network to predict whether they

come from a deformed shape or not. The 2D discriminator

network is jointly trained with MetaHandleNet and Deform-

Net with a classification loss function. The output probabil-

ities for deformed shapes are used to penalize implausible

deformations.

For the third objective, we introduce a disentanglement

loss Ldisen. Inspired by Aumentado-Armstrong et al. [2],

Ldisen is defined with four terms:

Ldisen = Lsp + Lcov + Lortho + LSV D. (5)

Specifically, Lsp encourages the meta-handles Mi and

the coefficient vector a to be sparse by penalizing their l1-

norm. Lcov penalizes the covariance matrix (calculated for

each batch) of the coefficients a. Lortho encourages meta-

handles to cover different parts of the control-point offsets

by penalizing “dot products” between the meta-handles.

LSV D encourages the control points to translate in a sin-

gle direction within each meta-handle. Please refer to the

supplementary materials for the details of Ldisen.

Note that we do not incorporate any explicit loss func-

tion for the coefficient ranges. While Lfit motivates the

coefficient ranges to expand to cover more plausible defor-

mations, Lgeo and Ladv prevent the ranges from excessive

expansion by penalizing implausible deformations. The co-

efficient ranges are thus motivated to learn a trade-off.

4. Experiments

4.1. TargetDriven Deformation

We evaluate our methods on the ShapeNet dataset [3].

We choose 15,522 models from the dataset, which cover

three categories: chair, table, and car. Shapes are normal-

ized to fit in a unit sphere. For each shape, we sample

c = 50 control-point handles by FPS, in order to generally

cover most of the surface and allow flexible deformations.

We uniformly sample point clouds of the size p = 4096 to

represent the shapes. We set the number of meta-handles

to be m = 15. This should be an upper bound since

the network can use part of them by setting some ranges

to zero. As tetrahedral meshes are required as input to

compute the biharmonic weights [40], all the ShapeNet [3]

triangular meshes are first fed into Huang et al.’s algo-

rithm [14] to become watertight manifolds, and are then

fed into TetWild [12] to produce tetrahedral meshes. We

use libigl’s [18] implementation to compute the biharmonic

coordinates, which are then interpolated from the mesh ver-

tices to the sampled point cloud. For the differentiable ren-

derer, we use an implementation from Pytorch3D [32]. We

reserve 10% models for testing and the rest for training. For
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Figure 6: Qualitative comparison of our method with other deformation methods [13, 39, 10, 46]. Our method allows flexible deformation

and fine-grained detail preservation. Our results are also more plausible, especially when the source-target pairs do not share the same

structures (see the second and the fourth columns). Please zoom in for details.

Figure 7: Quantitative comparison of the target-driven deforma-

tion. Each 2D point represents one method. The coordinates cor-

respond to the alignment error and the distortion, with the origin

being ideal. ‘NoDef’ indicates undeformed source shapes.

each category, we train a separate model and test it on 3, 000
randomly sampled source-target pairs.

We compare our method to non-rigid ICP (NRICP) [13],

a non-neural registration technique which aligns two point

clouds by minimizing a smooth deformation energy; 3D de-

formation network (3DN) [39] and cycle-consistent defor-

mation (CC) [10], two learning-based methods that directly

infer per-vertex displacements; and Neural Cages [46], a

learnable cage-based deformation method.

Qualitative results are shown in Fig. 6. Although

NRICP [13], 3DN [39], and CC [10] do align the source

shape to the target shape in most cases, they fail to pre-

serve fine-grained details of the source shape and introduce

lots of distortions. The results of Neural Cages [46] look

more pleasing, but the cage-based deformation is less flex-

ible than our control-point based deformation. Compared

to the Neural Cages [46], our method can achieve more de-

tailed deformation of a local region, such as adjusting the

thickness of chair seats (first and fifth columns) and arm-

rests’ height (third column). Also, most alternative methods

produce unrealistic deformations when the source shape and

the target shape do not share similar structures. For exam-

ple, suppose the source shape has four chair legs, and the

target shape is a swivel chair (second and fourth columns).

In that case, the alternative methods tend to deform the

four chair legs toward the center under the fitting loss’s in-

fluence, resulting in undesirable deformations. Thanks to

the adversarial regularization we employed, our method can

avoid such implausible deformations while still aligning the

output to the target.

Inspired by Neural Cages [46], we also utilize Cham-

fer distance [5] between the deformed shape and the target

shape (computed over 100,000 uniformly sampled points)

to measure the alignment error; and use the difference be-

tween cotangent Laplacians of the source shape and the

deformed shape (l1-norm) to measure the distortion. The
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Figure 8: Learned meta-handles across different shapes. The fig-

ure includes six meta-handles, and each color indicates a distinct

one. For each meta-handle, the figure demonstrates the corre-

sponding deformations on three different shapes, with the red ar-

rows highlighting the deformation direction. The meta-handles are

consistent across various shapes.

quantitative results are shown in Fig. 7. As shown in the fig-

ure, although NRICP [13], 3DN [39], and CC [10] achieve

lower alignment errors, the distortions are much higher.

Compared to Neural Cages [46], our method achieves better

Chamfer distance with a similar cotangent Laplacian.

4.2. MetaHandle Deformation Space

Another main contribution of our method is that, for each

shape, we learn a set of interpretable meta-handles with

the corresponding coefficient ranges, which factorize all the

plausible deformations for the shape.

Fig. 1 demonstrates some learned meta-handles of a sin-

gle shape. Each column shows the deformations along the

direction of a meta-handle, with the deformation scale uni-

formly sampled within the corresponding coefficient range.

The red arrows highlight the deformation direction of each

meta-handle. As shown in the figure, the learned meta-

Table 1: Coverage (higher is better) and MMD (×100, lower is

better) comparison between different methods.

Chair Car Table

COV ↑ MMD ↓ COV ↑ MMD ↓ COV ↑ MMD ↓

3DN [39] 32.0% 4.56 46.6% 2.91 30.6% 4.26

CC [10] 51.0% 4.26 50.3% 2.79 50.2% 3.88

NC [46] 54.4% 4.23 66.6% 2.65 44.7% 3.85

Ours 64.6% 4.28 76.5% 2.97 54.9% 3.70

handles are disentangled and factorize all the plausible de-

formations for the shape. Although we do not take any

semantic annotation or correspondences across different

shapes as input or supervision, our method is able to learn

some intuitive meta-handles. Specifically, the learned meta-

handles are not limited to global scaling. Many of them

align with some local semantic parts, such as adjusting the

thickness of the chair seat (first column), the height of arm-

rests (fourth column), the length of four chair legs (seventh

column), and the height of the chair back (eighth column).

Also, many of them involve non-rigid deformation of some

parts, such as bending the chair back (fifth column) and two

back legs (sixth column), which cannot be achieved through

the rigid bounding-box handles proposed by previous meth-

ods [6, 35]. To construct a low-dimensional compact de-

formation space, the learned meta-handles not only lever-

age correlations between the control-point handles, but also

discover the underlying hard constraints (e.g., symmetry) of

the shape structure. Meanwhile, the coefficient ranges learn

the underlying soft priors (e.g., ratios of part scales) and

provide reasonable deformation scopes for meta-handles.

We assume that, for different shapes, meta-handles with

the same index share similar deformations due to the struc-

ture feature of MetaHandleNet. As shown in Fig. 8, our

learned meta-handles are consistent across different shapes.

Despite geometry details and even global structures be-

ing different, each meta-handle can find corresponding re-

gions across various shapes and predict similar deforma-

tions, which is interesting as we do not provide any seman-

tic annotation or correspondence information.

Inspired by Achlioptas et al. [1], we also employ cov-

erage (COV) and minimum matching distance (MMD) to

evaluate our generative model. For a set of generated shapes

A and a set of ground truth shapes B, coverage measures

the fraction of the shapes in B that can be roughly repre-

sented within A, while MMD measures how well shapes

in B can be represented by shapes in A. For both met-

rics, closeness is computed using Chamfer distance [5]. For

each category, we separate 500 shapes for constructing the

set A, and the remaining shapes are regarded as set B. For

our method, we randomly sample 20 deformations within

the learned deformation space of each shape. For baseline

methods 3DN [39], CC [10], and Neural Cages [46], we

randomly sample 20 target shapes for each shape in A to

generate target-driven deformations. The quantitative re-
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Table 2: Chamfer distance (×100) and Cotangent Laplacian

(×10) between different ablated versions (on chair category). For

both metrics, lower is better. DoF indicates degrees of freedom.

Meta-handle / Handle DoF Ladv CD↓ CotLap↓

Handle 50× 3 w/o 4.78 5.60

Meta-handle 15 w/o 5.76 8.61

Handle 50× 3 w/ 7.98 7.69

Meta-handle 15 w/ 6.28 5.75

sults are shown in Table 1. While all the methods have sim-

ilar MMDs, our method achieves higher coverages, which

indicates that our method generates more diverse deforma-

tions, and more ground truth shapes can thus be represented

within our deformation space.

4.3. Ablation Studies

Meta-Handles. Instead of predicting a set of meta-

handles, we can deform a shape by directly predict-

ing the offset of each control-point handle (deforma-

tion function f ). We compare our method to this vari-

ant. As shown in Table 2, when there is no adver-

sarial loss (first and second rows), directly using 50
control-point handles can achieve better fitting error and

smaller distortion, since it allows more degrees of free-

dom for the deformation. However, when applied with

the adversarial loss (third and fourth rows), it is harder

for the network to find plausible deformations based on

50 control-point handles, while our learned meta-handles

provide intuitive deformations resulting in better results.

Table 3: Coverage (higher is bet-

ter) and MMD (×100, lower is

better) for different ablated ver-

sions (on Chair category).

COV↑ MMD↓

w/o meta-handle 48.4% 4.69

w/o Ladv 56.3% 4.64

w/o Ldisen 64.1% 4.14

Ours 64.6% 4.28

Also, without meta-

handles, we cannot directly

sample plausible variants

of a input shape. The

target-driven deformation

is less effective in gener-

ating diverse deformations

and covering all the plau-

sible variants (see the first

row of Table 3).

Figure 9: Comparison between

Lnor and Ladv . Both the third

column and the fourth column

have no Ladv , but the fourth col-

umn has higher weight for Lnor .

Adversarial Regular-

ization. We use both

adversarial loss Ladv and

normal loss Lnor (part of

the geometric loss Lgeo)

to encourage plausible

deformations. Fig. 9

demonstrates a qualitative

comparison between them.

When there is no Ladv ,

the deformation may lose

plausibility in order to

match the target shape.

Although Lnor can also

alleviate this issue to some

extent, strong Lnor (fourth column) may be too restrictive

for the deformation, while Ladv achieves more realistic

results and still allows flexible deformations. When Ladv is

applied, the fitting error increases (second and fourth row

of Table 2) in exchange for more plausible deformations.

As shown in Table 3, without Ladv , both the coverage and

MMD become worse, indicating that Ladv is important for

generating diverse and realistic deformations.

Disentanglement Regularization. We use Ldisen to en-

courage the intuitive factorization of the deformation space.

As shown in Fig. 10, when there is no Ldisen, the defor-

mations along each learned meta-handle are still plausible,

since Lgeo and Ladv are still applied to the random sam-

ples within the space to penalize unrealistic deformations.

However, the learned meta-handles are entangled, each

Figure 10: Results w/o Ldisen,

each row indicates a learned

meta-handle.

meta-handle may deform

multiple parts along differ-

ent directions, and there are

overlappings between dif-

ferent meta-handles. In

contrast, meta-handles in

Fig. 1 provide more intu-

itive and disentangled de-

formations. Table 3 quanti-

tatively verifies that Ldisen

does not affect the diversity

and plausibility of the de-

formation space.

5. Conclusion

We presented DeepMetaHandles, a 3D conditional gen-

erative model based on mesh deformation. Our method

takes automatically-generated control points with bihar-

monic coordinates as deformation handles, and learns a la-

tent space of deformation for each input mesh. Each axis of

the space is explicitly associated with multiple deformation

handles, and it’s thus called a meta-handle. The disentan-

gled meta-handles factorize all the plausible deformations

of the shape, while each of them conforms to an intuitive

deformation. We learn the meta-handles unsupervisely by

incorporating a target-driven deformation module. We also

employ a differentiable render and a 2D discriminator to

enhance the plausibility of the deformation.

In our method, the expressibility of the deformation is

limited by the given control points. Technically, increasing

the number of input control points a lot will result in a mem-

ory issue and making the network training more difficult.

An interesting future direction would be developing another

network that can adaptively sample the control points at ap-

propriate locations and thus enable more fine-grained local

deformations.
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