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DeepMicro: deep representation 
learning for disease prediction 
based on microbiome data
Min Oh & Liqing Zhang*

Human microbiota plays a key role in human health and growing evidence supports the potential use 

of microbiome as a predictor of various diseases. However, the high-dimensionality of microbiome 

data, often in the order of hundreds of thousands, yet low sample sizes, poses great challenge for 

machine learning-based prediction algorithms. This imbalance induces the data to be highly sparse, 

preventing from learning a better prediction model. Also, there has been little work on deep learning 

applications to microbiome data with a rigorous evaluation scheme. To address these challenges, we 

propose DeepMicro, a deep representation learning framework allowing for an effective representation 
of microbiome profiles. DeepMicro successfully transforms high-dimensional microbiome data into 
a robust low-dimensional representation using various autoencoders and applies machine learning 

classification algorithms on the learned representation. In disease prediction, DeepMicro outperforms 
the current best approaches based on the strain-level marker profile in five different datasets. In 
addition, by significantly reducing the dimensionality of the marker profile, DeepMicro accelerates 
the model training and hyperparameter optimization procedure with 8X–30X speedup over the basic 
approach. DeepMicro is freely available at https://github.com/minoh0201/DeepMicro.

As our knowledge of microbiota grows, it becomes increasingly clear that the human microbiota plays a key role 
in human health and diseases1. The microbial community, composed of trillions of microbes, is a complex and 
diverse ecosystem living on and inside a human. These commensal microorganisms benefit humans by allowing 
them to harvest inaccessible nutrients and maintain the integrity of mucosal barriers and homeostasis. Especially, 
the human microbiota contributes to the host immune system development, affecting multiple cellular processes 
such as metabolism and immune-related functions1,2. They have been shown to be responsible for carcinogenesis 
of certain cancers and substantially affect therapeutic response3. All these emerging evidences substantiate the 
potential use of microbiota as a predictor for various diseases4.

The development of high-throughput sequencing technologies has enabled researchers to capture a compre-
hensive snapshot of the microbial community of interest. The most common components of the human microbi-
ome can be profiled with 16 S rRNA gene sequencing technology in a cost-effective way5. Comparatively, shotgun 
metagenomic sequencing technology can provide a deeper resolution profile of the microbial community at the 
strain level6,7. As the cost of shotgun metagenomic sequencing keeps decreasing and the resolution increasing, it 
is likely that a growing role of the microbiome in human health will be uncovered from the mounting metagen-
omic datasets.

Although novel technologies have dramatically increased our ability to characterize human microbiome and 
there is evidence suggesting the potential use of the human microbiome for predicting disease state, how to effec-
tively utilize the human microbiome data faces several key challenges. Firstly, effective dimensionality reduction 
that preserves the intrinsic structure of the microbiome data is required to handle the high dimensional data 
with low sample sizes, especially the microbiome data with strain-level information that often contain hundreds 
of thousands of gene markers but for only some hundred or fewer samples. With a low number of samples, large 
number of features can cause the curse of dimensionality, usually inducing sparsity of the data in the feature 
space. Along with traditional dimensionality reduction algorithms, autoencoder that learns a low-dimensional 
representation by reconstructing the input8 can be applied to exploit microbiome data. Secondly, given the fast 
amounting metagenomic data, there is an inadequate effort in adapting machine learning algorithms for predict-
ing disease state based on microbiome data. In particular, deep learning is a class of machine learning algorithms 
that builds on large multi-layer neural networks, and that can potentially make effective use of metagenomic data. 
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With the rapidly growing attention from both academia and industry, deep learning has produced unprecedented 
performance in various fields, including not only image and speech recognition, natural language processing, 
and language translation but also biological and healthcare research9. A few studies have applied deep learning 
approaches to abundance profiles of the human gut microbiome for disease prediction10,11. However, there has 
been no research utilizing strain-level profiles for the purpose. Comparatively, strain level profiles, often contain-
ing hundreds of thousands of gene markers’ information, should be more informative for accurately classifying 
the samples into patient and healthy control groups across different types of diseases than abundance profiles 
that usually contain only a few hundred bacteria’s abundance information12. Lastly, to evaluate and compare the 
performance of machine learning models, it is necessary to introduce a rigorous validation framework to estimate 
their performance over unseen data. Pasolli et al., a study that built classification models based on microbiome 
data, utilized a 10-fold cross-validation scheme that tunes the hyper-parameters on the test set without using a 
validation set12. This approach may overestimate model performance as it exposes the test set to the model in the 
training procedure13,14.

To address these issues, we propose DeepMicro, a deep representation learning framework that deploys var-
ious autoencoders to learn robust low-dimensional representations from high-dimensional microbiome pro-
files and trains classification models based on the learned representation. We applied a thorough validation 
scheme that excludes the test set from hyper-parameter optimization to ensure fairness of model comparison. 
Our model surpasses the current best methods in terms of disease state prediction of inflammatory bowel 
disease, type 2 diabetes in the Chinese cohort as well as European women cohort, liver cirrhosis, and obesity. 
DeepMicro is open-sourced and publicly available software to benefit future research, allowing researchers to 
obtain a robust low-dimensional representation of microbiome profiles with user-defined deep architecture and 
hyper-parameters.

Methods
Dataset and extracting microbiome profiles. We considered publicly available human gut metagen-
omic samples of six different disease cohorts: inflammatory bowel disease (IBD), type 2 diabetes in European 
women (EW-T2D), type 2 diabetes in Chinese (C-T2D) cohortobesity, (Obesity), liver cirrhosis (Cirrhosis), and 
colorectal cancer (Colorectal). All these samples were derived from whole-genome shotgun metagenomic studies 
that used Illumina paired-end sequencing technology. Each cohort consists of healthy control and patient samples 
as shown in Table 1. IBD cohort has 25 individuals with inflammatory bowel disease and 85 healthy controls15. 
EW-T2D cohort has 53 European women with type 2 diabetes and 43 healthy European women16. C-T2D cohort 
has 170 Chinese individuals with type 2 diabetes and 174 healthy Chinese controls17. Obesity cohort has 164 
obese patients and 89 non-obese controls18. Cirrhosis cohort has 118 patients with liver cirrhosis and 114 healthy 
controls19. Colorectal cohort has 48 colorectal cancer patients and 73 healthy controls20. In total, 1,156 human gut 
metagenomic samples, obtained from MetAML repository12, were used in our experiments.

Two types of microbiome profiles were extracted from the metagenomic samples: 1) strain-level marker pro-
file and 2) species-level relative abundance profile. MetaPhlAn2 was utilized to extract these profiles with default 
parameters7. We utilized MetAML to preprocess the abundance profile by selecting species-level features and 
excluding sub-species-level features12. The strain-level marker profile consists of binary values indicating the 
presence (1) or absence (0) of a certain strain. The species-level relative abundance profile consists of real values 
in [0,1] indicating the percentages of the species in the total observed species. The abundance profile has a few 
hundred dimensions, whereas the marker profile has a much larger number of dimensions, up to over a hundred 
thousand in the current data (Table 2).

Deep representation learning. An autoencoder is a neural network reconstructing its input x. Internally, 
its general form consists of an encoder function ⋅

φ
f ( ) and a decoder function f ( )⋅

θ

′  where φ and θ are parameters 

Disease
Dataset 
name

# total 
samples

# of healthy 
controls

# of patient 
samples

Data source 
references

Inflammatory Bowel 
Disease

IBD 110 85 25 15

Type 2 Diabetes
EW-T2D 96 43 53 16

C-T2D 344 174 170 17

Obesity Obesity 253 89 164 18

Liver Cirrhosis Cirrhosis 232 114 118 19

Colorectal Cancer Colorectal 121 73 48 20

Table 1. Human gut microbiome datasets used for disease state prediction.

Profile type IBD
EW-
T2D C-T2D Obesity Cirrhosis Colorectal

marker profile 91,756 83,456 119,792 99,568 120,553 108,034

abundance profile 443 381 572 465 542 503

Table 2. The number of dimensions of the preprocessed microbiome profiles.
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of encoder and decoder functions, respectively. An autoencoder is trained to minimize the difference between an 
input x and a reconstructed input ′x , the reconstruction loss (e.g., squared error) that can be written as follows:

L x x x x x f f x( , ) ( ( ))
2 2′ = || − ′|| = || − ′ || .θ φ

After training an autoencoder, we are interested in obtaining a latent representation =
φ

z f x( ) of the input 

using the trained encoder. The latent representation, usually in a much lower-dimensional space than the original 
input, contains sufficient information for reconstructing the original input as close as possible. We utilized this 
representation to train classifiers for disease prediction.

For the DeepMicro framework, we incorporated various deep representation learning techniques, including 
shallow autoencoder (SAE), deep autoencoder (DAE), variational autoencoder (VAE), and convolutional auto-
encoder (CAE), to learn a low-dimensional embedding for microbiome profiles. Note that the diverse combina-
tions of hyper-parameters defining the structure of autoencoders (e.g., the number of units and layers) have been 
explored in a grid fashion as described below, however, users are not limited to the tested hyper-parameters and 
can use their own hyper-parameter grid fitted to their data.

Firstly, we utilized SAE, the simplest autoencoder structure composed of the encoder part where the input 
layer is fully connected with the latent layer, and the decoder part where the output layer produces reconstructed 

input ′x  by taking weighted sums of outputs of the latent layer. We introduced a linear activation function for the 
latent and output layer. Other options for the loss and activation functions are available for users (such as binary 
cross-entropy and sigmoid function). Initial values of the weights and bias were initialized with Glorot uniform 
initializer21. We examined five different sizes of dimensions for the latent representation (32, 64, 128, 256, and 
512).

In addition to the SAE model, we implemented the DAE model by introducing hidden layers between the 
input and latent layers as well as between the latent and output layers. All of the additional hidden layers were 
equipped with Rectified Linear Unit (ReLu) activation function and Glorot uniform initializer. The same number 
of hidden layers (one layer or two layers) were inserted into both encoder and decoder parts. Also, we gradually 
increased the number of hidden units. The number of hidden units in the added layers was set to the double of the 
successive layer in the encoder part and to the double of the preceding layer in the decoder part. With this setting, 
model complexity is controlled by both the number of hidden units and the number of hidden layers, maintain-
ing structural symmetry of the model. For example, if the latent layer has 512 hidden units and if two layers are 
inserted to the encoder and decoder parts, then the resulting autoencoder has 5 hidden layers with 2048, 1024, 
512, 1024, and 2048 hidden units, respectively. Similar to SAE, we varied the number of hidden units in the latent 
layer as follows: 32, 64, 128, 256, 512, thus, in total, we tested 10 different DAE architectures (Table S2).

A variational autoencoder (VAE) learns probabilistic representations z given input x and then use these rep-
resentations to reconstruct input ′x 22. Using variational inference, the true posterior distribution of latent embed-
dings (i.e., p z x( )) can be approximated by the introduced posterior 

φ
q z x( ) where φ are parameters of an encoder 

network. Unlike the previous autoencoders learning an unconstrained representation VAE, learns a generalized 
latent representation under the assumption that the posterior approximation follows Gaussian distribution. The 
encoder network encodes the means and variances of the multivariate Gaussian distribution. The latent rep-
resentation z can be sampled from the learned posterior distribution q z x( ) ( , )µ| ∼ Ν Σ

φ
. Then the sampled latent 

representation is passed into the decoder network to generate the reconstructed input ′ ∼
θ

x g x z( ) where θ are the 
parameters of the decoder.

To approximate the true posterior, we need to minimize the Kullback-Leibler (KL) divergence between the 
introduced posterior and the true posterior,

φ θ| || | = − +
φ

KL q z x p z x ELBO x p x( ( ) ( )) ( , ; ) log( ( )),

rewritten as

φ θ= + | || |
φ

p x ELBO x KL q z x p z xlog( ( )) ( , ; ) ( ( ) ( )),

where φ θELBO x( , ; ) is an evidence lower bound on the log probability of the data because the KL term must be 
greater than or equal to zero. It is intractable to compute the KL term directly but minimizing the KL divergence 
is equivalent to maximizing the lower bound, decomposed as follows:

ELBO x g x z KL q z x p z( , ; ) [log( ( ))] ( ( ) ( ))q z x( )
φ θ = − | || .

θ φφ

The final objective function can be induced by converting the maximization problem to the minimization 
problem.

φ θ = − + | ||
θ φφ

L x g x z KL q z x p z( , ; ) [log( ( ))] ( ( ) ( ))q z x( )


The first term can be viewed as a reconstruction term as it forces the inferred latent representation to recover 
its corresponding input and the second KL term can be considered as a regularization term to modulate the 
posterior of the learned representation to be Gaussian distribution. We used ReLu activation and Glorot uniform 
initializer for intermediate hidden layers in encoder and decoder. One intermediate hidden layer was used and 
the number of hidden units in it varied from 32, 64, 128, 256, to 512. The latent layer was set to 4, 8, or 16 units. 
Thus, altogether we tested 15 different model structures.

https://doi.org/10.1038/s41598-020-63159-5
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Instead of fully connected layers, a convolutional autoencoder (CAE) is equipped with convolutional layers in 
which each unit is connected to only local regions of the previous layer23. A convolutional layer consists of multi-
ple filters (kernels) and each filter has a set of weights used to perform convolution operation that computes dot 
products between a filter and a local region24. We used ReLu activation and Glorot uniform initializer for convo-
lutional layers. We did not use any pooling layer as it may generalize too much to reconstruct an input. The n

-dimensional input vector was reshaped like a squared image with a size of × ×d d 1 where = +⌊ ⌋d n 1. As 
≥d n2 , we padded the rest part of the reshaped input with zeros. To be flexible to an input size, the filter size of 

the first convolutional layer was set to 10% of the input width and height, respectively (i.e. . × .⌊ ⌋ ⌊ ⌋d d0 1 0 1 ). For 
the first convolutional layer, we used 25% of the filter size as the size of stride which configures how much we slide 
the filter. For the following convolutional layers in the encoder part, we used 10% of the output size of the preced-
ing layer as the filter size and 50% of this filter size as the stride size. All units in the last convolutional layer of the 
encoder part have been flattened in the following flatten layer which is designated as a latent layer. We utilized 
convolutional transpose layers (deconvolutional layers) to make the decoder symmetry to the encoder. In our 
experiment, the number of filters in a convolutional layer was set to half of that of the preceding layer for the 
encoder part. For example, if the first convolutional layer has 64 filters and there are three convolutional layers in 
the encoder, then the following two convolutional layers have 32 and 16 filters, respectively. We varied the number 
of convolutional layers from 2 to 3 and tried five different numbers of filters in the first convolutional layer (4, 8, 
16, 32, and 64). In total, we tested 10 different CAE model structures.

To train deep representation models, we split each dataset into a training set, a validation set, and a test set 
(64% training set, 16% validation set, and 20% test set; Fig. S1). Note that the test set was withheld from training 
the model. We used the early-stopping strategy, that is, trained the models on the training set, computed the 
reconstruction loss for the validation set after each epoch, stopped the training if there was no improvement in 
validation loss during 20 epochs, and then selected the model with the least validation loss as the best model. We 
used mean squared error for reconstruction loss and applied adaptive moment estimation (Adam) optimizer for 
gradient descent with default parameters (learning rate: 0.001, epsilon: 1e-07) as provided in the original paper25. 
We utilized the encoder part of the best model to produce a low-dimensional representation of the microbiome 
data for downstream disease prediction.

Prediction of disease states based on the learned representation. We built classification models 
based on the encoded low-dimensional representations of microbiome profiles (Fig. 1). Three machine learning 
algorithms, support vector machine (SVM), random forest (RF), and Multi-Layer Perceptron (MLP), were used. 
We explored hyper-parameter space with grid search SVM. maximizes the margin between the supporting hyper-
planes to optimize a decision boundary separating data points of different classes26. In this study, we utilized both 
radial basis function (RBF) kernel and a linear kernel function to compute decision margins in the transformed 
space to which the original data was mapped. We varied penalty parameter C (2−5, 2−3, …, 25) for both kernels 
as well as kernel coefficient gamma (2−15, 2−13, …, 23) for RBF kernel. In total, 60 different combinations of 
hyper-parameters were examined to optimize SVM (Table S2).

RF builds multiple decision trees based on various sub-samples of the training data and merges them to 
improve the prediction accuracy. The size of sub-samples is the same as that of training data but the samples are 
drawn randomly with replacement from the training data. For the hyper-parameter grid of RF classifier, the num-
ber of trees (estimators) was set to 100, 300, 500, 700, and 900, and the minimum number of samples in a leaf 
node was altered from 1 to 5. Also, we tested two criteria, Gini impurity and information gain, for selecting fea-
tures to split a node in a decision tree. For the maximum number of features considered to find the best split at 
each split, we used a square root of n and a logarithm to base 2 of n (n is the sample size). In total, we tested 100 
combinations of hyper-parameters of RF.

MLP is an artificial neural network classifier that consists of an input layer, hidden layers, and an output layer. 
All of the layers are fully connected to their successive layer. We used ReLu activations for all hidden layers and 
sigmoid activation for the output layer that has a single unit. The number of units in the hidden layers was set to 
half of that of the preceding layer except the first hidden layer. We varied the number of hidden layers (1, 2, and 
3), the number of epochs (30, 50, 100, 200, and 300), the number of units in the first hidden layer (10, 30, 50, 100), 
and dropout rate (0.1 and 0.3). In total, 120 hyper-parameter combinations were tested in our experiment.

We implemented DeepMicro in Python 3.5.2 using machine learning and data analytics libraries, including 
Numpy 1.16.2, Pandas 0.24.2, Scipy 1.2.1, Scikt-learn 0.20.3, Keras 2.2.4, and Tensorflow 1.13.1. Source code is 
publicly available at the git repository (https://github.com/minoh0201/DeepMicro).

Performance evaluation. To avoid an overestimation of prediction performance, we designed a thor-
ough performance evaluation scheme (Fig. S1). For a given dataset (e.g. Cirrhosis), we split it into training and 
test set in the ratio of 8:2 with a given random partition seed, keeping a ratio between classes in both training 
and test set to be the same as that of the given dataset. Using only the training set, a representation learning 
model was trained. Then, the learned representation model was applied to the training set and test set to obtain 
dimensionality-reduced training and test set. After the dimensionality has been reduced, we conducted 5-fold 
cross-validation on the training set by varying hyper-parameters of classifiers. The best hyper-parameter com-
bination for each classifier was selected by averaging an accuracy metric of the five different results. The area 
under the receiver operating characteristics curve (AUC) was used for performance evaluation. We trained a final 
classification model using the whole training set with the best combination of hyper-parameters and tested it on 
the test set. This procedure was repeated five times by changing the random partition seed at the beginning of the 
procedure. The resulting AUC scores were averaged and the average was used to compare model performance.
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Results
We developed DeepMicro, a deep representation learning framework for predicting individual phenotype 
based on microbiome profiles. Various autoencoders (SAE, DAE, VAE, and CAE) have been utilized to learn a 
low-dimensional representation of the microbiome profiles. Then three classification models including SVM, RF, 
and MLP were trained on the learned representation to discriminate between disease and control sample groups. 
We tested our framework on six disease datasets (Table 1), including inflammatory bowel disease (IBD), type 2 
diabetes in European women (EW-T2D), type 2 diabetes in Chinese (C-T2D), obesity (Obesity), liver cirrhosis 
(Cirrhosis), and colorectal cancer (Colorectal). For all the datasets, two types of microbiome profiles, strain-level 
marker profile and species-level relative abundance profile, have been extracted and tested (Table 2). Also, we 
devised a thorough performance evaluation scheme that isolates the test set from the training and validation sets 
in the hyper-parameter optimization phase to compare various models (See Methods and Fig. S1).

We compared our method to the current best approach (MetAML) that directly trained classifiers, such as 
SVM and RF, on the original microbiome profile12. We utilized the same hyper-parameters grid used in MetAML 
for each classification algorithm. In addition, we tested Principal Component Analysis (PCA) and Gaussian 
Random Projection (RP), using them as the replacement of the representation learning to observe how traditional 
dimensionality reduction algorithms behave. For PCA, we selected the principal components explaining 99% of 
the variance in the data27. For RP, we set the number of components to be automatically adjusted according to 
Johnson-Lindenstrauss lemma (eps parameter was set to 0.5)28–30.

We picked the best model for each approach in terms of prediction performance and compared the approaches 
across the datasets. Figure 2 shows the results of DeepMicro and the other approaches for the strain-level marker 
profile. DeepMicro outperforms the other approaches for five datasets, including IBD (AUC = 0.955)EW-T2D, 
(AUC = 0.899)C-T2D, (AUC = 0.763) Obesity, (AUC = 0.659), and Cirrhosis (AUC = 0.940). For Colorectal data-
set, DeepMicro has slightly lower performance than the best approach (DeepMicro’s AUC = 0.803 vs. MetAML’s 
AUC = 0.811). The marker profile-based models generally perform better than the abundance profile-based mod-
els (Figs. S8 and S2). The only exception is Obesity dataset for which the abundance-based DeepMicro model 
shows better performance (AUC = 0.674). Note that as AUC could be misleading in an imbalanced classification 
scenario31, we also evaluated the area under the precision-recall curve (AUPRC) for the imbalanced data set IBD 
and observed the same trend between AUC and AUPRC (Table S3).

For marker profile, none of the autoencoders dominate across the datasets in terms of getting the best rep-
resentation for classification. Also, the best classification algorithm varied according to the learned representation 

Figure 1. DeepMicro framework. An autoencoder is trained to map the input X to the low-dimensional latent 
space with the encoder and to reconstruct X with the decoder. The encoder part is reused to produce a latent 
representation of any new input X that is in turn fed into a classification algorithm to determine whether the 
input is the positive or negative class.

https://doi.org/10.1038/s41598-020-63159-5
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and to the dataset (Fig. 3). For abundance profile CAE,dominates over the other autoencoders with RF classifier 
across all the datasets (Fig. S3).

We also directly trained MLP on the dataset without representation learning and compared the prediction 
performance with that of the traditional approach (the best between SVM and RF). It is shown that MLP per-
forms better than MetAML in three datasetsEW-T2D, C-T2D, and Obesity, when marker profile is used (Fig. S4). 
However, when abundance profile is used, the performance of MLP was worse than that of the traditional 
approach across all the datasets (Fig. S5).

Furthermore, we compared running time of DeepMicro on marker profiles with a basic approach not using 
representation learning. For comparison, we tracked both training time and representation learning time. For 
each dataset, we tested the best performing representation learning model producing the highest AUC score 
(i.eSAE.for IBD and EW-T2D, DAE for Obesity and Colorectal, and CAE for C-T2D and Cirrhosis; Table S1). We 
fixed the seed for random partitioning of the data, and applied the formerly used performance evaluation proce-
dure where 5-fold cross-validation is conducted on the training set to obtain the best hyper-parameter with which 
the best model is trained on the whole training set and is evaluated on the test set (See Methods). The computing 

Figure 2. Disease prediction performance for marker profile-based models. Prediction performance of various 
methods built on marker profile has been assessed with AUC. MetAML utilizes support vector machine (SVM) 
and random forest (RF), and the superior model is presented (green). Principal component analysis (PCA; 
blue) and gaussian random projection (RP; yellow) have been applied to reduce dimensions of datasets before 
classification. DeepMicro (red) applies shallow autoencoder (SAE), deep autoencoder (DAE), variational 
autoencoder (VAE), and convolutional autoencoder (CAE) for dimensionality reduction. Then SVM, RF, and 
multi-layer perceptron (MLP) classification algorithms have been used.

Figure 3. Disease prediction performance for different autoencoders based on marker profile (assessed with 
AUC). Classifiers used: support vector machine (SVM), random forest (RF), and multi-layer perceptron (MLP); 
Autoencoders used: shallow autoencoder (SAE), deep autoencoder (DAE), variational autoencoder (VAE), and 
convolutional autoencoder (CAE).

https://doi.org/10.1038/s41598-020-63159-5
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machine we used for timestamping is running on Ubuntu 18.04 and equipped with an Intel Core i9-9820X CPU 
(10 cores), 64 GB Memory, and a GPU of NVIDIA GTX 1080 Ti. We note that our implementation utilizes GPU 
when it learns representations and switches to CPU mode to exhaustively use multiple cores in a parallel way to 
find best hyper-parameters of the classifiers. Table 3 shows the benchmarking result on marker profile. It is worth 
noting that DeepMicro is 8X to 30X times faster than the basic approach (17X times faster on average). Even if 
MLP is excluded from the benchmarking because it requires heavy computation, DeepMicro is up to 5X times 
faster than the basic (2X times faster on average).

Discussion
We developed a deep learning framework transforming a high-dimensional microbiome profile into a 
low-dimensional representation and building classification models based on the learned representation. At the 
beginning of this study, the main goal was to reduce dimensions as strain-level marker profile has too many 
dimensions to handle, expecting that noisy and unnecessary information fades out and the refined representation 
becomes tractable for downstream prediction. Firstly, we tested PCA on marker profile and it showed a slight 
improvement in prediction performance for C-T2D and Obesity but not for the others. The preliminary result 
indicates that either some of the meaningful information was dropped or noisy information still remains. To 
learn meaningful feature representations, we trained various autoencoders on microbiome profiles. Our intuition 
behind the autoencoders was that the learned representation should keep essential information in a condensed 
way because autoencoders are forced to prioritize which properties of the input should be encoded during the 
learning process. We found that although the most appropriate autoencoder usually allows for better representa-
tion that in turn results in better prediction performance, what kind of autoencoder is appropriate highly depends 
on problem complexity and intrinsic properties of the data.

In the previous study, it has been shown that adding healthy controls of the other datasets could improve 
prediction performance assessed by AUC12. To check if this finding can be reproduced, for each dataset, we 
added control samples of the other datasets only into the training set and kept the test set the same as before. 
Figure S6 shows the difference between the best performing models built with and without additional controls. In 
general, prediction performance dropped (on average by 0.037) once negative (control) samples are introduced 
to the training set across the datasets in almost all approaches except only a few cases (Fig. S6). In contrast to 
the previous study, the result indicates that the insertion of only negative samples into the training set may not 
help to improve the classification models, and a possible explanation might be that changes in the models rarely 
contribute to improving the classification of positive samples32. Interestingly, if we added negative samples into 
the whole data set before split it into training and test set, we usually observed improvements in prediction per-
formance. However, we found that these improvements are trivial because introducing negative samples into the 
test set easily reduces false positive rate (as the denominator of false positive rate formula is increased), resulting 
in higher AUC scores.

Even though adding negative samples might not be helpful for a better model, it does not mean that additional 
samples are meaningless. We argue that more samples can improve prediction performance, especially when a 
well-balanced set of samples is augmented. To test this argument, we gradually increased the proportion of the 
training set and observed how prediction performance changed over the training sets of different sizes. Generally, 
improved prediction performance has been observed as more data of both positive and negative samples are 
included (Fig. S7). With the continued availability of large samples of microbiome data, the deep representation 
learning framework is expected to become increasingly effective for both condensed representation of the original 
data and also downstream prediction based on the deep representation.

DeepMicro is publicly available software which offers cutting-edge deep learning techniques for learning 
meaningful representations from the given data. Researchers can apply DeepMicro to their high-dimensional 
microbiome data to obtain a robust low-dimensional representation for the subsequent supervised or unsuper-
vised learning. For predictive problems increasingly studied with microbiome data such as drug response predic-
tion, forensic human identification, and food allergy prediction, deep representation learning might be useful in 
terms of boosting the model performance. Moreover, it might be worthwhile to use the learned representation for 
clustering analysis. The distance between data points in the latent space can be a basis for clustering microbiome 
samples and it could help capture the shared characteristics within a group which are difficult to be identified in 

Method IBD EW-T2D C-T2D Obesity Cirrhosis Colorectal

Basic approach

SVM* 126 85 1705 711 777 187

RF 42 41 99 79 72 50

MLP 3,776 2,449 12,057 8,186 8,593 4,508

Total elapsed 3,943 2,575 13,861 8,976 9,442 4,745

DeepMicro

RL 74 194 554 113 521 215

SVM 2 2 8 8 17 2

RF 28 28 47 33 40 30

MLP 103 93 188 137 287 105

Total elapsed 207 317 798 291 864 352

Table 3. Time benchmark for DeepMicro and basic approaches without representation learning (in sec). *RL: 
Representation Learning; SVM: Support Vector Machine; RF: Random Forest; MLP: Multi-layer Perceptron.
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the original data space. DeepMicro has been used to deal with microbiome data but it is not limited to a specific 
type of data and its application can be extended to various omics data, such as genome and proteome data.

Data availability
All data and codes are available at https://github.com/minoh0201/DeepMicro.
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