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Recently, signi�cant e�orts are made to explore device-free human activity recognition techniques that utilize the information

collected by existing indoor wireless infrastructures without the need for the monitored subject to carry a dedicated device.

Most of the existing work, however, focuses their attention on the analysis of the signal received by a single device. In practice,

there are usually multiple devices “observing” the same subject. Each of these devices can be regarded as an information source

and provides us an unique “view” of the observed subject. Intuitively, if we can combine the complementary information

carried by the multiple views, we will be able to improve the activity recognition accuracy. Towards this end, we propose

DeepMV, a uni�ed multi-view deep learning framework, to learn informative representations of heterogeneous device-free

data. DeepMV can combine di�erent views’ information weighted by the quality of their data and extract commonness shared

across di�erent environments to improve the recognition performance. To evaluate the proposed DeepMV model, we set up a

testbed using commercialized WiFi and acoustic devices. Experiment results show that DeepMV can e�ectively recognize

activities and outperform the state-of-the-art human activity recognition methods.
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1 INTRODUCTION

In order to overcome the limitation of traditional wearable device based human activity recognition approaches
which may bring extra burden and discomfort to the monitored subject, signi�cant e�orts are recently made to
explore device-free human activity recognition techniques that utilize the information collected by existing
indoor wireless infrastructures without the need for the monitored subject to carry a dedicated device. These
approaches, though di�erent in various aspects, share the same idea: by extracting and analyzing information
carried by the wireless signal transmitted between a pair of wireless devices (e.g., smartphone, laptop, WiFi access
point), we can infer the activities of a person located between the sender and receiver, since his/her activities
would make changes to the transmission pattern of the wireless signals.

Acoustic Device

Wi-Fi Device

Access Point

Fig. 1. Real-world Scenario of Wireless Environment.

Most of the existing work, however, focuses their attention on the analysis of the information provided by a
single sender-receiver pair. In practice, there are usually multiple information sources available for the task of
activity recognition. Figure 1 shows a real-world human activity recognition scenario. As can be seen, in the
room, there are multiple devices, from smartphone and iPad to the laptop, and even to the TV and the printer,
which can receive various wireless signals, from the WiFi packets broadcast by the access point, to acoustic or
even light waves. Each of these devices can be regarded as an information source and provides us a unique “view"
of the observed subject. Intuitively, if we can combine the complementary information carried by the multiple
views, we will be able to improve the activity recognition accuracy.

However, to unleash the power of multi-view information, we have to address a series of challenges. First,
di�erent sources may provide heterogeneous data. On one hand, di�erent types of signals (e.g., WiFi signal,
ultrasound or acoustic wave, and visible light) may be collected concurrently for the recognition of same
activities. On the other hand, di�erent sender-receiver pairs may have di�erent packet exchanging patterns (e.g.,
transmission rate, signal strength), and this will add further heterogeneity to the information extracted from
di�erent devices. Second, di�erent sources may carry di�erent amount of information, due to various reasons
such as the quality of hardware, the distance and angle to the observed subject, background noise, as well as the
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Fig. 2. Illustration of Human Activities Used to Evaluate the Performance of DeepMV.

setting of the room. An ideal activity recognition approach should be able to capture the variance of information
quality among the sources and rely on more informative ones. Third, the wireless signals arriving at the receiving
devices usually carry substantial information that is speci�c to the environment where the activities are recorded

and the human subject who conducts the activities. On one hand, the signals, when being transmitted, may be
penetrating, re�ected, and di�racted by the media (e.g., air, glass) and objects (e.g., wall, furniture) in the ambient
environment. On the other hand, di�erent human subjects with di�erent ages, genders, heights, weights, and
body shapes a�ect the signals in di�erent ways, even if they are doing the same activity. As a result, an activity
recognition model that is trained on a speci�c subject in a speci�c environment will typically not work well
when being applied to predict another subject’s activities that are recorded in a di�erent environment.

To tackle the above challenges, we propose to adopt deep learning techniques, which have been proved to be
e�ective on noisy and heterogeneous big data. In this paper, we propose a multi-view deep learning framework,
named DeepMV, to recognize human activities from heterogeneous device-free data sources. Speci�cally, we
utilize a CNN-based module to preserve the unique characteristics of each view while uniform the dimensionality
of heterogeneous inputs. A Hierarchically-Weighted-Combination module is developed to estimate the quality of
information contributed by each view and combine multi-view features in a weighted manner. We also construct
a adversarial network that can remove the environment and subject speci�c information contained in the activity
data and extract environment/subject-independent features shared by the data collected on di�erent subjects under
di�erent environments. Taking advantage of the multi-view structure of wireless infrastructures, the proposed
DeepMV is able to not only make full use of data collected from di�erent views with di�erent levels of quality,
but also characterize di�erent patterns of the data across di�erent environments.
In order to evaluate the proposed DeepMV framework, we conduct extensive real-world experiments. In

particular, we deploy in three rooms both WiFi and acoustic transmitters as well as receivers. The transmitter
continuously emits signals to the receivers, while a user is doing one of the nine activities (shown in Figure 2) in
each room. The collected WiFi and acoustic signals, after being preprocessed, are fed to our proposed DeepMV
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model. Experimental results demonstrate that our model outperforms the state-of-the-art algorithms signi�cantly,
which illustrates the e�ectiveness of the proposed DeepMV model.

We summarize the contributions of this paper as follows:

• We identify the opportunities as well as challenges in device-free human activity recognition with hetero-
geneous multi-view data.

• We propose DeepMV, a uni�ed multi-view deep learning framework, to learn informative representations
of heterogeneous device-free data. DeepMV can combine di�erent views’ information weighted by the
quality of their data and extract environment/subject independent information to improve the recognition
performance.

• We set up a testbed using COTS (i.e., commercial o�-the-shelf) WiFi and acoustic devices, and collect
real-world activity data. We empirically show that the proposed DeepMV model can e�ectively recognize
activities and outperform the state-of-the-art human activity recognition methods on the collected dataset.

2 SYSTEM OVERVIEW

Fig. 3. The Overview of DeepMV Human Activity Recognition System.

DeepMV is a multi-view device-free human activity recognition system which takes advantage of the superior
representation capability of deep learning techniques. The DeepMV system takes the raw sensing data (e.g.,
WiFi/Ultrasound signals) as the input and outputs inferred activities of the monitored subject. Figure 3 provides
an overview of the DeepMV system. As can be seen, DeepMV consists of three major components: (1) data
collection, (2) data preprocessing, and (3) activity classi�cation.

2.1 Data Collection

In a device-free activity recognition scenario, transmitters are continuously sending signals to the space where
the subject is taking daily activities that a�ect the propagation pattern of the signals received by the receivers.
The major function of the data collection component is to collect various raw signals from heterogeneous wireless
devices and forward them to the data preprocessing component. In this paper, we take into account the human
activities performed in di�erent environments (e.g., di�erent rooms). In each environment, we deploy o�-the-shelf
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WiFi access point and iPad as transmitters to broadcast WiFi and acoustic (ultrasound) signals respectively. At
the same time, PCs and smartphones are used as receivers to capture those signals correspondingly. In real
practice, multiple PCs and smartphones are usually placed in di�erent places of an indoor environment, providing
multi-view information for the recognition of human activities.

2.2 Data Preprocessing

The function of this component is to generate the data that can be directly fed to the proposed deep learning
model. After being collected, the raw signals are stored in some speci�cally formatted �les (e.g., wav format for
audio data) by the receivers. The raw data are �rst extracted and aligned from those �les. Then to remove noise,
we take several procedures to preprocess the extracted data, such as resizing, Fourier transform, normalization,
standardization, spectrogram generation, etc. After that, to generate a dataset with a prede�ned data size, we also
segment the data into non-overlapping pieces. The generated dataset is then fed to the proposed deep learning
model for activity classi�cation.

2.3 Activity Classification

Since the processed activity data are still very complex, i.e, high-dimensional, noisy and heterogeneous, traditional
machine learning models can not well capture the underlying patterns of these data. To address this challenge,
we make use of deep learning techniques which have been proved e�ective for extracting representations from
complex data. In particular, we propose a multi-view deep learning framework that can not only incorporate the
quality of data collected from di�erent views, but also remove the speci�c information in each domain (de�ned
as a pair of environment and human subject) and extract commonness shared across di�erent domains. The
details of the proposed DeepMV model are described in Section 3. With the processed heterogeneous activity
data, our model is able to recognize the human activities recorded under unseen environments and signi�cantly
improve the recognition performance by learning informative representations of di�erent activities.

3 METHODOLOGY

In this section, we introduce our DeepMV model, a uni�ed multi-view environment-independent deep learning
framework for human activity recognition with heterogeneous device-free data inputs. The architecture of the
proposed model is illustrated in Figure 4. In our model, the input contains activity data from heterogeneous sources
(e.g., wireless devices) and only a part of them are manually labeled. The goal of our model is to combine these
heterogeneous data not only to recognize human activities but also make itself adaptive to di�erent environments,
especially for the environments without any provided activity labels.
To achieve this goal, the proposed model is enabled to simultaneously learn both discriminative features

from heterogeneous data and transferable features for various environments. To obtain the discriminative
features, we �rst propose a multi-view feature extractor, which consists of two modules: aView-Representation

module to learn channel level vector representations and aHierarchically-Weighted-Combination module

to selectively integrate di�erent views’ representations into a latent vector (i.e., the global representation vector)
in a hierarchical manner. The integrated feature vector is then utilized by an Activity Recognizer, which is
designed to maximize the accuracy of activity prediction, and a Domain Discriminator, whose goal is to infer
the domain label, in other words, to identify the human subject and the environment associated with the activity
data. In order to learn transferable features for di�erent environments, we make the feature extractor play a
minimax game against the domain discriminator. Eventually, the domain discriminator will be cheated by the
feature extractor. As a result, the domain-speci�c features are removed and the common environment-independent
features are remained. In the following subsections, we will elaborate these components, respectively.
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Fig. 4. The Illustration of DeepMV Model.

3.1 View-Representation Module

In practice, the collected multi-view device-free data can be represented as a collection of heterogeneous continu-
ous time series consisting of several non-uniformly sampled signals. In order to preserve the unique characteristics
of each view while uniform the dimensionality of di�erent views’ inputs, we present a CNN-based module to learn
view-representations from the processed heterogeneous data. The e�ciency and e�ectiveness of CNN make it an
ideal building block for our activity recognition framework.
In our paper, the processed heterogeneous data for each view has three dimensions: the time dimension, the

channel dimension and the feature dimension. Taking the WiFi data as an example, the time dimension represents
the data collected from di�erent time points, the channel dimension represents the data in di�erent subcarriers,
and di�erent features in the data can be the real part, imaginary part, magnitude or FFT of the original complex
data. In general, the main purpose of our design for the View-Representation Module is to carefully select the
settings (including the number of layers, �lter size, padding size, stride size, etc.) of the CNN block for each
view to map the data in all dimensions into representation vectors with the same size, except for the channel
dimension (because the numbers of channels in di�erent views may be di�erent). So in the designed CNN block,
the convolutional layers with sets of learnable �lter banks are the most important parts. The batch normalization
layers are used for learning stable vector representations, which are followed by ReLU and dropout layers.

Speci�cally, we assume that there are N views of input data {X1
,X2
, ...,XN }, and thev-th view has Sv channels.

We denote the i-th channel of the v-th view as Xv
i
. Then we can obtain its hidden representation Hv

i
∈ RR×1,

where R is the size of the generated representation vector, as follows:

Hv
i
= CNNv (Xv

i
;Θv ) , (1)
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whereCNNv () is themulti-layer CNN block to apply on each channel of thev-th view, andΘv is the corresponding
parameters of CNN block. Hv

= [Hv
1 ,H

v
2 , ...,H

v
Sv
] is the representation matrix of the data in the v-th view. For

di�erent views, the corresponding CNN parameters are di�erent, but the CNN parameters for di�erent channels
in one view are the same.

3.2 Hierarchically-Weighted-Combination Module

Di�erent views may carry di�erent amount of information, due to various reasons, such as the type of the sensing
signal, the quality of hardware, the distance and angle to the observed object, as well as the ambient noise and
setting. Additionally, the amount of information in di�erent channels of each view may also be di�erent. This is
mainly because di�erent channels usually carry the information from di�erent aspects (e.g., frequencies). An
ideal activity recognition approach should be able to capture the variance of information quality among both
di�erent views and di�erent channels, and rely on more informative ones to achieve better performance. Towards
this end, we propose a Hierarchically-Weighted-Combination module to estimate the quality of information
(referred to as quality weights) contributed by di�erent channels and views, and combine the information from
di�erent channels and views in a hierarchically weighted manner.
The basic idea of our Hierarchically-Weighted-Combination module is derived based on the attention mech-

anism [19, 24, 40, 68, 87]. The attention mechanism is a weighted aggregation method that is widely used for
the application of machine translation [10], computer vision [29, 60], and disease prediction [52, 93]. However,
traditional attention mechanism is based on the assumption that only a few views are related to the task goal.
As a result, it tends to assign close-to-zero weight to most of the views. In the scenario of device-free human
activity recognition, however, such an assumption does not hold, since a signi�cant portion of the views may

provide informative observations.
To address this challenge, we borrow the idea of weight-calculation strategy from [94], and design a smoothing

operation and a sharpening operation to not only avoid thoroughly neglecting information from any channels or
views, but also fully distinguish them. Speci�cally, in the Hierarchically-Weighted-Combination module, we �rst
estimate the quality of each channel and then use the weighted combination mechanism to generate the view
representation vector (i.e., Zv ) for each view. In a similar way, we measure the quality score of each view, and
combine di�erent views to generate the global representation vector (i.e., C) in a weighted manner.

View Representation Vector Calculation. Given the representation vector Hv of the v-th view, the quality
score of the i-th channel in the v-th view (i.e., ev

i
) can be calculated using the following formula:

ev
i
= wv

e

⊤Hv
i
+ bve , (2)

where wv
e ∈ RR×1 and bve ∈ R1×1 are the parameters to be learned for the v-th view.

Conventionally, a softmax-based normalization method is usually applied on obtained attention energies (i.e.,
weights). However, this operation tends to assign most of the elements with close-to-zero scores, which is not
desired in our multi-view scenario. To fully utilize the information from multiple views and preserve the score
distribution in each channel, we �rst smooth the quality score values and then rescale the values based on their
corresponding channels. More formally, given the quality score ev

i
for the i-th channel of the v-th view, we

narrow it using the siдmoid function and rescale it as follow:

êv
i
= sigmoid(ev

i
) /

S
v∑

i=1

sigmoid(ev
i
) . (3)

After calculating the smoothed score êv
i
, we then need to sharpen the calculated scores for di�erent channels and

prevent the close-to-zero scores. The �nal quality score of the i-th channel in the v-th view (i.e., βv
i
) is calculated
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as follows:

βv
i
= exp (γ êv

i
) /

S
v∑

i=1

exp (γ êv
i
) , (4)

where γ is the prede�ned positive sharpening factor to avoid aggregating multiple focus [19]. The �nal weights
vector for each view is denoted as βv = [βv1 , β

v
2 , ..., β

v
Sv
]. Based on Eq.(3), we know that the quality score êv

i
is

constrained in the range from 0 to 1. So in Eq.(4), the minimal value of exp (γ êv
i
) is greater than or equal to 1 (γ

is a positive number), which prevents the close-to-zero attention weights. Then the view-wise representation
vector Zv can be calculated as:

Zv
=

S
n∑

i=1

βv
i
⊙ Hv

i
, (5)

where ⊙ is the multiplication between a scalar and a vector. Finally, by stacking the obtained vectors from all the
views, we can get the view representation matrix Z ∈ RN×R .

Global Representation Vector Calculation. Similar to the quality score calculation for each channel, we
calculate the quality score for each view as follows:

Ev = w⊤
E
Zv + bE , (6)

where Ev is the quality score for the v-th view, and wE and bE are the corresponding parameters. Then we can
smooth the quality score as:

Êv = sigmoid(Ev ) /

N∑

v=1

sigmoid(Ev ) , (7)

where Êv is the smoothed score. The �nal sharpened quality score αv for the v-th view is calculated as:

αv = exp (γ Êv ) /

N∑

v=1

exp (γ Êv ) , (8)

where γ is the same prede�ned sharpening factor as in Eq.(4). Finally, the global representation vector C ∈ RR×1

can be calculated as:

C =

N∑

v=1

αv ⊙ Zv . (9)

3.3 Activity Recognizer

Using the output of the Hierarchically-Weighted-Combination module (i.e., C), we can predict the label of the
input human activity data. To achieve this goal, we map the global representation vector C into the latent space
of human activity by using a fully connected feedforward neural network. The network we use contains stacked
fully-connected layers. Each of these layers is followed by a ReLU activation function and a dropout layer to
introduce nonlinearity. Then a linear transformation is leveraged to project the network output to the number of
human activities and is followed by a So f tmax function to predict the probability of activities. We denote the
designed fully connected feedforward neural network with the So f tmax layer as follows:

ŷ = FCR (C;ΘR ), (10)

where ΘR is its parameter set and ŷ ∈ RM×1 is the predicted probability distribution of one sample. AndM is the
number of di�erent activities.
Since our input data include both labeled and unlabeled activities, we denote the predicted probability of

activities as ŷ = [ŷl , ŷu ], where ŷl and ŷu are the predicted probabilities of labeled data and unlabeled data,
respectively.
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We maximize the accuracy of activity prediction through minimizing the cross entropy loss between the
prediction of the labeled data and their ground truths as follows:

LR = −
1

nl

n
l∑

k=1

M∑

m=1

ylm log(ŷlm) , (11)

where nl is the number of data samples with labels.
However, the activity recognizer alone is not su�cient to learn a good classi�er because the data from di�erent

environments contain environment-speci�c information and there are no labeled data for a signi�cant portion of
the environments. As a result, the activity recognizer may be misguided by the environment-speci�c information
of those labeled data and fail to learn the features that are common for all the environments.

3.4 Domain Discriminator

In order to learn the common features in di�erent environments, we employ a domain adaptation technique called
unsupervised adversarial training [26, 27], which utilizes the unlabeled data to project the data from di�erent
environments into an environment-independent latent space.
To achieve this, we design a domain discriminator whose goal is to maximize the accuracy of domain label

prediction. In other words, it is to identify the human subject and the environment associated with the activity
data.
The input of the domain discriminator is the concatenation of global representation vector (i.e., C) and the

prediction of the activity recognizer (i.e., ŷ) as follows:

F = C ⊕ ŷ, (12)

where ⊕ is the concatenation operation and F ∈ R(R+M )×1 is the domain representation vector. The domain
discriminator takes both C and ŷ as the input in order to retain the information relevant to the activities in the
extracted features [97].

The domain discriminator is implemented with a similar fully connected feedforward neural network architec-

ture as the activity recognizer, which projects F into domain distributions d̂, as follows:

d̂ = FCD (F;ΘD ), (13)

where FCD is the designed neural network similar to FCR , and ΘD denotes its parameters.
The domain discriminator maximizes the domain label prediction through minimizing the loss between the

domain distributions and true domain labels as follows:

LD = −
1

n

n∑

k=1

G∑

д=1

dд log(d̂д), (14)

where G denotes the number of domains, and n = nl + nu is the total number of data samples contains both the
labeled and the unlabeled. This calculation of cross entropy is also similar to the activity recognizer.
However, if the accuracy of the domain label prediction is high, it means the features we extract contain

signi�cant domain-speci�c information on the labeled domains so that they may not be good to predict the
unlabeled activities. To solve this problem, we make the feature extractor learn features that boost the activity
recognizer but cheat the domain discriminator through minimizing the following loss:

L = LR − LD . (15)

Such a minimax game between the feature extractor and the domain discriminator will minimize the maximum
accuracy the domain discriminator can achieve and �nally learn the common environment-independent features.
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4 EXPERIMENTS

In this section, we �rst introduce the state-of-the-art human activity recognition approaches as baselines. We then
describe the experiment setups, including hardware/software settings, human activity design, data preprocessing
and model settings. After that, we show the experimental results and analyze the learned weights on the
homogeneous WiFi dataset and compare our model with several state-of-the-art human activity recognition
algorithms. Finally, we evaluate our method on heterogeneous dataset containing both WiFi and ultrasound
signals.

4.1 Baselines

To fairly evaluate the performance of the proposed DeepMV model, we use the following models as baselines:
SVM [20]. Support Vector Machine (SVM) is a widely adopted supervised machine learning model. There are

some studies [78, 82, 98] employing SVM model for human activity recognition task. Since standard linear SVM
model is a binary classi�er, we use one-vs-all SVM for our multi-class classi�cation task. In the experiments, we
�atten data from all views into a single feature vector and use PCA [83] to reduce the feature dimension to 256.
Then we feed the data to the SVM model.

RF. Random Forest (RF) is a frequently used learning method for classi�cation tasks by ensembling result of
multiple decision trees [36]. The algorithm can often produce a good prediction result without tuning too many
parameters. Similar to the settings of SVM, we �rst use PCA [83] to reduce the feature dimension to 256 and then
feed the data into the RF model in the experiments.

DeepSense [89]. DeepSense is the state-of-the-art deep learning model for classi�cation of multi-sensor data.
The architecture of DeepSense includes three layers of local CNN, three layers of global CNN and two layers
of GRU. In our experiments, we follow the settings of the original paper. Speci�cally, on each convolutional
layer, the number of �lters is 64 and the size of �lters is set to 3 × 3. In addition, dropout and batch norm
technologies are also used. The DeepSense model has mainly two limitations compared to our DeepMV model:
(1) the DeepSense model does not take the quality of di�erent views into consideration but simply concatenates
all the view representations; (2) the DeepSense model is more sensitive to environment changing because the
model doesn’t consider any domain information.

QualityDeepSense [90]. QualityDeepSense is a deep learning model that incorporates the sensor-temporal
attentionmechanism based onDeepSense [89]. The architecture of QualityDeepSense is the same as the DeepSense
model, except that there are a sensor attention layer among input sensor and a temporal attention on the top
of recurrent layers. Even though the authors claim that the QualityDeepSense can automatically balance the
contribution of sensor inputs over time by their sensing qualities, the model still fails to give out an explicit
sensor quality score. Additionally, QualityDeepSense is sensitive to environment changing since it does not take
the domain information into consideration.

EI [42]. EI is the state-of-the-art environment-independent deep learning model for device-free activity
recognition. The architecture of EI includes three layers of CNN with 64, 128, and 256 �lters respectively followed
by two fully connected layers of 256 neurons. In addition, non-linear activation functions, batch norm and
max-pooling are used. Di�erent from our model, EI is incapable of discriminating between di�erent views and
thus applying the same CNN for all the views.

DeepMV Variants. There are four modules in the proposed DeepMV model, including View-Representation
module (referred to as VR), Hierarchically-Weighted-Combination module (referred to as HWC), activity recog-
nizer and domain discriminator. Thus, we propose three simpli�ed models as baselines:

• VR+Avg. we use View-Representation module to obtain the representations of channels, and then average
all the channel representations. Moreover, a fully connected layer is employed to reduce its dimension.
Finally, we use the reduced representation to make predictions.
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• VR+HWC. In this baseline, we use the View-Representation module and the Hierarchically-Weighted-
Combination module together to recognize human activities.

Table 1. Descriptions of Studied Human Activities.

Activity Name Details

Wiping the table The subject sits in front of a table and wipes it.
Typing The subject sits in front of a table and types on a keyboard.
Writing The subject sits in front of a table and writes on a piece of paper.

Rotating the chair The subject sits on a swivel chair turning around between −45◦ and 45◦.
Moving the chair The subject moves a chair in the room.

Walking The subject walks around in the room.
Cleaning the �oor The subject uses a mop to clean the �oor.
Running in place The subject runs on a spot in the room.

NULL The subject does some unde�ned activities in the room.

4.2 Experiment Setups

The setups of our experiments include human activity design, hardware/software setup, data preprocessing and
settings of the proposed DeepMV model.

4.2.1 Human Activity Design. As shown in Figure 2, we consider 9 di�erent human activities in the experiments.
The details of these activities are described in Table 1. We employ 8 volunteers (including both men and women)
as the subjects and collect data from 3 di�erent rooms. Each subject is asked to repeat the 9 activities in each
room for 4 rounds and in each round, we let each subject take each type of activity for 51 seconds.

4.2.2 Hardware/So�ware Setup. In our experiments, we collect two kinds of signals: WiFi and Ultrasound. To
collectWiFi signals, we use a TP-Link AC3150 Wireless WiFi Gigabit Router (Archer C3150 V1) to send packets
to di�erent receivers at a constant packet transmission rate, i.e., 200 packets per second, which is a reasonable
transmission rate in practical wireless communication scenarios. Each receiver is con�gured with Intel Wireless
Link 5300 NIC, Ubuntu 11.04 LTS with 2.2.36 kernel, and Linux 802.11n CSI extraction toolkit provided in [32].
For both 2.4 GHz and 5 GHz radio bands, the Linux 802.11n CSI extraction toolkit can report the CSI matrices of
30 sub-carriers. Figure 5 pictures the experiment environment, where the positions of transmitters and receivers
are marked.

In order to collect ultrasound signals, we use an Apple iPad mini 4 as the sound generator, which transmits
near-ultrasound (i.e., 20 KHz) signals towards the subject. Since the sampling rate of the MICs on smartphones
can reach as high as 44.1 KHz, we can use smartphones as receivers. In our experiments, three Huawei Nexus
6P’s are used as receivers to record the ultrasound signals re�ected by the body of the subject. These receivers
are deployed at di�erent positions in the room as illustrated in Figure 5.

4.2.3 Data Preprocessing. Since the proposed DeepMV model is able to deal with heterogeneous data, in the
experiments, we include two kinds of data: WiFi signals and Ultrasound signals. For di�erent kinds of signals, we
employ di�erent preprocessing approaches.

• WiFi signals. In the experiment, we use the amplitude information of CSI. We �rst interpolate the CSI
measurements to uniform sampling period to deal with packet loss and delay. Then the data are normalized to
the mean zero and the standard deviation one. After that, we use a Hampel �lter to eliminate the outliers. We
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Fig. 5. Experiment Setup of DeepMV Human Activity Recognition System.

also segment the data without overlap via a window of 600 points, which corresponds to 3 seconds. We combine
each segment with the FFT of it as the input of the deep learning model.

• Ultrasound signals. The transmitted ultrasound is a sinusoidal signal. When the signal is re�ected from
the human body, the movement of the human will increase or decrease the propagation distance of the signal,
which causes a phase shift on the received signal.

We utilize the method in [80] to extract the phase information. Assume that the transmitted signal is T (t) =
A cos(2π f t), the received signal can be represented by R(t) = A′ cos(2π f t − 2π f d/c), where A and A′ are the
amplitude of the transmitted and received signal respectively, f is the frequency, c is the speed of sound, d is the
propagation distance of the signal. 2π f d/c is the phase lag caused by the propagation delay. If we multiply the
received signal with cos(2π f t), the result is:

A′ cos(2π f t − 2π f d/c) × cos(2π f t)

=

A′

2
(cos(−2π f d/c) + cos(4π f t − 2π f d/c)).

(16)

After �ltering the signal with a low pass �lter with frequency f ′ << f , we remove the second term and the

rest term A
′

2
(cos(−2π f d/c) does not change over time and is decided by the propagation distance d . In a similar

way, we multiply the received signal with − sin(2π f t) and get A
′

2
(sin(−2π f d/c)). The signals A

′

2
(cos(−2π f d/c)

and A
′

2
(sin(−2π f d/c)) are downsampled to 344 Hz and we segment these signals without overlap via a window

of 1033 points (about 3 seconds). Next, we calculate the spectrogram of each segment, divide the frequency
dimension of the spectrogram into even frequency bands, and call each frequency band a channel.
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4.2.4 Model Se�ings. We validate the proposed DeepMV model on the dataset containing two kind of signals,
WiFi signals and ultrasound signals. In the experiment, we stacked 6 blocks of CNN in View-Representation
Module. The major di�erence of CNN parameter settings between two types of signals is the �lter size. We
list their CNN �lter parameters in Table 2. The �lter number for both signals are 64. There is no pooling and
no padding in the convolutional layers. The representation length R is set to 256. The shapening factor γ in
the Hierarchically-Weighted-Combination module of the model is set to 2. For activity recognizer and domain
discriminator part, one layer of fully connected neural network are utilized. The sizes of layer is simply set to 64.
In addition to aforementioned parameters, we adopt ReLU [53] as the activation function in each layer, and use
dropout technique[66], with dropout rate set as 0.8 for both fully connected network and convolutional neural
network.

Table 2. CNN Parameter Se�ings.

Layer Index
WiFi Data Ultrasound Data

Filter Stride Filter Stride

1 1 × 12 1 × 4 3 × 4 1 × 2

2 1 × 7 1 × 3 3 × 4 1 × 2

3 1 × 5 1 × 2 1 × 4 1 × 2

4 1 × 5 1 × 2 1 × 3 1 × 1

5 1 × 5 1 × 2 1 × 3 1 × 1

6 1 × 3 1 × 1 1 × 3 1 × 1

During the training process, ADAM optimization algorithm [44] is used to optimize the parameters. The
learning rate is 1e − 4, and the batch size is 72. We use the data collected in the �rst and the second rooms for
training and the data collected in the third rooms for testing. We use the accuracy score as our performance
metric. We implement the proposed DeepMV model using Tensor�ow [1]. The training process is done locally
using NVIDIA Titan Xp GPU.

4.3 Experiments on the Homogeneous WiFi Data

The homogeneous WiFi data are collected from three di�erent rooms, and in each room, we set up 9 WiFi views.
In this section, we �rst conduct experiments on the homogeneous WiFi dataset to show the e�ectiveness of
the proposed DeepMV model for human activity recognition task, and then analyze the weights learned by the
proposed model.

4.3.1 Performance Validation. In this experiment, we select two rooms and use the data collected from them
as the training dataset. The data collected from the third room are treated as the testing set. Table 3 shows
the accuracy of all the approaches on the WiFi dataset. We can observe that the performance of traditional
classi�cation approaches SVM and RF is much worse than that of deep learning models, which demonstrates the
e�ectiveness of deep learning models for HAR task.
The four deep learning baselines including DeepSense, QualityDeepSense, VR+Avg and VR+HWC all use

di�erent CNNs for di�erent views. However, when combining the representations of these views, they use
di�erent ways. DeepSense and VR+Avg are not as good as VR+HWC and QualityDeepSense. This is mainly
because DeepSense and VR+Avg treats all the views and channels equally, while VR+HWC and QualityDeepSense
can automatically distinguish the qualities of di�erent views or channels, and the results can bene�t from
combining the views or channels according to their quality.
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Table 3. Performance on the WiFi Dataset.

Model Accuracy

SVM 0.117

RF 0.225

EI 0.660

DeepSense 0.648

QualityDeepSense 0.693

VR+Avg 0.615

VR+HWC 0.716

DeepMV 0.837

Fig. 6. Confusion Matrix Learned by DeepMV on the WiFi Dataset.

As WiFi signals are sensitive to the environment [42], the aforementioned four methods all su�er from a
common issue that the learned models may be biased by the data in the training set. So these methods cannot
perform well on the WiFi data collected from a di�erent room. By extracting features that are common across
di�erent domains, EI outperforms VR+Avg and DeepSense. However, the improvement is not signi�cant because
EI is not designed for the multi-view scenario. Speci�cally, it uses the same CNN for all the views, which can not
capture the variance of information quality across di�erent views.
Our proposed DeepMV improves the feature extractor of EI with a View-Representation module and a

Hierarchically-Weighted-Combination module. The former enables the model to extract the unique characteristics
of each view, and the later smartly combines the views according to their importance with regard to the prediction
task. With these two modules, DeepMV achieves signi�cant improvement over EI on the multi-view human
activity recognition tasks.

The proposed DeepMV assumes that di�erent views may have di�erent degrees of contributions for the HAR
task. To validate this assumption, in this subsection, we apply DeepMV to each individual WiFi view. Table 4
lists the accuracy of each view. We can observe that 1) the accuracy of di�erent views is di�erent, which clearly
con�rms our assumption; and 2) even the highest accuracy (i.e., 0.699 on the third view) among all the views is
much lower than DeepMV’s accuracy on multi-view data as shown in Table 5. The results justify the necessity of
combining the information from multiple views for the HAR task.
Figure 6 shows the confusion matrix learned by the proposed DeepMV model on the homogeneous WiFi

dataset. We can observe that among the three �ne-grained activities (wiping the table, typing and writing), wiping
the table is the most distinguishable due to its special pattern. And typing and writing are more likely to be
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mistakenly classi�ed to each other. The reason is that these two �ne-grained activities are quite similar to each
other. For the �ve coarse-grained activities (rotating the chair, moving the chair, walking, cleaning the �oor and
running in place), rotating the chair and moving the chair are two most distinguishable activities, which both
achieve over 0.94 accuracy. Since moving the chair and walking are very similar, the two activities are sometimes
mistakenly classi�ed to each other. Since cleaning the �oor and running are conducted in the similar place, so
the running activity may be classi�ed as cleaning the �oor. In this experiments, we also add a NULL class for the
activities. In the NULL class, the activities are not pre-de�ned and some of them are composed of the activities
involving walking and arm movements. So the NULL class activities may be classi�ed to walking and cleaning
the �oor.

Fig. 7. The Relationship between Weights and Accuracy on

the Homogeneous WiFi Dataset.

Fig. 8. The Trend of Weight Convergence on the Homoge-

neous WiFi Dataset.

4.3.2 Learned Weight Analysis. The advantage of DeepMV is its ability to interpret the importance of each view
through analyzing the learned weights. In this section, we analyze the weight of each view learned by DeepMV
on the WiFi dataset. The relationship between the learned weight and accuracy is shown in Figure 7. We can
observe that the learned weights are positively correlated with the performance of individual views, which shows
that the quality of each view on the prediction task is automatically captured. In fact, it proves that DeepMV can
provide a high-level interpretability for the �nal prediction.
Additionally, we also quantitatively show the convergence of the weights learned by DeepMV in Figure 8.

We can observe that at the beginning, all the views have similar weights. As the number of iterations increases,
the weight on each view starts to be di�erent. This shows that DeepMV can learn di�erent weights on di�erent
views, and at the same time, the learned weights can converge to relatively stable values.

Table 4. Accuracy of Each View on the WiFi and Acoustic Dataset.

View Index 1 2 3 4 5 6 7 8 9 10 11 12

WiFi 0.595 0.626 0.699 0.634 0.573 0.533 0.429 0.607 0.478 - - -

Acoustic - - - - - - - - - 0.295 0.554 0.520
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4.4 Experiments on the Heterogeneous Data

To further demonstrate DeepMV’s advantages, we conduct experiments on the heterogeneous dataset containing
both WiFi data and acoustic data. Speci�cally, in addition to nine WiFi views in each room, we also collect three
acoustic views.

Table 5. Performance on the Heterogeneous Dataset.

Models Accuracy

SVM 0.220

RF 0.233

VR+Avg 0.703

VR+HWC 0.723

DeepMV 0.879

4.4.1 Performance Validation. Similar to the experiments on the homogeneous data, we use two rooms’ data as
the training set, and one room’s data as the testing set.

For DeepSense, QualityDeepSense and EI, they require that the CNNs used for extracting feature representations
from each view have the same architecture. However, in the heterogeneous dataset, WiFi data and acoustic data
have di�erent dimensions and cannot �t one CNN. So we do not consider DeepSense, QualityDeepSense and
EI in the following experiments. Table 5 shows the results on the heterogeneous dataset. Similar to that in the
homogeneous dataset, the performance of deep learning based models is much better than that of traditional
machine learning models.
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Fig. 9. The Heatmap of the Weight on Each View and Channel.

In order to further explore the relationship between di�erent views and channels, we compare the derived
weight on each view and channel (i.e., the product of β and its corresponding α ) in Figure 9. The �rst nine views
represent the WiFi views, and the last three views represent the acoustic views. For the WiFi views, the channels
are their sub-carriers. While for the acoustic views, the channels are their frequency bands. The warm color
represents high weight and the cool color represents low weight. From the �gure we can observe that not only the
weights of the WiFi views, but also the weights of the acoustic views are quite di�erent. The results show that the
proposed View-Representation module can successfully capture the di�erences among the views, which boosts
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the performance of VR+Avg, VR+HWC and DeepMV. Furthermore, for a single view, the weights on the channels
are also not evenly distributed. Through combining the information from views and channels in a hierarchically
weighted manner, VR+HWC achieves better performance than VR+Avg, which does not di�erentiate the quality
of di�erent views and channels.

Similar to the experiments on the homogeneous dataset, the proposed DeepMV achieves signi�cant improve-
ment over the performance of baseline methods as well as the performance of single acoustic views (Table 4) on
the heterogeneous dataset, which shows that the proposed method is robust not only in di�erent environments
but also in dealing with complex heterogeneous data.

Fig. 10. Confusion Matrix Learned by DeepMV on the Heterogeneous Dataset.

Figure 10 shows the confusion matrix learned by the proposed DeepMV model on heterogeneous dataset. We
can observe that the proposed DeepMV can achieve good performance for each activity. Similar to the conclusion
in the homogeneous experiments, the �ne-grained activities typing and writing are still relatively di�cult to
distinguish. The coarse-grained activities cleaning the �oor and running in place are often mistakenly classi�ed
to each other. And the NULL class is easily classi�ed to walking and cleaning the �oor.

Fig. 11. The Relationship between Weights and Accuracy

on the Heterogeneous Dataset.

Fig. 12. The Trend of Weight Convergence on the Heteroge-

neous Dataset.

4.4.2 Learned Weight Analysis. In this section, we analyze the weight of each view learned by DeepMV from
the heterogeneous dataset of both WiFi and acoustic data. The performance of each WiFi and acoustic view is
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shown in Table 4. Then we show the relationship between the learned weight and the performance of each single
view in Figure 11. It is not di�cult to �nd that the positive correlation between the learned weights and the
accuracy, which we �nd in the homogeneous WiFi dataset, also exists in the acoustic views as well as in the
heterogeneous views. This proves that the design of DeepMV is transferable across modalities. For comparison,
we also demonstrate the convergence of the learned weights with regard to iterations on the heterogeneous
dataset in Figure 12. Similar patterns as that in Figure 8 can be observed.

4.4.3 Experiments on Di�erent Transceiver Pair Numbers. In this experiment, we study the e�ect of transceiver
pair numbers on the performance of our system. Here we consider three cases in which the transceiver pair
numbers are set as 4 (3WiFi views and 1 acoustic view), 8 (6WiFi views and 2 acoustic views) and 12 (9WiFi
views and 3 acoustic views), respectively. For the �rst case, we deploy all the 4 receivers on only one side of the
subject. For the second case, the receivers are deployed on two sides of the subject. On each side, there are 4
receivers (3WiFi views and 1 acoustic view) and they are along the wall of the room. For the third case, the 12
receivers are deployed around the subject. The classi�cation accuracy for the three cases are reported in Table 6,
from which we can observe that the larger the transceiver pair number, the better the performance of our model.
This is mainly because the information from di�erent directions is complementary to each other.

Table 6. Performance on varying transceiver pair numbers.

Number of Transceiver Pairs 4 8 12

DeepMV 0.766 0.785 0.876

4.4.4 Experiments on Di�erent Transceiver Locations. We also study the in�uence of the transceiver locations to
our system without the re-training of our model. In this experiment, the model is trained using the data collected
from the above described three rooms. Then, we randomly change the transceiver locations in one of the room,
and ask 5 subjects to perform the aforementioned activities in this room. The data collected in this room are
used as testing data. Table 7 reports the classi�cation accuracy for the newly collected testing data. We can see
that our proposed DeepMV model can achieve an accuracy of 0.619 (for 9 activities) while the accuracy of the
baseline method is only 0.553. The results show that our proposed model can still achieve good performance and
outperform the baseline without retraining the model when the deployment of WiFi transceivers is changed.

Table 7. Performance on random locations of transmi�ers and receivers

Models VR+HWC DeepMV

Accuracy 0.553 0.619

4.4.5 Experiments on Di�erent Data Segmentation Lengths. Next, we study the e�ect of di�erent segmentation
lengths on the performance of our system. In this experiment, we consider three di�erent segmentation lengths,
i.e., 0.5s , 1.5s and 3.0s , and report the classi�cation accuracy in Table 8. The results show that our proposed
DeepMV model performs better than the baseline model in all cases. In addition, we can see that the baseline
model is not sensitive to the segmentation lengths and it has similar performance in all cases. However, our
model can achieve much higher accuracy when the segmentation length is large. This is mainly because that
with a larger segmentation length, it is easier for our model to identify and extract the domain independent
information from the data, and further improve the model performance.
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Table 8. Performance on varying segmentation lengths.

Length of Segmentation 0.5s 1.5s 3.0s

VR+HWC 0.696 0.690 0.723

DeepMV 0.702 0.760 0.879

4.4.6 Experiments on Unseen Subject. To demonstrate the generalization of our proposed DeepMV model, we
also evaluate the performance of our system on an unseen subject. In this experiment, we consider two scenarios:
the scenario of an unseen subject in a seen room and the scenario of an subject in an unseen room. We �rst
collect data for the aforementioned 8 subjects in two rooms and use these data for training. Then we ask the 9th
subject (the unseen subject) to perform the activities in one of the above two rooms (the seen room) and the third
room (the unseen room), respectively, and use the collected data for testing. We report the classi�cation accuracy
in Table 9. The results show that our proposed model outperforms the baseline in both scenarios. For example, in
scenario B, our proposed model can achieve an accuracy of 0.812 while the accuracy of the baseline is only 0.699.
These experimental results clearly demonstrate that our proposed model is capble of e�ectively �ltering out the
domain speci�c information so that it can generalize well and achieve good performance even on the unseen
subjects and rooms.

Table 9. Performance on unseen subject and unseen room.

Room The Unseen Subject in a Seen Room The Unseen Subject in an Unseen Room

VR+HWC 0.751 0.699

DeepMV 0.842 0.812

4.4.7 Experiments to Di�erentiate the Rooms/Subjects and Their Combinations. Finally, we conduct three experi-
ments to respectively classify the rooms, subjects, and their combinations using our model variant VR+HWC

(without the domain discriminator). Here we shu�e all the data segments collected in the three rooms, and
randomly split them into the training set (66.7% of the data) and the testing set (33.3% of the data). Table 10
reports the classi�cation accuracy for the three experiments.

Table 10. Experiments to di�erentiate the rooms, the subjects and their combinations.

Classi�cation 3 Rooms 8 Subjects 24 Rooms-subjects Combinations

VR+HWC 0.998 0.596 0.658

From Table 10, we can see that the model VR+HWC can achieve an accuracy of 0.998 when di�erentiating the
three rooms, which implies that the collected data contain substantial domain information related to di�erent
rooms and our model is able to classify di�erent rooms. For the experiment to di�erentiate the 8 subjects, our
model can achieve an accuracy of 0.596. The result shows that the collected data also contain some domain
information related to di�erent subjects. Please note that in this experiment the subjects are not required to wear
the same clothes in di�erent rooms. This may be the reason why the accuracy of classifying di�erent subjects is
not as high as room classi�cation. For the classi�cation of 24 di�erent rooms-subjects combinations, our model
can still perform well and obtain an accuracy of 0.658, which demonstrates that the collected data contain the
domain-speci�c information related to di�erent room-subjects combinations.
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4.4.8 Feasibility to Build a Real Time System. To demonstrate the feasibility of our proposed approach in reality,
we empirically study the e�ciency of our system. In our system, we use 3 computers (each of them connects to 3

di�erent antennas) and 3 smartphones to collect the WiFi data and the acoustic data, respectively. For every 3
seconds, each computer can send about 378KB WiFi data to the server, and each smartphone can send about
517KB acoustic data to the server. After receiving the data, the server will concurrently preprocess the received
data, and feed the preprocessed data into the well-trained model to obtain the �nal results. So we consider three
aspects when evaluating the e�ciency of our proposed system: the data transmitting time, the data preprocessing
time, and the deep learning model running time. For the data transmitting time, it takes about 300ms to transmit
both WiFi and acoustic data (2.62MB in total). For the data preprocessing time, we empirically show that the
server needs 583ms to preprocess the 378KB Wi-Fi data from each computer and 1383ms to preprocess the 517KB
acoustic data from each smartphone. Since data preprocessing can be conducted concurrently on a multi-core
CPU server, the latency of this step is equal to the preprocessing time of acoustic data, i.e., 1383ms . As for the
deep learning model running time, it takes about 18ms on average. The total time for the three aspects is about
300ms + 1383ms + 18ms = 1701ms , which is much less than the data collection time i.e., 3000ms . Thus, our
proposed system is much e�cient in practice.

5 RELATED WORK

The problem and methodologies presented in this paper are highly related to the following two research areas:
device-free human activity recognition and multi-view learning.

5.1 Device-Free Human Activity Recognition

Human activity recognition has been a hot topic for quite a long time. However, the traditional methods such as
vision based [16, 56, 85] and special device based [3, 12, 43, 45, 57] methods either have privacy and complexity
problems or require subjects to wear extra devices. Currently, more and more researchers begin to utilize wireless
signals (e.g., Acoustic, WiFi) to implement device-free human activity recognition process. Below I introduce
some representative work in this area.

• RSS-basedmethods:As an indication of power level being received at the receiver, received signal strength
(RSS) can be used to measure the distance as well as the channel condition between the transmitter and
receiver. Some research work [2, 63] propose to recognize human activities by analyzing the RSS change in
a special space. For example, in [2], by analyzing the RSS change caused around mobile device, the authors
were able to recognize subjects’ in-air hand gestures. Furthermore, the authors in [62] made full use of
both the RSS change and the 3D topology of the wireless sensor network to implement the human activity
recognition process.

• CSI-based methods: As a widely adopted channel property of communication link, CSI can re�ect the
combined e�ects of scatting, fading and even the power delay with distance. That is, compared with RSS,
CSI can capture the �ne-grained changes of wireless channels. Because of the release of Linux 802.11n CSI
Tool [32], recently a lot of research work [22, 30, 47, 50, 69, 79, 81, 84, 96] have been conducted to utilize CSI
to implement human activity recognition. Most of the existing work focuses their attention on the analysis
of the information provided by a single sender-receiver pair. For example, [75] utilize directional antenna
to capture the change of CSI caused by speakers’ lips to identify speakers’ spoken words. By analyzing
the CSI change caused by users’ typing behavior, [6] can even classify di�erent keystrokes. And [76, 95]
attempt to use Fresnel Zone to conduct human respiration detection and human activity recognition.

• Acoustic-based methods: Given that the sound frequency generated from commercial speakers can
achieve as high as about 20 kHz, considering the Doppler e�ect caused by the relative movements between
human and the speakers, in some research work [14, 21, 25, 31, 61], the authors can recognize human
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gestures and activities with the help of analyzing frequency shift over a continuous time interval. Moreover,
some researchers used a single smart phone to recognize the keystroke the user types just by calculating
the time-di�erence-of-arrival of the received acoustic signals.

• Light-based methods: Considering that each human activity can have di�erent continues shadow maps,
some research work [8, 48, 49] can recognize human activities or gestures by analyzing those continue
shadow maps.

Di�erent from the above work, which either explore the information from just a single view or combine
multi-view data using naive methods, in this paper, we develop a systematic and general multi-view deep learning
framework that can bene�t a wide spectrum of activity recognition applications.

5.2 Multi-View Learning

Multi-view learning has been widely studied for many years, though still having many challenges to deal
with. Traditionally, Canonical Correlation Analysis (CCA) [38] and its kernel extensions [9, 33] are commonly
used multi-view learning techniques. Later, they are further improved by incorporating the techniques of
topic learning [15], sparse coding [41, 51] and Markov networks[18, 86]. However, these shallow models are
su�ering when dealing with rapidly increasing data sizes and dimensions. Recently, deep learning [34, 35]
models have drawn signi�cant attention, due to its strong ability of feature extraction, model generalization and
denoising. The denoising autoencoders [73] and its followed work [74] are proposed to explicitly remove the
noise in the data. Recently, CNN based [4, 11] and GAN based [70] imaging denoising methods are proposed
to remove noise from noisy image. And there are some existing work using deep learning model to handle
heterogeneous data. Based on the classic Restricted Boltzmann Machine (RBM) model, some researchers designed
multi-modal Deep Boltzmann Machine (DBM) to fuse di�erent views (e.g., imagery and text) in a high-order
feature space [23, 28, 39, 55, 65, 67]. Multi-modal deep autoencoders were also proposed to learn the shared
representation among di�erent/heterogeneous modalities (views) [7, 37, 54, 59, 64, 77, 92]. In the �eld of automatic
driving, the objects detection, tracking and imaging are always achieved by adjusting the network structure
and fusing heterogeneous inputs (e.g., radar, camera, and lidar) [13, 17, 46]. Speci�cally in the �eld of HAR,
CNN/DNN based multimodal deep architecture is proposed in [58] to interpret user activity and context captured
by multi-sensor systems. In most of the aforementioned multi-view deep models, the joint representations are
learned mainly using the parameter sharing architecture. In contrast, we derive the combined representation by
explicitly fusing the view representations according to the relative signi�cance of each view, which can not be
captured by existing models. In addition, DeepSense [89] is proposed to leverage the representation power of
both CNN and RNN to solve classi�cation and regression problems. The architecture of DeepSense includes three
layers of local CNN, three layers of global CNN and two layers of GRU. Generally, there are three di�erences
between our model and DeepSense. First, our model is able to handle heterogeneous data due to the �exible
parameter settings. Second, our DeepMV model takes the view quality into consideration by learning di�erent
view weights. Third, the domain adaptation technique is incorporated in our model which makes it more robust
to the changing environment. Some previous work [88, 90, 91] also use the attention mechanism to capture the
qualities of di�erent sensors. However, they are sensitive to environment changing since they do not take the
domain information into consideration.

5.3 Domain Adversarial Training

Domain adversarial training is attracting signi�cant attentions recent years because it provides a uni�ed architec-
ture to jointly perform feature learning, domain adaptation and classi�er learning [27]. [5, 26, 27] are the �rst to
use adversarial networks to tackle the domain adaptation problem. Di�erent from most of the previous domain
adaptation approaches which mainly worked with �xed feature representations, the domain adversarial network
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achieves the domain adaptation through learning a good nonlinear feature representation which is discriminative
on the classi�cation task but invariant to the change of domain. This framework shows its advantage in some
practical cross-domain classi�cation tasks [71, 72]. Zhao et al. [97] contributes to the area through proposing a
conditional adversarial architecture which retains the information related to the classi�cation tasks in the feature
representation when removing the domain-speci�c information from it. However, this architecture is deigned
for supervised tasks without taking unlabeled data into consideration. [42] further proposes an unsupervised
domain adaptation approach called EI, which imposes constraints on the unlabeled data and the training process
to boost the performance. In spite of the remarkable achievement previous work have got, they did not explore
the design of the feature extractor when using the domain adversarial network. Usually they use an o�-the-shelf
network structure as the the feature extractor. In contrast, in this paper we propose a feature extractor with a
view representation module and a hierarchically-weighted-combination module which is able to achieve better
domain adversarial training performance than existing approaches.

6 CONCLUSIONS

Device-free human activity recognition has become a hot research topic due to its considerable advantages, such
as the elimination of the need for users to wear dedicated sensors. Most of the existing work in this area only
utilizes the data collected from one pair of transmitter and receiver. However, in reality, the same subject can be
observed by multiple di�erent types of wireless devices, each of which can be regarded as a view. To unleash the
power of multi-view information, in this paper, we propose a uni�ed deep learning framework, named DeepMV,
to extract informative features from heterogeneous device-free data. In order to improve the performance of
human activity recognition, the proposed DeepMV model is able to combine the complementary information
of multiple views by incorporating the weighted-combination features and extract common representations
shared across di�erent environments. For validation, a real-world testbed is built using commercialized WiFi
and acoustic devices. Experimental results on the collected activity datasets show that DeepMV can achieve
better results than the stat-of-the-art device-free human activity recognition approaches, and hence justify the
e�ectiveness of our proposed DeepMV model for the task of human activity recognition.
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