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(a) Input (b) Deep multi-view stereo (c) Sample reconstruction results

Figure 1. (a) Our network takes a set of images with known camera poses and calibration as input; (b) we produce a set of plane-sweep

volumes for a reference view and feed these into a convolutional neural network that predicts a disparity map; (c) our network produces

high-quality disparity maps even for challenging cases containing poorly textured regions and thin structures.

Abstract

We present DeepMVS, a deep convolutional neural net-

work (ConvNet) for multi-view stereo reconstruction. Tak-

ing an arbitrary number of posed images as input, we first

produce a set of plane-sweep volumes and use the proposed

DeepMVS network to predict high-quality disparity maps.

The key contributions that enable these results are (1) su-

pervised pretraining on a photorealistic synthetic dataset,

(2) an effective method for aggregating information across a

set of unordered images, and (3) integrating multi-layer fea-

ture activations from the pre-trained VGG-19 network. We

validate the efficacy of DeepMVS using the ETH3D Bench-

mark. Our results show that DeepMVS compares favor-

ably against state-of-the-art conventional MVS algorithms

and other ConvNet based methods, particularly for near-

textureless regions and thin structures.

1. Introduction

Multi-view Stereo (MVS) methods aim at reconstruct-

ing disparity maps from a collection of images with known

camera poses and calibration, possibly estimated using

Structure from Motion (SFM) algorithms.1 MVS is one of

the fundamental computer vision problems that have seen

decades of research and it is a core component in numerous

important applications, including 3D reconstruction, novel

view synthesis, augmented reality, and medical imaging [9].

Conventional MVS algorithms often estimate the dispar-

ity map by computing plane-sweep volumes and optimizing

photometric consistency with handcrafted error functions to

measure similarity between patches [9]. Aside from photo-

metric consistency, other 3D cues such as lighting [39, 24],

shadows [1], color [11], geometric structures [7], and se-

mantic cues [14] have been incorporated into the MVS

pipeline for improving the reconstruction accuracy. How-

ever, designing algorithms that make explicit use of all these

cues is a non-trivial task. Despite extensive research, the

results of state-of-the-art MVS algorithms often still con-

tain numerous artifacts, in particular around poorly textured

regions, thin structures, and reflective or transparent sur-

faces [9].

Deep Convolutional Neural Networks (ConvNets) have

shown great success in many visual recognition tasks in-

cluding image classification [23] and object detection [12],

as well as in dense pixel-level prediction tasks such as se-

mantic segmentation [25] and optical flow [4, 16].

1Throughout this work, we always refer to “disparities” rather than

“depths”. Disparities are defined as the reciprocal of depths.
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For the use of ConvNets in visual reconstruction prob-

lems, early work focuses on learning patch similarity for

stereo matching [42, 41, 26]. More recent work performs

stereo reconstruction using end-to-end learning. However,

these methods either impose constraints on relative camera

poses [17, 19] or the number of input images [5, 37], or

produce a coarse volumetric reconstruction [3, 18].

In this paper, we present DeepMVS, a deep ConvNet for

multi-view stereo that addresses these limitations. Given a

reference image and an arbitrary number of neighbor views

of the scene, we first perform a standard SFM reconstruc-

tion to recover the camera calibration and pose for each im-

age. We then produce a disparity map for the reference im-

age in three stages, as illustrated in Figure 2. First, we gen-

erate a plane-sweep volume for each neighbor image that

contains the warped neighbor colors at every disparity, and

let our network extract features from each patch pair (refer-

ence patch vs. patch in plane-sweep volume). Second, we

use an encoder-decoder architecture with skip connections

to aggregate the features across large spatial regions. We in-

corporate the feature activations from a VGG-Net [35] pre-

trained on ImageNet to guide our decoder for disparity pre-

dictions. Third, we fuse the information extracted by each

neighbor image with a max-pooling layer and produce the

final disparity prediction. In contrast to Recurrent Network-

based approaches [3, 18], the use of max-pooling allows us

to process an arbitrary number of unordered input images

Training deep ConvNets for disparity reconstruction re-

quires a large number of ground truth disparity maps. A so-

lution is to train the network on the combination of a large-

scale synthetic dataset and a smaller real-world dataset [27].

Synthetic datasets provide dense pixel-wise ground truth la-

bels for training, but they do not reflect the complexity of re-

alistic photometric effects, illumination, and natural image

noise. On the other hand, real-world datasets are limited in

scale and often do not have labels for regions in which it is

difficult to obtain ground-truth data, such as sky and reflec-

tive surfaces. To address this issue, we introduce the MVS-

SYNTH dataset — a set of 120 photorealistic sequences of

synthetic urban scenes for learning-based MVS algorithms.

We show that the use of a photorealistic synthetic dataset

greatly improves the quality of disparity prediction.

We validate the effectiveness of DeepMVS on the re-

cently introduced ETH3D benchmark dataset [34]. Our re-

sults show that DeepMVS outperforms DeMoN [37] in the

setting of multi-view stereo, and achieves competitive per-

formance with COLMAP [33], the state-of-the-art among

conventional MVS algorithms. In particular, we observe

that our network is often able to produce correct disparities

in poorly textured regions, such as sky, walls, floors, and

desk surfaces, where conventional algorithms fail.

In summary, we make the following contributions:

• We propose DeepMVS, a novel learning-based method

for multi-view stereo.

• Unlike existing work [5, 37, 19], DeepMVS can pro-

cess an arbitrary number of input images. The dispar-

ity estimation result is invariant to the order in which

the inputs are processed.

• Through extensive evaluation, we show that the in-

corporation of semantic features, training on photore-

alistic synthetic MVS-SYNTH dataset, and encoder-

decoder architecture for aggregating features over

large areas all contribute to the improved performance.

2. Related Work

Multi-view stereo reconstruction. Conventional MVS

algorithms focus on designing neighbor selection algo-

rithms and photometric error measures. Recent advances

include robust neighbor view selection [24], incorpora-

tion of visibility consistency [10], and clustering-based

techniques for efficient reconstruction [13, 8]. Recently,

Schönberger et al. present a MVS system — COLMAP [33]

— that jointly estimates depth and surface normal, lever-

ages photometric and geometric priors for pixelwise view

selection, and uses geometric consistency for simultane-

ous refinement. Through a tight integration of multiple

techniques, COLMAP performs among the best algorithms

in several public multi-view stereo benchmarks. We refer

readers to [9] for a comprehensive overview of multi-view

stereo reconstruction algorithms.

While impressive results have been shown, conventional

MVS algorithms rely heavily on photometric consistency

and often have difficulty in handling poorly textured and

reflective surfaces where photometric consistency is unre-

liable. In addition, these algorithms do not consider other

visual cues for depth perceptions such as lighting, shadows,

and semantics (e.g., a building has a planar structure). In-

corporating such information through hand-crafted objec-

tive functions is non-trivial. In this work, we aim at implic-

itly leveraging these cues through learning from data.

Learning-based MVS. A line of work focuses on learn-

ing a good similarity measure for patch matching across

two views [42] and multiple views [15] using ConvNets.

With the learned stereo matching cost, these methods pro-

duce disparity maps by a series of post-processing steps. In

contrast, DeepMVS produces disparity maps directly from

a set of posed images.

Another line of recent work uses ConvNets that take a

plane-sweep volume as input and produce disparity maps

(or synthesizes novel view) for the reference images. How-

ever, these approaches assume a fixed number of input im-

ages [19, 5, 37]. Our proposed DeepMVS can take an ar-

bitrary number of images to produce high-quality dispar-

ity maps. Several recent works approach multi-view recon-
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struction with volumetric methods [3, 18]. These methods

take a sequence of images captured from different views

and generate a 3D shape of the object using a voxel occu-

pancy grid. Nevertheless, the dimension of the voxel grid

is quite constrained by the available GPU memory (e.g.,

coarse grids of 32×32×32 voxels). It is unclear how the

volumetric algorithms can be generalized and applied to

high-resolution stereo reconstruction in the real-world.

Learning from simulation. Synthetic datasets alleviate

the difficulty and the cost of collecting large-scale train-

ing datasets from the real world. Examples of synthetic

datasets for training and evaluating computer vision algo-

rithms include indoor scene understanding [43], seman-

tic segmentation [31, 30, 29], and depth and flow estima-

tion [27, 29]. We also found that training with a synthetic

dataset improves performance in our context. Our newly

collected MVS-SYNTH dataset complements the missing

ground truth depth measurements in the real-world such as

sky and reflective surfaces like windows.

3. Learning Multi-view Stereopsis

The entire pipeline of our algorithm can be broken into

four steps. We first preprocess the input image sequence

(Section 3.1), and then generate plane-sweep volumes (Sec-

tion 3.2). Next, our network estimates disparity maps from

the plane-sweep volumes (Section 3.3), followed by final

refinement to improve the results (Section 3.4).

3.1. Input

The input to our algorithm is a sequence of images and

their camera poses and calibration (if necessary, we use the

SFM algorithm in COLMAP [32] to estimate them). One

of the input images is designated as the reference image,

for which we seek to obtain a disparity map.

We start by selecting a subset of neighbor images for

the reference to be used in the stereopsis using a similar

approach to COLMAP [33]. The images which share the

most common features with the reference are chosen to be

neighbor images. However, unlike COLMAP, we do not

discard the neighbor images which have small triangulation

angles with the reference, and we do not estimate per-image

weights, since we intend to train the network so it automat-

ically determines whether a plane-sweep volume is reliable

or not by comparing it with the reference image.

We also estimate the disparity range of the reference im-

age. Following the approach as COLMAP, we estimate

the maximum disparity by projecting all the features in the

sparse reconstruction model to the reference view and com-

puting the disparities of the features.

3.2. Plane­sweep Volume Generation

For each neighbor image we compute a plane-sweep vol-

ume with respect to the reference image as follows. We as-

sume that the scene geometry is an infinite plane, fronto-

parallel to the reference view, and at specific disparities:

{0,δ ,2δ , . . . ,(D− 1)δ}. The disparity step, δ , is chosen

such that (D− 1)δ equals to the estimated maximum dis-

parity of the reference image. We warp the neighbor image

accordingly and store the result as a layer in the volume.

If any of the assumed disparity is correct and that portion

of the scene is not occluded in the neighbor image, we ex-

pect that the warped neighbor image matches the reference

image well.

By doing this with all the neighbor images, we obtain a

stack of plane-sweep volumes with N ×D images, which

we denote as V =
{

Vn,d : 0 ≤ n < N,0 ≤ d < D
}

. We nor-

malize the RGB values to the range [−0.5,0.5] and fill the

parts in the plane-sweep volumes that are not visible to the

corresponding neighbor image with zeros.

The number of disparity levels, D, is predetermined. In-

creasing D allows us to use a smaller disparity step δ to

reduce the quantization errors in the results, but also in-

creases the number of parameters in the network and thus

the GPU memory. As a compromise, we choose disparity

level D = 100.

3.3. Network Architecture

Figure 2 and Figure 3 illustrate the architecture of Deep-

MVS with the hyper-parameters. Our network can be bro-

ken into three parts: 1) the patch matching network, 2) the

intra-volume feature aggregation network, and 3) the inter-

volume feature aggregation network. Except for the very

last layer of the network, all the convolutional layers in the

network are followed by a Scaled Exponential Linear Unit

(SELU) layer [21].

Patch matching. The goal of our patch matching network

is to extract a set of per-pixel features that can better aid in

the comparison of patches than hand-crafted photometric

descriptors could do alone. The patch matching network

takes a patch from the reference image IR and a single patch

Vn,d from the plane-sweep volume that corresponds to the

n-th neighbor image at d-th disparity level as input. The

first convolutional layer extracts 64-channel features from

the two patches. The features are then concatenated and

passed through three more convolutional layers before turn-

ing into 4-channel patch matching features. We repeat this

process for all N ×D plane-swept images.

Intra-volume feature aggregation. For each neighbor

image, we concatenate the 4-channel patch matching fea-

tures of all D disparity levels to form a 4×D-channel vol-
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Figure 2. DeepMVS network architecture.

Figure 3. Network architecture of the intra-volume feature aggregation network.

ume. Following that is a U-Net structure composed of an

encoder, a decoder, and skip connections. Each level of

the encoder is formed by a stride-2 convolutional layer fol-

lowed by an ordinary convolutional layer; each level of the

decoder is formed by two convolutional layers followed

by a bilinear upsampling layer. We show in Figure 3 the

detailed structures and hyper-parameters of the proposed

intra-volume feature aggregation network.

In addition, we add semantic features at each level of

the decoder. We pass the reference image into the VGG-

19 [35] network pre-trained on ImageNet, and take the lay-

ers conv1 2, conv2 2, conv3 2, conv4 2, and conv5 2 as se-

mantic features. These semantic features are first multiplied

by 0.01 and passed through a convolutional layer so as to

reduce dimensionality and to improve numerical stability.

Finally, these feature maps are concatenated to each level

of the decoder as shown in Figure 3.

This part of the network is intended to pass the features

to larger spatial regions and enable the network to make pre-

dictions with non-local information. It also aids the dispar-

ity predictions using the VGG feature inputs. The output

of the intra-volume feature aggregation network is an 800-

channel volume Fn containing the disparity prediction infor-

mation gathered from the n-th neighbor image.

Inter-volume feature aggregation. In this step, we take

the N volumes, {F0, . . . ,FN−1}, generated from each of the

neighbor images and aggregate them using element-wise

max-pooling. The use of max-pooling enables the network

to gather information from an arbitrary number of neighbor

images, and also ensures that the results are invariant with

respect to the order of the neighbor images. This technique

was previously used in PointNet [28] and in the work by

Hartmann et al. in [15] to allow inputs with varying sizes.

Finally, we use two convolutional layers converting the ag-

gregated volume into the pixel-wise disparity predictions.

During training, we randomly select the number of

neighbor images N from {1,2,3,4}. By varying N, the net-

work learns to make use of the max-pooling to collect only

the useful information from each neighbor image. Even

though N is restricted to be no larger than 4 during training

(due to the limited size of the GPU memory), we show that

our trained network can be applied to an arbitrary number

of neighbor images in Section 4.4.

Training loss. We pose disparity prediction as a multi-

class classification problem, and use the cross-entropy loss

to train the network. The predicted disparity map can be

made by taking the disparity level at which the predicted

probability is the highest for each pixel. Namely, for the
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Figure 4. Samples from the proposed MVS-SYNTH dataset, which

provides photorealistic images with ground truth disparities even

for the sky, reflective surfaces, and thin structures.

output distribution y = (y0, . . . ,yD−1) of each pixel, the pre-

dicted disparity can be chosen by

d̂raw = argmax
d

yd .

We refer to this d̂raw as the raw predictions.

3.4. Refinement

To further improve the quality of the results, we ap-

ply the Fully-Connected Conditional Random Field (Dense-

CRF) [22] to our raw disparity predictions. The use of

DenseCRF encourages the pixels which are spatially close

and with similar colors to have closer disparity predictions.

4. Experimental Results

4.1. Datasets

DeMoN datasets. We train our network with the same

datasets as used in DeMoN [37]. The dataset con-

sists of short sequences ranging from two to tens of im-

ages including real-world datasets (SUN3D [40], RGB-

D SLAM [36], CITYWALL and ACHTECK-TURM [6])

of outdoor and indoor scenes and a synthesized dataset

(SCENES11 [37, 2]) with random objects flying in the

air. As suggested in [37], mixing real-world and synthetic

datasets is important since each has its own limitations. The

ground truth for real-world datasets contains measurement

errors, whereas synthesized datasets have unrealistic ap-

pearance, and may not be capable of reflecting some charac-

teristics of real imagery, such as illumination, depth of field,

and noise. The image resolution of this dataset is 640×480

pixels.

MVS-Synth dataset. To address the limitations of the

DeMoN datasets, we introduce the MVS-SYNTH dataset,

which consists of 120 sequences of urban scenes captured

in the video game Grand Theft Auto V.2 Each sequence is

composed of 100 RGB frames of size 1920×1080, ground

2This academic article may contain images and/or data from sources

that are not affiliated with the article submitter. Inclusion should not be

construed as approval, endorsement or sponsorship of the submitter, article

or its content by any such party.

truth disparity maps, and the extrinsic and intrinsic cam-

era parameters. Figure 4 shows examples from the MVS-

SYNTH dataset.

Compared to existing synthetic datasets, the MVS-

SYNTH dataset is more realistic in terms of context and

shading. Compared to real-world datasets, MVS-SYNTH

provides complete ground truth disparities which cover re-

gions such as the sky, reflective surfaces, and thin struc-

tures, whose ground truths are usually missing in real-world

datasets. Therefore, training with MVS-SYNTH allows us

to predict disparities for these challenging regions. We train

the network using both image resolution 1280×720 and

960×540 pixels as data augmentation.

ETH3D datasets. For evaluation, we use the high-res

multi-view dataset in the recently introduced ETH3D

benchmark datasets [34]. It consists of 13 sequences of real-

world outdoor and indoor scenes with ground truth point

clouds captured by laser scanners. We project the point

clouds back to each view to obtain a ground truth dispar-

ity map for each reference image. Note that ground truth

data are not complete and contain holes in the sky, reflec-

tive surfaces, and thin objects. Nevertheless, we use it to

validate the efficacy of our method for real-world scenes.

We resize the images to 810×540 pixels for evaluation.

4.2. Implementation Details

Our training process consists of two stages. First, we

train the network by replacing the intra-volume feature ag-

gregation network with two simple 3×3 convolutional lay-

ers. Here, our goal in the first stage is to pre-train the net-

work so it can be transferred to the second stage. Then,

we add the intra-volume feature aggregation network back

with weights initialized from the pre-trained network, and

train the entire network using both DeMoN and the MVS-

SYNTH datasets.

For both training stages, we use the Adam solver [20]

with learning rates 10−5 and 10−6, respectively, for 320k

iterations per stage. We apply gradient clipping to prevent

gradient explosion by constraining the L2-norm of the gra-

dients at each layer to be no more than 1.0 at the first stage

and 0.1 at the second stage. We implement the network in

PyTorch. Training the network with an NVIDIA P100 GPU

with 16GB memory takes two days for each stage.

We use 64px×64px patches as our inputs so as to fit

our network into the GPU memory at the training stages.

We generate the semantic features by a feed-forward pass

of a VGG-19 network using the entire image. We then

take only the region of interest corresponding to the input

patches from the intermediate features. At test time, we

feed 128px×128px patches into the network, and take only

the center 64px×64px of the output to reduce boundary ar-

tifacts. The 64px×64px output patches are then tiled to
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achieve full-resolution results.

4.3. Evaluation Metrics

Geometric errors. We compute geometric error by tak-

ing the L1 distance between the predicted disparity and the

ground truth. Unavailable pixels are ignored.

Photometric errors. We also measure photometric

rephotography error [38] — the L1 distance between the

reference and the rephotography image. We generate the

rephotography using the predicted disparity map, warping

the pixels to all other neighbor images, sampling colors

from the neighbor images, and finally selecting the median

among all color candidates for each pixel.

Completeness. Another important factor for evaluation is

completeness. We measure completeness using the percent-

age of pixels whose errors are below a certain threshold.

Plotting the relationship between different error thresholds

and their corresponding completeness helps visualize the

distributions of the errors. The curves lying in the lower

right represent more pixels having lower errors and thus

have better performance.

4.4. Evaluation

COLMAP. Several conventional MVS algorithms have

been proposed, including PMVS [10], MVE [6], and

COLMAP [33]. We choose to compare with COLMAP as

it is the top performer on the ETH3D dataset [34].

We follow the default settings of COLMAP unless other-

wise mentioned. COLMAP provides an option to filter out

the predictions that are not geometrically consistent. How-

ever, the filtered disparity maps may significantly reduce

completeness. We show both unfiltered and filtered maps

for comparison.

Note that we do not use DenseCRF to refine COLMAP’s

noisy unfiltered maps since COLMAP predicts a determin-

istic disparity for each pixel, whereas DenseCRF requires

pixel-wise distributions as inputs.

DeMoN. We compare our approach with DeMoN [37] be-

cause it is the closest to ours among the existing learning-

based stereopsis methods. However, as their network only

works with image pairs, we propose two ways to extend

their approach to multi-view stereo applications.

The first method is to choose the best result among all the

disparity maps generated from the image pairs formed by

the reference image and its neighbor images. This method

is not practical in real applications since the ground truths

are not available. Nevertheless, the method establishes the

upper-bound performance of DeMoN. The second method

is to compute the per-pixel median among all the generated

disparity maps so as to aggregate information from all avail-

able image pairs.

Table 1. Quantitative comparisons between different algorithms on

ETH3D dataset.

Algorithm Completeness Geo. error Pho. error

DeMoN (best) 100% 0.045 0.288

DeMoN (median) 100% 0.201 0.367

COLMAP (filtered) 71% 0.007 0.178

COLMAP (unfiltered) 100% 0.046 0.218

Ours 100% 0.036 0.224

Since DeMoN is trained with images taken with fixed

focal lengths and image resolutions, we crop and resize the

images from ETH3D dataset before using them to evaluate

DeMoN’s performance. This leads to the incomplete re-

construction results in Figure 5 and Figure 6. The cropped

regions are ignored when the error is computed. In addition,

DeMoN assumes that the translation between the input im-

age pair is a unit vector. Therefore, we multiply the depth

maps produced by DeMoN by the actual translational dis-

tance between the two views before comparing them with

the ground truths.

Qualitative comparisons. Figure 5 shows qualitative

comparisons between DeMoN, COLMAP, and our ap-

proach. While DeMoN detects the overall structure of

the scene, it fails to predict accurate scaling factors and

thus results in inaccurate predictions. On the other hand,

COLMAP and our approach give accurate predictions wher-

ever the depth cues are sufficient. However, for textureless

regions like the sky, the wall, and the surface of the white

desks, the predictions made by COLMAP are very noisy,

whereas our network is capable of assigning zero disparity

to the sky, and interpolating or extrapolating disparities for

poorly textured regions.

Figure 6 shows several rephotography results. The re-

sults from DeMoN are often blurry and distorted, indicat-

ing that the predictions are not accurate. COLMAP per-

forms well in rephotography in the regions where the pre-

dictions are clean. However, for challenging regions, the

results contain large holes. Our rephotography results gen-

erally recover the reference images with only small holes.

However, edges appear to be jagged because of the dispar-

ity quantization in our approach.

Quantitative comparisons. Table 1 shows quantitative

comparisons of the average errors over the entire ETH3D

dataset between DeMoN, COLMAP, and our approach.

First, DeMoN gives much larger errors than COLMAP and

our approach with respect to both metrics. COLMAP’s fil-

tered predictions have significantly lower average errors,

but it discards 29% of the pixels to achieve that. Finally,

COLMAP’s unfiltered maps and our results have similar er-

rors. While COLMAP gives slightly lower photometric er-

rors, our approach gives slightly lower geometric errors.
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Reference Ground truth DeMoN [37]

(best)

DeMoN [37]

(median)

COLMAP [33]

(filtered)

COLMAP [33]

(unfiltered)

Our result

Figure 5. Qualitative comparisons between different algorithms on ETH3D dataset.

Figure 7 shows the distributions of the errors. We ob-

serve that COLMAP predicts 85% of the pixels with smaller

geometric errors than our approach, whereas our approach

gives more accurate results for the other 15% pixels. A

possible reason is that for regions with sufficient depths

cues, COLMAP produces accurate predictions. Our ap-

proach, on the other hand, suffers from the quantized dispar-

ity effects. However, for the challenging regions, COLMAP

gives noisy predictions which lead to large errors, whereas

our approach produces plausible predictions. As for the dis-

tributions of the photometric errors, our approach produces

almost the same curve as COLMAP does.

Progressive improvement. Figure 8 shows two examples

of the progressive improvements by COLMAP and our ap-

proach for an increasing number of input images. When N

is small, COLMAP tends to produce large geometric errors,

whereas our network can still generate accurate predictions

Table 2. Contributions of different components in our algorithm.

Components Geo. error Pho. error

Pretraining 0.051 0.242

+ U-net 0.043 0.230

+ U-net + VGG 0.040 0.226

+ U-net + VGG + DenseCRF 0.036 0.224

+ U-net + VGG + DenseCRF − MVS-SYNTH 0.037 0.225

and hallucinate disparities for the regions lacking of good

depth cues.

4.5. Ablation Studies

DenseCRF. As shown in Figure 9, applying DenseCRF

removes a large portion of the noisy patches in low-

confidence regions such as the reflective wall, and encour-

ages the disparity predictions to follow the color edges. As

shown in Table 2, DenseCRF improves the results with re-

spect to both error metrics.
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DeMoN [37]

(best)

COLMAP [33]

(unfiltered)

Our result

Figure 6. Comparisons of rephotography results. See Figure 5 for

the ground truth reference images.

Geometric errors Photometric errors

Figure 7. The distributions of the errors of different approaches on

ETH3D dataset.

N
=

1
N

=
8

N
=

1
N

=
8

Image /

ground truth

Our result COLMAP [33]

(unfiltered)
Geometric Errors

Figure 8. Examples of progressive improvements for increasing

number of input images.

MVS-Synth dataset. Table 2 shows that removing MVS-

SYNTH dataset from the training set results in slightly larger

errors for both metrics. Qualitatively, we observe that the

network trained without MVS-SYNTH dataset works very

poorly for the sky and reflective surfaces, as Figure 10

shows. These regions usually lack ground truth data, so

Image Ours
Ours w/o

DenseCRF

Figure 9. Example of the improvements from the DenseCRF re-

finement. Applying DenseCRF removes the noisy predictions.

Image Ours
Ours w/o

MVS-SYNTH

Figure 10. Comparisons between networks trained with and with-

out the MVS-SYNTH dataset. Without MVS-SYNTH dataset, the

network has difficulty in handling regions such as the sky because

real-world datasets do not cover these regions.

the errors do not reflect much on the quantitative errors. We

suggest that the poor predictions result from the fact that

the ground truths in DeMoN dataset does not cover such

regions.

U-Net and VGG features. As Table 2 shows, adding the

U-net and VGG features each provides improvements in

both error metrics. This shows that allowing non-local in-

formation and providing semantic features both help the

network in better disparity predictions.

4.6. Limitations

Following are some limitations of our network. First, the

quantization of disparity results in undesired geometric and

photometric errors. Second, our network often fails to pre-

dict correct disparities for vegetation areas containing trees

or grass. Finally, the computation speed of our algorithm is

constrained by the time-consuming generation of the plane-

sweep volumes and the deep and large network structures.

5. Conclusions

With DeepMVS, we demonstrate the feasibility of learn-

ing Mulit-View Stereopsis with a convolutinoal neural net-

work, and show that learning-based approaches can over-

come the weaknesses of conventional algorithms.
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