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RNA-sequencing (RNA-seq) analysis offers a tumor-centered approach of growing interest for 

personalizing cancer care. However, existing methods – including deep learning models – struggle to 

reach satisfying performances on survival prediction based upon pan-cancer RNA-seq data. Here, we 

present DeepOS, a novel deep learning model that predicts overall survival (OS) from pan-cancer RNA-

seq with a concordance-index of 0.715 and a survival AUC of 0.752 across 33 TCGA tumor types whilst 

tested on an unseen test cohort. DeepOS notably uses (i) prior biological knowledge to condense inputs 

dimensionality, (ii) transfer learning to enlarge its training capacity through pre-training on organ 

prediction, and (iii) mean squared error adapted to survival loss function; all of which contributed to 

improve the model performances. Interpretation showed that DeepOS learned biologically-relevant 

prognosis biomarkers. Altogether, DeepOS achieved unprecedented and consistent performances on pan-

cancer prognosis estimation from individual RNA-seq data.  
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Figure 1: Graphical abstract: Pipeline description of DeepOS – First, the model is pretrained to predict the organ 

of origin of both healthy and tumor tissues. Then, the model is fine-tuned on survival of the pan-cancer RNA-seq 

cohort. DeepOS is a multilayer perceptron neural network model, that uses the RNA-seq expression of 4,499 cancer 

and immune genes as inputs. DeepOS outputs a probability of survival per time intervals (in the example, one 

interval represents 72 days). This allows training DeepOS on censored survival data. Survival is estimated by the 

first interval meeting the probability = 0.5. On the example, a 50% risk of death is predicted to occur at the 14
th
 

interval, which corresponds to 33 months.
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Introduction 

Among patients diagnosed with cancer, 

prognosis estimation is often required to draw a 

risk profile and adapt treatment accordingly. 

Currently recommended prognostic and 

predictive biomarkers that drive cancer care 

management usually combine several items, 

such as: individual characteristics (e.g. age, 

gender, ECOG status), tumor characteristics (e.g. 

tumor stage, localization and number of 

metastasis), serum markers (e.g. albumin, LDH, 

CRP) and eventually tumor molecular features 

(e.g. PD-L1 expression, BRCA loss-of-function, 

ERBB2, EGFR, BRAF, ALK mutations, NTRK 

fusion) 
1–6

. Such scoring systems mainly stratify 

patients into low- or high-risk groups, defining 

therapeutic procedures to be followed. More 

recently, the growing interest in high-

dimensional multi-omics data in assisting 

clinicians on treatment decision has brought 

forward the high potential of tumor RNA-

sequencing (RNA-seq) on studying the link 

between tumor gene expression and patient 

survival outcome in a personalized way 
7
. RNA-

seq provides gene expression quantifications of 

the whole transcriptome (transcripts of more 

than 20,000 protein-encoding genes) or of 

preselected transcripts of interest (targeted 

sequencing), bearing the underlying hypothesis 

that each tumor gene expression profile mirrors 

the tumor aggressiveness and potential behavior 

in response to a particular treatment and 

therefore, should correlate with overall survival 

(OS).  

Since each tumor is unique in its complexity, an 

almost-infinite number of gene expression 

combinations could be expected; which 

drastically overcomplicates any prediction task 

based on RNA-seq data. Several teams recently 

intended to predict individual OS from RNA-seq 

analyses of multiple cancer types obtained from 

the Cancer Genome Atlas (TCGA) dataset 
8
, 

using machine and deep learning 
9–14

 

(summarized in Supplementary Table 1). Model 

architectures included Random Forest, Cox 

regression with Lasso penalization, Multilayer 

Perceptron (MLP), Convolutional Neural 

Networks, Auto-Encoder with Cox loss function, 

among others. Those models prediction 

performances in validation or test cohorts were 

often limited, close to 0.60, and rarely exceeded 

0.62 of median concordance-index (C-index) on 

pan-cancer predictions. C-index is a popular 

metric that evaluates the ability of a model to 

rank survival predictions within a particular 

cohort rather than the difference between the 

predicted and the observed values (with C-

indexes of 0.50 and 1.00 respectively 

corresponding to random and perfect order of 

predictions) 
15,16

. Yet, prognosis estimation from 

pan-cancer RNA-seq data should be feasible 

since each tissue and each tumor type express 

their own transcriptomic signatures.  

With machine and deep learning, over-fitting can 

arise when the training dataset has greater 

number of dimensions (variables) than number 

of samples available (the size of the training set). 

Over-fitted models generally fail to generalize 

decently 
17

. In the case of RNA-seq, the large 

dimensionality (e.g. > 20,000 gene expressions) 

requires massive amounts of training data, which 

is tricky to obtain when applied to cancer and 

which presumably lacked to the above-

mentioned models (total number of samples 

comprised between 953 and 11,854). We 

hypothesized that OS prediction using 

supervised deep learning on pan-cancer RNA-

seq data as inputs would benefit from (i) starting 

with reducing input dimensions using prior 

biological knowledge and (ii) increasing the size 

of the training set, using a transfer learning 

strategy. Transfer learning consists in pre-

training a model on a task that is related, but not 

strictly identical to the final question, and for 

which a larger number of samples is available 
18

. 

We therefore (i) filtered whole transcriptome 

expressions to reduce inputs dimensionality and 
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(ii) designed an MLP neural network that we 

pre-trained to predict the organ of origin from 

large healthy and cancer RNA-seq data and fine-

tuned to predict OS from pan-cancer RNA-seq 

data (Figure 1). We additionally characterized 

the parameters that influenced the model 

performances, including the gene list selection, 

the size of the training set, the type of survival 

loss function for training, the duration of OS, the 

cancer type and the genes the most implicated 

into the model prediction.  

Results 

Gene selection 

We first intended to reduce the dimensions of 

our input dataset by selecting genes of interest, 

which are known to be implicated in cancer 

initiation, progression, dissemination or response 

to treatment. We merged gene lists obtained 

from the Molecular Signatures Database 

(MSigDB, relative to hallmarks of cancer) 
19

, 

and the LM22 immune gene signatures 
20

. After 

removal of duplicates and genes associated with 

no expression values within our dataset, we 

obtained 4,499 genes (Supplementary Table 2).  

Pilot overall survival prediction task: without 

pre-training 

We designed a pilot experiment of survival 

estimation starting with only tumor RNA-seq 

data. We retrieved all The Cancer Genome Atlas 

(TCGA) pan-cancer RNA-seq raw data publicly-

available on February, 11, 2019, via recount2 
21

 

and selected samples associated with annotated 

survival outcomes (Figure 2a). We excluded 

uninformative patients who were censored 

during the first half of the total duration of the 

follow-up and the top 5% of patients with the 

longest OS, considering them cured by surgery. 

Altogether, we collected 6,529 RNA-seq 

samples from 33 tumor types fulfilling the 

criteria, among which 54.8% were censored 

during second half of the follow-up.  

Based on this dataset, the pan-cancer median OS 

was 67.2 months (95% confidence interval 

95%CI [64.8;72.0]) (Figure 2b), and highly 

depended on the tumor type (Figure 2c). 

Glioblastoma, esophageal cancer, mesothelioma 

and pancreatic cancers were associated with the 

worst prognoses (median OS of 12.0 months for 

glioblastoma and 16.8 months for the three 

others); on the other hand, median OS was not 

reached after a 120-months follow-up for five 

tumor types (chromophobe and papillary renal 

carcinoma, pheochromocytoma, testicular cancer 

and thyroid cancer) (Supplementary Table 3). 

We randomly assigned each sample to either a 

training set (N=5,529), a validation set (N=500) 

or a test set for final evaluation (N=500). 

Splitting was well-balanced considering the 

fraction of censored patients (0.546, 0.536 and 

0.546, respectively within training, validation 

and test cohorts), median OS (67.2 months, 72.0 

months and 62.4 months, respectively) and 

diversity of cancer types (Supplementary Table 4 

and Supplementary Figure 1).  

To train our models, we transformed survival 

data into survival probabilities per time interval 

and thus, could implement the classical mean 

squared error (MSE) loss function. Survival 

probabilities were set to 1 for intervals during 

which a patient is alive, and to 0 when a patient 

is deceased. Censored intervals were ignored to 

calculate the loss. Ignoring censored intervals in 

MSE allowed the model to be trained only on 

observed time intervals for each patient. The 

model learned a probability of survival for each 

patient individually, using classical methods in 

deep learning for multiclass classification. To 

decipher whether this approach could be 

competitive, we compared the performances of 

DeepOS to DeepSurv, a state-of-the-art deep 
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Figure 2: Pan-cancer survival data description – a, Flow-chart of the survival cohort. Pan-cancer RNA-seq and 

survival and clinical data were retrieved from the TCGA dataset. After selection of the 6,529 samples fulfilling the 

selection criteria, we used an 80%/10%/10% random split rule to create the training, validation and testing datasets. 

b,c, Kaplan-Meier survival curves of the whole cohort (b) and per tumor types (c). TCGA study abbreviations, 

median overall survival per tumor type and 95% confidence intervals are detailed in Supplementary Table 3.  
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learning model based on Cox-loss to train on 

survival data 
22

.  

We used a Tree-structured Parzen Estimator 

(TPE) 
23

 algorithm to explore hyper-parameters 

and to select the best model upon the highest C-

index obtained on the validation set. After 

training on 5,529 pan-cancer RNA-seq samples, 

the best model reached a C-index of 0,744 on the 

validation set, with cross-validation C-index 

mean of 0.63 and standard deviation of 0.09. The 

best model had five hidden layers, each of them 

having a dropout of 0.015, and L1 and L2 

penalization of 0.007 and 0.0009, and trained 

with a learning rate of 0.00003. 

On a final and previously unseen test cohort, this 

model achieved a C-index of 0.707 on predicting 

patient survival from their pan-cancer RNA-seq 

data. This model surpassed DeepSurv 

performances on the same split data (C-index of 

0.606 on validation and test sets). 

Learning curves of survival prediction 

To study how the number of samples within the 

training set influenced the model performances, 

we repeated the survival training task with 

escalating number of samples composing the 

training cohort, without modifying the validation 

set.  

Learning curves indicated that C-indexes reach a 

steady state for training cohorts containing at 

least 2,000 RNA-seq samples (Figure 3a). The 

best training set C-index (0.80) was achieved 

with 1,000 samples; although the difference 

between training- and validation-related C-

indexes indicated that the model was subject to 

overfitting (Figure 3b). Overfitting defines a 

model that learns too perfectly from a training 

set so that it fails to generalize adequately on 

unseen additional data. According to our results 

and consistently with what was previously 

described 
24,25

, overfitting tends to be reduced by 

increasing the number of samples within the 

training set (Figure 3b). We therefore 

hypothesized that a transfer learning strategy 

could benefit our model since it could indirectly 

expand the training dataset through pre-training 

on a similar task. 

Transfer learning: data collection for the pre-

training task 

Since OS was highly related to tumor type 

(Figure 2b), we assumed that learning to predict 

the organ of origin from a larger cohort could 

improve the overall estimation of survival 

duration. We therefore chose to pre-train our 

model on the prediction of the organ of origin 

from the RNA-seq expression data of the 4,499 

selected genes using either healthy or tumor 

tissue (Figure 4a). Healthy organs data were 

obtained through recount2 from the Genotype-

Tissue Expression (GTEx) project 
26

. We 

additionally retrieved all the TCGA gene 

expression data of tumor samples (including 

those not associated with survival data). Each 

tumor type was aligned with its organ of origin 

(for example, kidney chromophobe, clear cell 

carcinoma and papillary cell carcinoma were all 

considered as kidney tissue).  

Altogether, we collected 18,571 RNA-seq 

samples from 38 distinct human tissues (Figure 

4b). The most represented organs were brain 

(8.5% of samples), lung (8.2%) and breast tissue 

(7.9%). We randomly divided the samples into 

two distinct sets for training (16,571) and 

validation (2,000). Splitting was well balanced 

and both sets harbored samples belonging to the 

38 types of tissue.  

Pre-training on organ prediction  

We pre-trained the first section DeepOS, 

considered as “low abstraction”, on organ 
prediction. DeepOS is an MLP neural network, 

that takes gene expression values in transcripts 
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Figure 3: Survival learning curves – a,b, Learning curves for the survival cohort represented by line charts of the 

median, 1
st
 and 3

rd
 quartiles of the C-indexes on the training (blue) and the validation (pink) datasets (a) and the 

resulting difference between training and validation median C-indexes (b) according to the size on the training set 

(from 500 to 5,529 samples, with steps of 500 samples). C-index = concordance index.

per million (TPM) as inputs, and outputs either 

organ classification or survival probabilities 

(Supplementary Figure 2). DeepOS architecture 

comprises hidden layers composed of stacked 

units of dense layers, Rectified Linear Unit 

(ReLU) activations, dropout effect penalization, 

L1 and L2 regularization, and batch 

normalization.   

All the models tested reached very high 

validation performances to predict the organ of 

origin (mean hyper-parameter search accuracy = 

0.849 and standard deviation = 0.292), with best 

model reaching an accuracy of 0.9835, precision 

of 0.9842, recall of 0.9835 and F1-score of 

0.9836 (Supplementary Figure 3). The best 

organ-specific model had four layers, with a 
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dropout rate of 0.080, a L1 and L2 regularization 

parameters respectively of 0.0013 and 0.0037 

and was trained with a learning rate of 0,8462. 

We did not perform a test set evaluation as this 

step was only used to select the best pre-trained 

model to fine-tune. 

 

Figure 4: The organ cohort – a, Flow-chart of the organ cohort used to pre-train DeepOS. Healthy organs RNA-seq 

were obtained from the GTEx project, while pan-cancer RNA-seq data were obtained from the TCGA dataset. 

Samples were randomly assigned to either the training or the validation cohort with a 90%/10% split. b, Distribution 

of organ types across pooled RNA-seq data used for pre-training. The number alongside each feature refers to the 

number of patients. 
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Fine-tuning on survival prediction 

To implement our transfer learning strategy, we 

then fine-tuned DeepOS on survival prediction 

based on the pan-cancer cohort described above. 

The low abstraction section of DeepOS was 

frozen during the first fine-tuning step and 

unfrozen during the second fine-tuning step 

(Supplementary Figure 2). Similarly to the pilot 

task performed without pre-training, we selected 

the best version of the fully trained (pre-training 

and fine-tuning) model based on the highest C-

index obtained on the validation set, which 

reached 0.738 (cross-validation C-index mean = 

0.688, standard deviation = 0.058).  

On the unseen test cohort, this DeepOS model 

achieved a C-index of 0.715 and an area under 

the survival ROC curve (AUC) of 0.752 (Figure 

5a and 5b). Transfer learning improved survival 

prediction of +0.9% and +0.4% respectively for 

DeepOS C-index and mean AUC, which are 

noteworthy upgrades for models with 

performances >0.70 on this type of task. In 

addition to the organ-specific features, the best 

model architecture had six layers, with a dropout 

rate of 0.027 and L1 and L2 regulation 

parameters respectively of 0.0025 and 0.0069.  

DeepOS according to patient OS 

To study whether DeepOS can be used to predict 

pan-tumor survival, we generated a predicted 

Kaplan-Meier survival curve and compared it to 

the true survival curve of the test cohort (Figure 

5c). We noticed that there was no significant 

difference between DeepOS prediction over time 

and the ground truth (log-rank p-value: 0.388). 

When compared to predictions without pre-

training, transfer learning improved the accuracy 

of the model over time (Supplementary Figure 

3a, log-rank p-value: 0.097 on the test set 

without pre-training). When applied to the 

training and validation cohorts, we similarly 

observed apparent closeness between predicted 

and observed curves for OS comprised between 

30 and 100 months (Supplementary Figure 4b,c), 

although we repeatedly noticed divergences of 

the curve slopes for shorter OS, with DeepOS 

behaving over-optimistic as compared to reality.  

To further evaluate DeepOS performances 

according to survival duration, we generated ten 

subgroups of 50 patients ranked by OS on the 

test cohort, and computed the C-indexes of each 

subgroup. We could indeed observe that 

DeepOS performed modestly for survival 

predictions of patients deceased between 1 and 

20 months (C-index <0.60; <0.55 without pre-

training) (Supplementary Figure 5a). This 

observation was not associated with 

underrepresentation of such population within 

the training set (Supplementary Figure 5b).  

DeepOS according to tumor type 

Among the 29 cancer types that contained at 

least 3 uncensored samples, 26 (89.7%) 

displayed a C-index >0.50 which corresponds to 

better than random prediction and 12 (41.4%) 

had a C-index >0.72 on the test set, including 

two that reached the perfect score of 1 

(adrenocortical carcinoma and uveal melanoma), 

although these were composed of only 5 and 4 

patients within the test set, respectively (Figure 

6a). Despite our previous observation, DeepOS 

was able to perform reasonably well on four out 

the five tumor types displaying a median OS <20 

months, with C-indexes comprised between 0.55 

and 0.74 (Supplementary Table 5). Transfer 

learning unchanged or improved survival 

predictions for 20 (69.0%) tumor types, up to 

+27,3%, as assessed by C-index calculation 

(Supplementary Figure 6, Supplementary Table 

5). 
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Figure 5: DeepOS results 

– a, Summary of the 

performances obtained with 

DeepOS with and without 

pre-training on organ 

prediction, DeepSurv and 

DeepOS with pre-training 

while using random gene 

selection. Performances on 

the training, validation and 

unseen test set are depicted, 

based on the same data split. 

The gene set lists used for 

DeepOS predictions are 

detailed in Supplementary 

Table 2. b, Line chart of the 

survival Area Under the 

ROC Curve (AUC) 

according to time for 

DeepOS predictions on the 

test set. The grey vertical 

line refers to the mean of all 

AUC = 0.752. c, Kaplan-

Meier survival curves of OS 

probability over time, either 

predicted from DeepOS 

(green) or observed (blue) 

within the test cohort. The 

predicted curve stops shortly 

after 100 months of OS, 

which corresponds to the 

longest OS prediction by 

DeepOS when analyzing the 

test cohort. Log-rank p-

value = 0.39 indicates the 

absence of statistical 

difference between the two 

Kaplan-Meier curves. C-

index: Concordance index; 

OS: overall survival.
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DeepOS according to gene selection 

We then evaluated if the gene set selected on 

prior biological knowledge helped DeepOS 

performance. We thus trained models similar to 

DeepOS using two distinct and random 

selections of 4,499 genes (excluding the ones 

used in DeepOS) (Supplementary Table 2). 

Using random genes as inputs impaired the 

model performances, achieving C-index of 0.686 

on the test set for both selections #1 and #2 

(Figure 5a). Predicted Kaplan-Meier survival 

curves were significantly different to the ground 

truth (log-rank p-value: 0.00017 and 0.043 

respectively for random selection #1 and #2) 

(Supplementary Figure 7). Gene selection based 

on prior-knowledge thus contributed 

significantly to DeepOS generalization 

performance.  

DeepOS according to gene expressions 

To finally better characterize which genes were 

the most important for DeepOS predictions, we 

estimated the mean SHapley Additive 

exPlanations (SHAP) value for each gene. SHAP 

provides an interpretation of the importance 

attributed by the algorithm to each feature 
27

.  

Among the 4,499 genes, 106 had a mean 

absolute SHAP value >0.001 and 24 genes had a 

mean absolute SHAP value >0.002, which we 

considered as the most important for DeepOS 

predictions (Figure 6b, Supplementary Figure 

6b). We compared the effect of gene expressions 

importance and direction for the model decision 

with known biological findings. The most 

important gene was CLDN8, encoding for the 

Claudin-8 protein, with low expressions related 

by the model to poor OS. Claudin-8 is a 

transmembrane protein that constitutes tight 

junctions between epithelial cells; conversely, its 

downregulation has been previously related to 

tumorigenesis and epithelial-mesenchymal 

transition, and has been proposed as a biomarker 

of bad prognosis in several tumor types 
28–31

. 

Gene expression of FOX2A was the second most 

important feature, with high expression values 

correlated with poor OS. This is also consistent 

with the known role of FOX2A, a transcription 

factor promoting proliferation and epithelial-

mesenchymal transition in multiple cancer types 
32–34

. Small proline-rich repeat protein 3 (SPRR3) 

ranked third among the most important genes for 

DeepOS, with high expressions related to poor 

OS prediction. Again, independent studies 

confirmed that high SPRR3 tumor expression 

was associated with significantly decreased 

survival, notably in pancreatic cancer, and with 

resistance to radiation therapy in head and neck 

cancer 
35,36

. In addition, poor OS were mainly 

associated by DeepOS to high expressions of 

UGT1A8, REG1A, PDX1, SMPX, PLA2G2A, 

CLDN19, PPBP, CIDEA, ANXA10, CSRP3, 

EPHA5, APOH, ONECUT1, FABP6, HSD17B2 

and SERPINB2 and to low expressions of SST, 

CLDN3, TCL1A, KLK3 and XIST, although the 

orientation (positive or negative correlation) 

could vary across tumor types (Supplementary 

Figure 8). 

Conclusions, discussion 

We have developed a deep learning model, 

DeepOS, to estimate OS duration from pan-

cancer RNA-seq data based on a transfer 

learning strategy that allowed us to enlarge our 

pre-training dataset with healthy tissue samples. 

Transfer learning improved prediction 

performances by limiting overfitting. The pre-

training task consisted in predicting the organ of 

origin with very high accuracy, precision and 

recall performances (0.984 each on the 

validation set). For survival prediction, DeepOS 

reached a median pan-cancer C-index of 0.72 on 

an independent and previously unseen test set 

and a mean survival AUC of 0.76.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.10.21260300doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.10.21260300
http://creativecommons.org/licenses/by/4.0/


DeepOS: pan-cancer prognosis estimation prediction from RNA-sequencing data 

Figure 6: DeepOS interpretation – a, Bar chart of the C-indexes of DeepOS according to the tumor types. We 

considered tumor types within the test cohort with at least three uncensored samples. The red dotted line indicates a 

C-index of 0.50 (random prediction). The black line indicates a C-index of 0.715, which refers to the median C-index 

of DeepOS pan-cancer predictions. Patient numbers for each cohort are represented above the bars. b, The 

importance of DeepOS input gene is represented by a mirror bar chart of the SHapley Additive exPlanations (SHAP) 

values. SHAP values for individual predictions are plotted on the left panel. Genes are ranked by mean SHAP values 

as reported on the right panel. A high positive feature value (pink to the right) means that an increased expression of 

the gene is related to a reduced OS prediction, whereas a low positive feature value (blue to the right) means that a 

decreased gene expression is liked to a reduced OS prediction. Each dot represents an individual prediction.  
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DeepOS can output a discrete estimation of 

individual survival, which enables to plot 

Kaplan-Meier survival curves from individual 

predictions. Doing so, we could confirm that 

DeepOS survival predictions over time were not 

different from the ground truth in the test set 

(log-rank p-value 0.388). We also validated that 

the pre-training step increased the performance 

of the model.  

We also found a way to use the mean square 

error, a classical loss function in deep learning, 

to train DeepOS on survival data. We used 

DeepSurv as an internal comparator using the 

same training, validation and testing data split. 

DeepSurv is a deep neural network trained with 

a Cox proportional hazards loss function, which 

is considered a state-of-the-art method for 

survival prediction 
22

. DeepOS significantly 

outperformed DeepSurv model performances 

(DeepSurv C-indexes were comprised between 

0.60 and 0.61, and AUC of 0.63 on the test set, 

similarly to other published models for such 

task; Supplementary Table 1). 

Our model has limitations. Firstly, as compared 

to the survival prediction task ran without pre-

training, one could argue that the transfer 

learning strategy only slightly improved the 

model performances (+0.9% on the test C-

index). However, the gain was robustly observed 

across all the metrics computed on the test 

dataset (C-index, mean AUC, log-rank p-value), 

which suggests that the model indeed benefited 

from the pre-training step. Besides, even minor 

upgrading in performance is challenging to 

obtain for C-index values above 0.70 for such 

task. Our study nevertheless supports a benefice 

of using large tumor RNA-seq datasets with 

survival observation.  

Secondly, we noted over-optimism in DeepOS 

predictions for short survival durations (mainly 

<20 months). However, it did not negatively 

impact the model performances within tumor 

types of unfavorable prognosis. For example, the 

C-index within the mesothelioma and the 

esophageal carcinoma cohorts reached 0.74, 

while median OS was below 20 months (16.8 

months each). A possible explanation is that 

patients with short survival have poor prognosis 

factors such as tumor location, poor general 

condition or comorbidities that are missed by 

using only RNA-seq data from a microscopic 

tumor sample. Analyzing the influence of time 

on models performance should be generalized to 

better define the application framework of deep 

learning models for such task. 

Finally, the pan-cancer TCGA RNA-seq dataset 

that we used for our study was built mostly upon 

primary tumor samples obtained from surgical 

resection of localized or locally-advanced 

diseases. This is highlighted by the observed 

median OS for several cancer types longer than 

expected for metastatic stages at diagnosis. It is 

nevertheless possible that DeepOS learned from 

the metastatic potential of the tumor samples. 

This is supported by the detail of the genes with 

the highest importance for the algorithm, which 

are mainly related to cancer progression and 

epithelial-mesenchymal transition and thus, to 

cancer dissemination. However, further 

refinement and validation studies are warranted 

to statue on the generalizability of the model in 

metastatic cancers.  

To our knowledge, DeepOS is the best 

performing model on individual pan-cancer 

survival prediction based on gene expression 

alone (Supplementary Table 1). Other 

approaches have proposed clustering analysis 

from RNA-seq to identify groups of patient with 

similar prognosis 
12

 
37

. Thorsson et al. could 

identify six immune subtype features from 

TCGA pan-cancer data comprising RNA-seq, 

miRNA-seq and exome sequencing data 
37

. They 

rigorously characterized immune subtypes 

associated with good and poor prognosis, 

although pan-cancer performances were modest 
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with a median pan-cancer C-index visually lower 

than 0.60. In addition to transfer learning, 

DeepOS comprised methodological adaptations 

that we believe have permitted this upgrading. 

First, we transformed survival data into time 

interval survival probabilities, so that censored 

time intervals did not influence the loss function 

calculation. Thus, we could train on the mean 

squared error. We also reduced input dimensions 

by applying prior knowledge on the biology of 

cancer and immunity to limit overfitting due to 

irrelevant genes for our task, which contributed 

to improve the model predictions.  

Overall, our study demonstrated and/or validated 

that (i) predicting survival outcomes from pan-

cancer RNA-seq data is feasible and can achieve 

decent performances, (ii) transfer learning can 

reduce overfitting, and (iii) partially censored 

survival data can be used to train supervised 

deep learning models with standard loss 

functions. DeepOS offers a promising proof-of-

concept that prognosis estimation among 

patients affected with various types of cancer 

can be personalized beyond classical score 

calculations. It provides a more tumor-centered 

way to estimate the disease aggressiveness and 

perhaps, to estimate its sensitivity to multiple 

therapeutic options. 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.10.21260300doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.10.21260300
http://creativecommons.org/licenses/by/4.0/


DeepOS: pan-cancer prognosis estimation prediction from RNA-sequencing data 

Methods  

Objectives - This study aimed at predicting the survival of patients affected by various tumor types from 

their gene expression analysis. This is a classical task with gold-standard datasets that we used to evaluate 

methodological improvements (Supplementary Table 1). We have developed a new format of survival 

data to train deep learning models, a prior-knowledge based dimension reduction and a transfer learning 

strategy. We hypothesized that these methods should help model performance and interpretability. 

Labels – Survival - We used the publicly available survival data of the TCGA database from Liu et al. 
38

. 

The top 5% of patients with the highest overall survival were removed because they were considered 

cured (by surgery, as their overall survival was higher than nine years). Patients with no follow-up were 

also removed (i.e. 0 days or survival status not known). Early censored patients had poor relevance for the 

training; we thus removed patients censored before the median follow-up of the cohort. We then 

performed a random split of the data (80%, 10%, 10%). 

Labels – Organ - For the pre-training on organ prediction, we have pooled GTEx and TCGA data 
8,26

. 

GTEx concerned the analysis of normal organs and TCGA the analysis of primary tumors classified by 

organs of origin. A random split (90%, 10%) was performed on the organ data set (no test cohort was 

required as the organ data were used for the pre-training task). 

Input – RNA sequencing - Inputs used to feed DeepOS were gene expression values estimated from 

RNA-seq. RNA-seq was the most frequent analysis commonly performed in both GTEx and TCGA and 

allowed to gather a maximum of examples matched with the labels described above. RNA-seq is a 

multistep process. RNA is first extracted from the tissue sample and sequenced. For TCGA, a vast 

majority of primary tumor samples came from surgical interventions while for GTEx, it came from non-

diseased tissue samples from human donors. Gene expression is then estimated by the number of RNA 

fragments corresponding to a genome locus from a sequenced sample. TCGA and GTEx gene expressions 

were analyzed with the same bioinformatic pipeline from raw sequencing data and available in Recount2 
21

. Gene expression was estimated in TPM (transcripts per million) with the Rail-RNA pipeline 
39

. TPM 

followed a Poisson distribution, so we log-transformed and scaled the data matrix using natural logarithm.  

Input – Dimension reduction on prior-knowledge - RNA-seq gene expression data is usually highly 

dimensional (~23k protein coding genes plus non-coding regions) which can be a source of overfitting 

during the learning step of deep neural networks 
24

. To reduce the dimensions of input data, we selected 

important cancer-related genes based on prior-knowledge. MSigDB database 
19

 provided gene lists related 

to cancer hallmark and LM22 provided immune cell line specific gene lists 
20

 that are important 

mechanisms for cancer evolution. These two sources comprised a total of 4,499 genes also found in GTEx 

and TCGA RNA-seq data.  

Input – study of the gene selection - For comparison, we trained models with random selections of 4,499 

input genes, excluding the ones found from cancer hallmarks and LM22. We trained those models on the 

same RNA-seq data, using the same workflow (hyper-parameter search and selection of the best model on 

validation C-index). We replicated the experiment twice, each time with different selections of random 

genes (#1 and #2). 
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Models’ architecture - DeepOS model is a multilayers perceptron (MLP), which consists of at least three 

types of layers: the input layer, hidden layers and the output layer. Except for the input data, each unit uses 

a linear function using parameters W and b, activated by a nonlinear function such as ReLU used here for 

the hidden layers. Training was supervised using the backpropagation of the gradients of the error to 

improve model predictions, step by step, by correcting the parameters W and b. The last layer of our 

model was composed of linear functions. 

Loss – Survival loss - Patient survival in TCGA was calculated by the number of days to death (the event 

of interest) since the date of sampling. Censored patients were patients that were still alive (have not 

presented the event of interest) at the time of end of follow-up. Patients with good outcomes are thus more 

prone to be censored. Removing censored patients would influence the model to be over-pessimistic and 

would decrease the number of examples for training. Keeping censored patients leads to challenges in the 

design of a loss function to minimize. We have developed and implemented an approach to train deep 

learning models on survival data. With this approach, follow up was divided into a vector of B time-bins 

(or time intervals). In the raw data, each day of the follow up was associated with one value: 1 if the 

patient is alive, 0 if he is deceased and -1 if he is censored. The value of a bin was the mean of the values 

of each day included in this bin. The bin value ranged from -1 to 1.  

For example, the bin values corresponding to a time interval of 5 days for a patient deceased at day 4 are 

the following: 

 In days: [1, 1, 1, 0, 0, 0, 0, 0, 0, 0] ⇒ bin values: [0.6, 0] 

Concerning a patient censored at day 3 the bin values are:  

 In days: [1, 1, -1, -1, -1, -1, -1, -1, -1, -1] ⇒ bin values: [-0.2, -1] 

We used the MSE, a classical loss function used to backpropagate the error of deep learning models 

(examples in Supplementary Table 6). The MSE is given by: 

       ∑  
                    

with m the number of non-censored patients and n the number of patients. 

Consequently, the model output layer was designed as a vector of survival probabilities over time with the 

number of neurons corresponding to the number of bins. Censored values were ignored in the computation 

of MSE and doing so, the model was trained only on the observed follow up. The cutoff probability value 

for the model to predict time to death was set to 0.5 and first bin with value less than 0.5 was considered. 

Loss – Cox loss - Most of the previous studies predicting survival from RNA-seq used Cox proportional 

hazard model to handle censored survival data. As a control, we trained a model with DeepSurv, a MLP 

with a Cox log-likelihood loss function 
22
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Loss – For organ prediction - Categorical cross entropy was used for the organ prediction task which 

consisted in 38 classes. 

Training – Penalization and learning - Penalization comprises a set of classical methods to prevent 

overfitting during training, such as L1 and L2 regularization and dropout. Another method proposed to 

limit overfitting consists in adding Gaussian noise to the input data for each epoch during the training step 
40

. Adam optimizer and batch normalization were also used to accelerate convergence 
41

.  

Training – Hyper-parameters optimization - Hyper-parameters are parameters controlling the MLP 

architecture, learning strategies and/or penalization of the learning. We have optimized the following 

hyper-parameters: 

-    The number of layers in the MLP; 

-    The number of nodes of the first hidden layer; 

-   The decrease rate of the number of unit per layer (rate by which the number of nodes of the previous 

layer is multiplied to determine the number of nodes of the current layer); 

-    The learning rates lr1 (for organ prediction task) and/or lr2 (for survival prediction task);  

-    The regularization parameters:  

-    The standard deviation of the gaussian noise added to input data; 

-    The dropout rate (continuous values within [0, 0.8]); 

-    Lambda values for L1 and L2 normalization; 

-    The batch size; 

-    The number of epochs of learning. 

Considering the two training tasks (organ and survival), the hyper-parameters search space had 24 

dimensions. We used the Tree-structured Parzen Estimator (TPE) algorithm to train DeepOS hyper-

parameters 
23

. TPE is a Bayesian approach that outperformed the traditional grid search and random search 

on hyper-parameters search. For each new set of hyper-parameters a new random model was fully trained. 

Performance metrics were calculated on the validation set(s) (for organ and/or survival). New hyper-

parameters were inferred from the validation performance by the TPE algorithm. We performed 500 trials 

for hyper-parameters search, based on previous studies 
42

. The model with the best performance on the 

validation set was finally evaluated on the test set. 

Transfer learning strategy - The transfer learning strategy for DeepOS was composed of pre-training on 

organ prediction and fine-tuning on survival prediction, each of these steps with independent hyper-

parameters search. We used validation accuracy to select the best model on organ prediction. We then 

added new layers (number defined by the hyper-parameter search) and an output layer to this model. We 
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froze the organ layers for the first fine-tuning step on survival (including hyper-parameter search), 

considering it as a low abstraction representation of gene expression. A second fine-tuning step (including 

hyper-parameter search) was performed on the same MLP with all layers unfrozen. The final survival 

model selection was based on the validation cohort. 

Evaluation of the model - Metric for organ prediction - To evaluate the performance of the model on 

the organ task, we used classification metrics: accuracy, precision and F1 score. 

Evaluation of the model - Metric for survival prediction - We used the concordance correlation 

coefficient (concordance index, or C-index) to evaluate survival models with censored data 
15,16

. C-index 

represents the proportion of concordant pairs divided by the total number of possible evaluation pairs. For 

example, if a patient A has deceased at time tA and a patient B has been censored at time tB, they can still 

be compared if tA<tB. If the model gives a prediction pA for patient A and pB for patient B, the pair can 

be qualified as concordant if pA< pB and non-concordant otherwise. If tA>tB then it is not possible to 

evaluate this pair and it will not count as a possible evaluation pair.  

We also computed the survival AUROC using sklearn (sksurv.metrics.cumulative_dynamic_auc), which 

is a cumulative area under the ROC curve adapted to censored data 
43

. Finally, we used the p-value of the 

log-rank test to compare the predicted Kaplan-Meier survival curve to the ground truth. The log-rank test 

determines if two survival curves are statistically equivalent (null hypothesis) with a chi2 test. The p-value 

gives indication on whether we should reject the null hypothesis: the smaller it is the more two survival 

curves are different. Conversely, neural networks trained with Cox loss predict a risk and are barely used 

to predict individual survival in time; therefore log rank has not been used to date in this setting, to our 

knowledge. 

Evaluation of the model - Performances by survival time – To further evaluate DeepOS predictions, 

we have assessed the performance depending on survival time. We have sorted the test cohort by OS and 

divided the cohort into 10 subgroups, each group composed of 50 patients. We have then computed the C-

index of each subgroup.  

Evaluation of the model - Learning curves - In order to evaluate the effect of the training set size on the 

model performances for survival prediction, we have generated learning curves. We used the validation 

cohort of 500 patients, given by the data split described previously. For the training set, data were 

iteratively and randomly added, from 500 to 5,529 samples, with steps of 500 samples. Every time a new 

training and hyper-parameters search was launched. The C-indexes were computed for the training and 

validation sets with plots for the median, the first and the third quartile. 

Evaluation of the model – comparison to DeepSurv model – A DeepSurv model was trained, validated 

and tested on the same survival data split and its performances were compared to DeepOS 
22

. We used the 

same hyper-parameter search strategy based on the TPE algorithm. We did not perform pre-training on 

organ prediction with DeepSurv because of incompatibility with the Cox-loss, and because the objective 

was to compare our model to the existing literature.  

Model interpretability – While still an active research field, some techniques allow interpreting MLP 

training. SHAP values were used, a model agnostic technique that quantifies the influence of each input 
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on the model’s predictions 
27

. SHAP values give an input-output correlation mixed with feature 

importance. 

Code and libraries 

To load and process the GTEx and TCGA data we have used the R package recount2 
21

. We have used 

python 3 with Keras 2.2.5 and Tensorflow 1.14, to build and train the model. Hyper-parameter search with 

Tree-structured Parzen Estimator (TPE) was performed with the Optuna library 
44

.  

Code, model and data availability  

The code to load and preprocess the data, together with the code to build, train and test the model is 

publically available on www.github.com/DITEP/DeepOS. The preprocessed data, ready to be inputted in 

the model, is also publically available for maximum transparency. We provided Jupiter notebooks to 

navigate intuitively through the steps of the analysis with results and figures included. The user that would 

want to run the analysis may have slightly different results as few steps are randomized (weight 

initialization and hyper-parameter search for example). DeepOS model trained and presented in this paper 

is also provided under Keras hd5 format.  
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Supplementary material 

Supplementary Figures  

Supplementary Figure 1: cancer type repartition in the split datasets – a) cancer type 

repartition in the train (a) and validation (b) datasets are similar. See supplementary table 3 for 

translation between TCGA nomenclature and histological types.  
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Supplementary Figure 2: DeepOS model architecture – DeepOS is multilayer perceptron 

(MLP) composed of two sub-models. The first, called “Low abstraction MLP”, is specifically 

trained on the organ data, whereas the second, “High abstraction MLP”, is more cancer survival 

specific. To each layer, a ReLU function is applied, and regularization is performed (by batch 

normalization, dropout and L1N and L2N). DeepOS pipeline can be broken down into three sub-

steps : first, the organ specific layer is generated and trained on organ data with a softmax 

output, then this layer is frozen and the survival specific sub-model is generated and trained on 

survival data, and finally, both model are unfrozen and the entire DeepOS model is trained on 

survival data. Survival data is transformed into time interval probabilities to be used in a mean 

squared error loss function to train the neural network. 
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Supplementary Figure 3: Results of the organ of origin prediction task: a, accuracy on the 

validation set for all the trials run during the hyper-parameter search procedure showing a high 

performance of the models overall (mean hyper-parameter search accuracy = 0.849 and 

standard deviation = 0.292) and b, confusion matrix of the best validation model predictions per 

organ of origin (accuracy of 0.9835, precision of 0.9842, recall of 0.9835 and F1-score of 

0.9836). 
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Supplementary Figure 4: a-c, Kaplan-Meier survival curves predicted by DeepOS with 

(orange) and without (green) pre-training, compared to the observed (blue) curve of OS among 

patients in the test cohort (a), the training cohort (b) and the validation cohort (c).  
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Supplementary Figure 5: a, Line chart of the C-indexes computed according to the mean OS of 

10 subgroups of 50 patients derived from the test cohort and predicted using DeepOS with (blue, 

left) and without (green, right) pre-training on organ prediction. b, Bar charts representing the 

distributions of the percentage of patients experiencing the survival event per time interval/bin, 

including censored events (top chart) or not (bottom chart). One time interval accounts for 72 

days. OS: overall survival. 
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Supplementary Figure 6: a, Bar chart of the C-indexes of DeepOS without pre-training 

according to the tumor type (compared to Figure 6a corresponding to fine-tuned DeepOS 

results). We considered only tumor types represented within the test cohort by at least three 

samples associated with uncensored survival outcome. The red dotted line indicates a C-index 

of 0.50 (random prediction). The black line indicates a C-index of 0.715, which refers to the 

median C-index of DeepOS pan-cancer predictions. Patient numbers are represented above the 

bars. b, Gaussian distribution of the mean SHAP values. We have further presented the genes 

with abslute mean SHAP values >0.002. 
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Supplementary Figure 7: Kaplan-Meier survival curves of the test cohort predicted by the 

models (green) or on observed data (blue) after random selections of 4,499 genes and not used 

by DeepOS. Random gene selections are detailed in Supplementary Table 2. Log-rank p-values 

are depicted.  
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Supplementary Figure 8: Heatmap of the mean SHAP values of the 18 genes (with absolute 

mean SHAP value > 0.002), according to the tumor type. Blue and red respectively indicate a 

positive and a negative correlation between high gene expression and poor prognosis 

estimation.  
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Supplementary Tables  

Model 
architectur

e 

Total 
number 

of 
samples 
(training 

+ 
validatio

n) 

Number 
of TCGA 

tumor 
types 

integrate
d in the 
analysis 

Type of 
input 

Perfomanc
es from 
cross-

validation 

Performanc
es on 

independan
t and 

unseen test 
set 

Reference 

Survival 
random 

forest and 
Cox-Lasso 

953 4 
Multi-omics + 
clinical data 

Median C-
index ~ 

0.60; rank = 
[0.624 - 
0.754] 

NA 

Yuan Y, et 
al. ”Assessin
g the clinical 
utility of 
cancer 
genomic and 
proteomic 
data across 
tumor types” 
Nat 
Biotechnol. 
2014 

Cox-Lasso 
with prior-
knowledge 

11854 33 
Gene 

expression 

Median C-
index = 

0.57; rank = 
[0.47 - 0.85] 

NA 

Zheng, X., 
Amos, C. I. 
& Frost, H. 
R. 
Comparison 
of pathway 
and gene-
level models 
for cancer 
prognosis 
prediction. 
BMC 
Bioinformatic
s 21, (2020) 

Multilayers 
Perceptron 
with Cox 

loss 

5031 10 RNA-seq 

Median C-
IPCW ~ 

0.62; rank ~ 
[0.52 - 0.72] 

NA 

Ching T, Zhu 
X, Garmire 
LX. “Cox-
net: An 
artificial 
neural 
network 
method for 
prognosis 
prediction of 
high-
throughput 
omics data.” 
PLoS 
Comput Biol. 
2018 
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Multikernel 
Learning for 

survival 
groups 

6645 32 Multi-omics NA 

Median C-
index = 0.62; 
rank = [0.59-
0.75]  (only 6 
cancer types 

available) 

Ramazzotti 
D, et al. 
”Multi-omic 
tumor data 
reveal 
diversity of 
molecular 
mechanisms 
that 
correlate 
with 
survival”. 
Nat 
Commun. 
2018  

Convolution
al Neural 
Network 
with Cox 

loss 
function 

6404 20 

Multi-omics + 
hystopatholo
gy slides + 
clinical data  

NA 

 Median C-
index (RNA-
seq + clinical 
data) = 0.60; 
rank = [0.51 

- 0.84]; 
Median C-
index  (all 

data) = 0.78; 
rank = [0.66 

- 0.90] 

Anika 
Cheerla and 
Olivier 
Gevaert 
“Deep 
learning with 
multimodal 
representati
on for pan 
cancer 
prognosis 
prediction”, 
Bioinformatic
s, 35, 2019 

Auto 
Encoder 
with Cox 

loss 
function 

5343 12 RNA-seq 

Median C-
index ~ 

0.65; rank ~ 
[0.50 - 0.79] 

NA 

Huang Z, 
Johnson TS, 
Han Z, et al. 
“Deep 
learning-
based 
cancer 
survival 
prognosis 
from RNA-
seq data: 
approaches 
and 
evaluations.,
” BMC Med 
Genomics. 
2020 

Supplementary Table 1: Summary of the performances of previously published Deep Learning 

models that used pan-cancer RNA-seq expression data from the TCGA project to predict overall 

survival of patients affected with cancer. NA: not available; "=" was used when the exact number 
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was specified or could be calculated, whereas "~" was used when the exact number was not 

specified and was extrapolated from a figure  

[too large] 

Supplementary Table 2: Full list of the 4,499 genes related to cancer and selected to reduce 

dimensions in DeepOS. The indication of whether each gene was found in the MSigDB or/and 

LM22 database is specified by “X”. Random selections #1 and #2 depict the full gene lists that 

we used to study the added value of our primary gene selection.  

Study Abbreviation 
(TCGA)  Full Study Name 

Median 
OS 

95%CI 
OS 

ACC Adrenocortical carcinoma 79.2 [52.8;inf] 

BLCA Bladder Urothelial Carcinoma 24.0 
[19.2;31.
2] 

BRCA Breast invasive carcinoma 112.8 
[103.2;11
5.2] 

CESC 
Cervical squamous cell carcinoma and 
endocervical adenocarcinoma 69.6 

[45.6;100
.8] 

CHOL Cholangiocarcinoma 24.0 
[14.4;64.
8] 

COAD Colon adenocarcinoma 67.2 
[55.2;93.
6] 

DLBC 
Lymphoid Neoplasm Diffuse Large B-cell 
Lymphoma 120.0 

[120.0;12
0.0] 

ESCA Esophageal carcinoma 16.8 
[12.0;21.
6] 

GBM Glioblastoma multiforme 12.0 
[12.0;14.
4] 

HNSC Head and Neck squamous cell carcinoma 36.0 
[26.4;50.
4] 

KICH Kidney Chromophobe inf [inf;inf] 

KIRC Kidney renal clear cell carcinoma 81.6 
[72.0;120
.] 

KIRP Kidney renal papillary cell carcinoma inf [86.4;inf] 

LAML Acute Myeloid Leukemia 21.6 [12.0;48.] 

LGG Brain Lower Grade Glioma 64.8 
[52.8;81.
6] 

LIHC Liver hepatocellular carcinoma 45.6 
[28.8;57.
6] 

LUAD Lung adenocarcinoma 40.8 
[36.0;50.
4] 

LUSC Lung squamous cell carcinoma 38.4 
[33.6;50.
4] 
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MESO Mesothelioma 16.8 [14.4;24.] 

OV Ovarian serous cystadenocarcinoma 43.2 
[38.4;45.
6] 

PAAD Pancreatic adenocarcinoma 16.8 
[12.0;19.
2] 

PCPG Pheochromocytoma and Paraganglioma inf [inf;inf] 

PRAD Prostate adenocarcinoma 117.6 
[115.2;11
7.6] 

READ Rectum adenocarcinoma 52.8 [48.0;inf] 

SARC Sarcoma 60.0 
[48.0;76.
8] 

SKCM Skin Cutaneous Melanoma 50.4 
[48.0;62.
4] 

STAD Stomach adenocarcinoma 19.2 
[16.8;24.
0] 

TGCT Testicular Germ Cell Tumors inf [inf;inf] 

THCA Thyroid carcinoma inf [inf;inf] 

THYM Thymoma 115.2 
[96.0;115
.2] 

UCEC Uterine Corpus Endometrial Carcinoma 112.8 
[103.2;11
5.2] 

UCS Uterine Carcinosarcoma 24.0 
[16.8;50.
4] 

UVM Uveal Melanoma 45.6 [43.2;inf] 

Supplementary Table 3: Study abbreviation meanings of the different TCGA cohorts that were 

used, with related median OS (in months) and 95% confidence intervals.   

  
Number 

of 
patients 

Proportion 
of 

censored 
patients 

Median 
OS in 

months 
(using KM 
estimator) 

95%CI 

Training set 5529 0.540 67.2 
[64.8; 
72.0] 

Validation set 500 0.536 72.0 
[64.8; 
88.8] 

Test set 500 0.546 62.4 
[55.2; 
76.8] 

Supplementary Table 4: Description of the training, validation and test datasets obtained from 

the 80%/10%/10% random splitting on selected pan-cancer RNA-seq samples from the TCGA. 

Histology 
C-index no petrain 
(test) 

C-index DeepOS 
(test) Difference 

Nb_patients_tes
t 

ACC 1.0 1.0 0,000 5 
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BLCA 0.30194805194805197 0.5032467532467533 0,201 22 

BRCA 0.5032397408207343 0.531317494600432 0,028 48 

CESC 0.62 0.56 -0,060 9 

COAD 0.41605839416058393 0.5364963503649635 0,120 23 

DLBC 0.6666666666666666 0.8333333333333334 0,167 4 

ESCA 0.5769230769230769 0.7307692307692307 0,154 7 

GBM 0.5 
0.4464285714285714
5 -0,054 8 

HNSC 0.5348258706467661 0.5422885572139303 0,007 24 

KICH 1.0 0.75 -0,250 3 

KIRC 0.6947513812154696 0.6629834254143646 -0,032 35 

KIRP 0.765625 0.765625 0,000 12 

LAML 0.8571428571428571 0.6785714285714286 -0,179 7 

LGG 0.7124183006535948 0.738562091503268 0,026 22 

LIHC 0.8140495867768595 0.6900826446280992 -0,124 18 

LUAD 0.6016260162601627 0.6219512195121951 0,020 20 

LUSC 0.6415525114155252 0.6575342465753424 0,016 26 

MESO 0.6428571428571429 0.7380952380952381 0,095 7 

OV 0.46634615384615385 
0.4503205128205128
3 -0,016 27 

PAAD 0.6346153846153846 0.6089743589743589 -0,026 14 

READ 0.13636363636363635 0.4090909090909091 0,273 7 

SARC 0.8181818181818182 0.7727272727272727 -0,045 12 

SKCM 0.5094339622641509 0.5377358490566038 0,028 18 

STAD 0.5268817204301075 0.5483870967741935 0,022 21 

TGCT 0.9 0.9 0,000 6 

THCA 0.7857142857142857 0.9285714285714286 0,143 21 

UCEC 0.6762114537444934 0.7224669603524229 0,046 31 

UCS 0.6666666666666666 0.6666666666666666 0,000 4 

UVM 1.0 1.0 0,000 4 

Supplementary Table 5: Performances (C-indexes) of DeepOS computed per tumor type on 

the test set, with and without pre-training.  

Patient Censored 
Ground 
truth 

Prediction MSE 

1 No 
  

0.06 

2 Yes 
  

0.0125 

2 Yes 
  

0.0125 
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Supplementary Table 6: Examples of calculation of the loss with mean squared error (MSE) for 

survival data. Censored values were ignored in the computation of MSE and doing so, the model 

was trained only on the observed follow up.   
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