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Abstract

We study the problem of learning to reason

in large scale knowledge graphs (KGs).

More specifically, we describe a novel re-

inforcement learning framework for learn-

ing multi-hop relational paths: we use a

policy-based agent with continuous states

based on knowledge graph embeddings,

which reasons in a KG vector space by

sampling the most promising relation to

extend its path. In contrast to prior work,

our approach includes a reward function

that takes the accuracy, diversity, and ef-

ficiency into consideration. Experimen-

tally, we show that our proposed method

outperforms a path-ranking based algo-

rithm and knowledge graph embedding

methods on Freebase and Never-Ending

Language Learning datasets.1

1 Introduction

In recent years, deep learning techniques have ob-

tained many state-of-the-art results in various clas-

sification and recognition problems (Krizhevsky

et al., 2012; Hinton et al., 2012; Kim, 2014). How-

ever, complex natural language processing prob-

lems often require multiple inter-related decisions,

and empowering deep learning models with the

ability of learning to reason is still a challenging

issue. To handle complex queries where there are

no obvious answers, intelligent machines must be

able to reason with existing resources, and learn to

infer an unknown answer.

More specifically, we situate our study in the

context of multi-hop reasoning, which is the task

of learning explicit inference formulas, given a

large KG. For example, if the KG includes the

1Code and the NELL dataset are available at https://
github.com/xwhan/DeepPath.

beliefs such as Neymar plays for Barcelona, and

Barcelona are in the La Liga league, then ma-

chines should be able to learn the following for-

mula: playerPlaysForTeam(P,T) ∧ teamPlaysIn-

League(T,L) ⇒ playerPlaysInLeague(P,L). In the

testing time, by plugging in the learned formulas,

the system should be able to automatically infer

the missing link between a pair of entities. This

kind of reasoning machine will potentially serve

as an essential components of complex QA sys-

tems.

In recent years, the Path-Ranking Algorithm

(PRA) (Lao et al., 2010, 2011a) emerges as a

promising method for learning inference paths in

large KGs. PRA uses a random-walk with restarts

based inference mechanism to perform multiple

bounded depth-first search processes to find rela-

tional paths. Coupled with elastic-net based learn-

ing, PRA then picks more plausible paths using

supervised learning. However, PRA operates in

a fully discrete space, which makes it difficult to

evaluate and compare similar entities and relations

in a KG.

In this work, we propose a novel approach

for controllable multi-hop reasoning: we frame

the path learning process as reinforcement learn-

ing (RL). In contrast to PRA, we use translation-

based knowledge based embedding method (Bor-

des et al., 2013) to encode the continuous state of

our RL agent, which reasons in the vector space

environment of the knowledge graph. The agent

takes incremental steps by sampling a relation to

extend its path. To better guide the RL agent for

learning relational paths, we use policy gradient

training (Mnih et al., 2015) with a novel reward

function that jointly encourages accuracy, diver-

sity, and efficiency. Empirically, we show that our

method outperforms PRA and embedding based

methods on a Freebase and a Never-Ending Lan-

guage Learning (Carlson et al., 2010a) dataset.
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Our contributions are three-fold:

• We are the first to consider reinforcement

learning (RL) methods for learning relational

paths in knowledge graphs;

• Our learning method uses a complex reward

function that considers accuracy, efficiency,

and path diversity simultaneously, offering

better control and more flexibility in the path-

finding process;

• We show that our method can scale up to

large scale knowledge graphs, outperform-

ing PRA and KG embedding methods in two

tasks.

In the next section, we outline related work in

path-finding and embedding methods in KGs. We

describe the proposed method in Section 3. We

show experimental results in Section 4. Finally,

we conclude in Section 5.

2 Related Work

The Path-Ranking Algorithm (PRA) method (Lao

et al., 2011b) is a primary path-finding approach

that uses random walk with restart strategies for

multi-hop reasoning. Gardner et al. (2013; 2014)

propose a modification to PRA that computes fea-

ture similarity in the vector space. Wang and

Cohen (2015) introduce a recursive random walk

approach for integrating the background KG and

text—the method performs structure learning of

logic programs and information extraction from

text at the same time. A potential bottleneck for

random walk inference is that supernodes connect-

ing to large amount of formulas will create huge

fan-out areas that significantly slow down the in-

ference and affect the accuracy.

Toutanova et al. (2015) provide a convolutional

neural network solution to multi-hop reasoning.

They build a CNN model based on lexicalized de-

pendency paths, which suffers from the error prop-

agation issue due to parse errors. Guu et al. (2015)

uses KG embeddings to answer path queries. Zeng

et al. (2014) described a CNN model for rela-

tional extraction, but it does not explicitly model

the relational paths. Neelakantan et al. (2015) pro-

pose a recurrent neural networks model for model-

ing relational paths in knowledge base completion

(KBC), but it trains too many separate models, and

therefore it does not scale. Note that many of the

recent KG reasoning methods (Neelakantan et al.,

2015; Das et al., 2017) still rely on first learning

the PRA paths, which only operates in a discrete

space. Comparing to PRA, our method reasons

in a continuous space, and by incorporating vari-

ous criteria in the reward function, our reinforce-

ment learning (RL) framework has better control

and more flexibility over the path-finding process.

Neural symbolic machine (Liang et al., 2016)

is a more recent work on KG reasoning, which

also applies reinforcement learning but has a dif-

ferent flavor from our work. NSM learns to com-

pose programs that can find answers to natural lan-

guage questions, while our RL model tries to add

new facts to knowledge graph (KG) by reasoning

on existing KG triples. In order to get answers,

NSM learns to generate a sequence of actions that

can be combined as a executable program. The ac-

tion space in NSM is a set of predefined tokens. In

our framework, the goal is to find reasoning paths,

thus the action space is relation space in the KG. A

similar framework (Johnson et al., 2017) has also

been applied to visual reasoning tasks.

3 Methodology

In this section, we describe in detail our RL-based

framework for multi-hop relation reasoning. The

specific task of relation reasoning is to find re-

liable predictive paths between entity pairs. We

formulate the path finding problem as a sequen-

tial decision making problem which can be solved

with a RL agent. We first describe the environ-

ment and the policy-based RL agent. By interact-

ing with the environment designed around the KG,

the agent learns to pick the promising reasoning

paths. Then we describe the training procedure of

our RL model. After that, we describe an efficient

path-constrained search algorithm for relation rea-

soning with the paths found by the RL agent.

3.1 Reinforcement Learning for Relation

Reasoning

The RL system consists of two parts (see Fig-

ure 1). The first part is the external environment

E which specifies the dynamics of the interaction

between the agent and the KG. This environment

is modeled as a Markov decision process (MDP).

A tuple < S,A,P,R > is defined to represent

the MDP, where S is the continuous state space,

A = {a1, a2, ..., an} is the set of all available ac-

tions, P(St+1 = s
′

|St = s, At = a) is the transi-

tion probability matrix, and R(s, a) is the reward
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Figure 1: Overview of our RL model. Left: The KG environment E modeled by a MDP. The dotted arrows (partially) show the
existing relation links in the KG and the bold arrows show the reasoning paths found by the RL agent. −1 denotes the inverse
of an relation. Right: The structure of the policy network agent. At each step, by interacting with the environment, the agent
learns to pick a relation link to extend the reasoning paths.

function of every (s, a) pairs.

The second part of the system, the RL

agent, is represented as a policy network

πθ(s, a) = p(a|s; θ) which maps the state vec-

tor to a stochastic policy. The neural network

parameters θ are updated using stochastic gra-

dient descent. Compared to Deep Q Network

(DQN) (Mnih et al., 2013), policy-based RL

methods turn out to be more appropriate for our

knowledge graph scenario. One reason is that

for the path finding problem in KG, the action

space can be very large due to complexity of the

relation graph. This can lead to poor convergence

properties for DQN. Besides, instead of learning

a greedy policy which is common in value-based

methods like DQN, the policy network is able to

learn a stochastic policy which prevent the agent

from getting stuck at an intermediate state. Before

we describe the structure of our policy network,

we first describe the components (actions, states,

rewards) of the RL environment.

Actions Given the entity pairs (es, et) with

relation r, we want the agent to find the most

informative paths linking these entity pairs.

Beginning with the source entity es, the agent use

the policy network to pick the most promising

relation to extend its path at each step until it

reaches the target entity et. To keep the output

dimension of the policy network consistent, the

action space is defined as all the relations in the

KG.

States The entities and relations in a KG are

naturally discrete atomic symbols. Since exist-

ing practical KGs like Freebase (Bollacker et al.,

2008) and NELL (Carlson et al., 2010b) often have

huge amounts of triples. It is impossible to di-

rectly model all the symbolic atoms in states. To

capture the semantic information of these sym-

bols, we use translation-based embeddings such as

TransE (Bordes et al., 2013) and TransH (Wang

et al., 2014) to represent the entities and relations.

These embeddings map all the symbols to a low-

dimensional vector space. In our framework, each

state captures the agent’s position in the KG. After

taking an action, the agent will move from one en-

tity to another. These two are linked by the action

(relation) just taken by the agent. The state vector

at step t is given as follows:

st = (et, etarget − et)

where et denotes the embeddings of the current

entity node and etarget denotes the embeddings of
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the target entity. At the initial state, et = esource.

We do not incorporate the reasoning relation in

the state, because the embedding of the reasoning

relation remain constant during path finding,

which is not helpful in training. However, we

find out that by training the RL agent using a set

of positive samples for one particular relation,

the agent can successfully discover the relation

semantics.

Rewards There are a few factors that contribute to

the quality of the paths found by the RL agent. To

encourage the agent to find predictive paths, our

reward functions include the following scoring cri-

teria:

Global accuracy: For our environment settings,

the number of actions that can be taken by the

agent can be very large. In other words, there are

much more incorrect sequential decisions than the

correct ones. The number of these incorrect de-

cision sequences can increase exponentially with

the length of the path. In view of this challenge,

the first reward function we add to the RL model

is defined as follows:

rGLOBAL =

{

+1, if the path reaches etarget

−1, otherwise

the agent is given an offline positive reward +1 if

it reaches the target after a sequence of actions.

Path efficiency: For the relation reasoning task,

we observe that short paths tend to provide more

reliable reasoning evidence than longer paths.

Shorter chains of relations can also improve the

efficiency of the reasoning by limiting the length

of the RL’s interactions with the environment. The

efficiency reward is defined as follows:

rEFFICIENCY =
1

length(p)

where path p is defined as a sequence of relations

r1 → r2 → ...→ rn.

Path diversity: We train the agent to find paths us-

ing positive samples for each relation. These train-

ing sample (esource, etarget) have similar state rep-

resentations in the vector space. The agent tends

to find paths with similar syntax and semantics.

These paths often contains redundant information

since some of them may be correlated. To encour-

age the agent to find diverse paths, we define a di-

versity reward function using the cosine similarity

between the current path and the existing ones:

rDIVERSITY = −
1

|F |

|F |
∑

i=1

cos(p,pi)

where p =
∑n

i=1 ri represents the path embed-

ding for the relation chain r1 → r2 → ...→ rn.

Policy Network We use a fully-connected neu-

ral network to parameterize the policy function

π(s; θ) that maps the state vector s to a proba-

bility distribution over all possible actions. The

neural network consists of two hidden layers, each

followed by a rectifier nonlinearity layer (ReLU).

The output layer is normalized using a softmax

function (see Figure 1).

3.2 Training Pipeline

In practice, one big challenge of KG reasoning is

that the relation set can be quite large. For a typ-

ical KG, the RL agent is often faced with hun-

dreds (thousands) of possible actions. In other

words, the output layer of the policy network of-

ten has a large dimension. Due to the complexity

of the relation graph and the large action space,

if we directly train the RL model by trial and er-

rors, which is typical for RL algorithms, the RL

model will show very poor convergence proper-

ties. After a long-time training, the agents fails

to find any valuable path. To tackle this prob-

lem, we start our training with a supervised policy

which is inspired by the imitation learning pipeline

used by AlphaGo (Silver et al., 2016). In the Go

game, the player is facing nearly 250 possible le-

gal moves at each step. Directly training the agent

to pick actions from the original action space can

be a difficult task. AlphaGo first train a supervised

policy network using experts moves. In our case,

the supervised policy is trained with a randomized

breadth-first search (BFS).

Supervised Policy Learning For each relation,

we use a subset of all the positive samples (en-

tity pairs) to learn the supervised policy. For each

positive sample (esource, etarget), a two-side BFS

is conducted to find same correct paths between

the entities. For each path p with a sequence of

relations r1 → r2 → ... → rn, we update the pa-

rameters θ to maximize the expected cumulative

reward using Monte-Carlo Policy Gradient (RE-
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INFORCE) (Williams, 1992):

J(θ) = Ea∼π(a|s;θ)(
∑

t

Rst,at
)

=
∑

t

∑

a∈A

π(a|st; θ)Rst,at
(1)

where J(θ) is the expected total rewards for one

episode. For supervised learning, we give a re-

ward of +1 for each step of a successful episode.

By plugging in the paths found by the BFS, the

approximated gradient used to update the policy

network is shown below:

∇θJ(θ) =
∑

t

∑

a∈A

π(a|st; θ)∇θ log π(a|st; θ)

≈ ∇θ

∑

t

log π(a = rt|st; θ) (2)

where rt belongs to the path p.

However, the vanilla BFS is a biased search al-

gorithm which prefers short paths. When plug-

ging in these biased paths, it becomes difficult

for the agent to find longer paths which may po-

tentially be useful. We want the paths to be

controlled only by the defined reward functions.

To prevent the biased search, we adopt a sim-

ple trick to add some random mechanisms to the

BFS. Instead of directly searching the path be-

tween esource and etarget, we randomly pick a in-

termediate node einter and then conduct two BFS

between (esource, einter) and (einter, etarget). The

concatenated paths are used to train the agent. The

supervised learning saves the agent great efforts

learning from failed actions. With the learned ex-

perience, we then train the agent to find desirable

paths.

Retraining with Rewards To find the reasoning

paths controlled by the reward functions, we use

reward functions to retrain the supervised policy

network. For each relation, the reasoning with one

entity pair is treated as one episode. Starting with

the source node esource, the agent picks a relation

according to the stochastic policy π(a|s), which is

a probability distribution over all relations, to ex-

tend its reasoning path. This relation link may lead

to a new entity, or it may lead to nothing. These

failed steps will cause the agent to receive negative

rewards. The agent will stay at the same state af-

ter these failed steps. Since the agent is following

a stochastic policy, the agent will not get stuck by

repeating a wrong step. To improve the training ef-

ficiency, we limit the episode length with an upper

Algorithm 1: Retraining Procedure with re-

ward functions

1 Restore parameters θ from supervised policy;

2 for episode← 1 to N do

3 Initialize state vector st ← s0

4 Initialize episode length steps← 0
5 while num steps < max length do

6 Randomly sample action a ∼ π(a|st)
7 Observe rewardRt, next state st+1

// if the step fails

8 ifRt = −1 then

9 Save < st, a > toMneg

10 if success or steps = max length

then

11 break

12 Increment num steps

// penalize failed steps

13 Update θ using

g ∝ ∇θ

∑

Mneg
log π(a = rt|st; θ)(−1)

if success then

14 Rtotal ← λ1rGLOBAL + λ2rEFFICIENCY +
λ3rDIVERSITY

15 Update θ using

g ∝ ∇θ

∑

t log π(a = rt|st; θ)Rtotal

bound max length. The episode ends if the agent

fails to reach the target entity within max length

steps. After each episode, the policy network is

updated using the following gradient:

∇θJ(θ) = ∇θ

∑

t

log π(a = rt|st; θ)Rtotal (3)

where Rtotal is the linear combination of the de-

fined reward functions. The detail of the retrain

process is shown in Algorithm 1. In practice, θ is

updated using the Adam Optimizer (Kingma and

Ba, 2014) with L2 regularization.

3.3 Bi-directional Path-constrained Search

Given an entity pair, the reasoning paths learned

by the RL agent can be used as logical formulas

to predict the relation link. Each formula is veri-

fied using a bi-directional search. In a typical KG,

one entity node can be linked to a large number

of neighbors with the same relation link. A sim-

ple example is the relation personNationality−1,

which denotes the inverse of personNationality.

Following this link, the entity United States can

reach numerous neighboring entities. If the for-
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Algorithm 2: Bi-directional search for path

verification

1 Given a reasoning path

p : r1 → r2 → ...→ rn

2 for (ei, ej) in test set D do

3 start← 0; end← n

4 left← ∅; right← ∅
5 while start < end do

6 leftEx← ∅; rightEx← ∅
7 if len(left) < len(right) then

8 Extend path on the left side

9 Add connected nodes to leftEx

10 left← leftEx

11 else

12 Extend path on the right side

13 Add connected nodes to rightEx

14 right← rightEx

15 if left ∩ right 6= ∅ then

16 return True

17 else

18 return False

mula consists of such links, the number of inter-

mediate entities can exponentially increase as we

follow the reasoning formula. However, we ob-

serve that for these formulas, if we verify the for-

mula from the inverse direction. The number of in-

termediate nodes can be tremendously decreased.

Algorithm 2 shows a detailed description of the

proposed bi-directional search.

4 Experiments

To evaluate the reasoning formulas found by our

RL agent, we explore two standard KG reason-

ing tasks: link prediction (predicting target en-

tities) and fact prediction (predicting whether an

unknown fact holds or not). We compare our

method with both path-based methods and embed-

ding based methods. After that, we further analyze

the reasoning paths found by our RL agent. These

highly predictive paths validate the effectiveness

of the reward functions. Finally, we conduct a ex-

periment to investigate the effect of the supervised

learning procedure.

4.1 Dataset and Settings

Table 1 shows the statistics of the two datasets

we conduct our experiments on. Both of them

Dataset # Ent. # R. # Triples # Tasks

FB15K-237 14,505 237 310,116 20
NELL-995 75,492 200 154.213 12

Table 1: Statistics of the Datasets. # Ent. denotes the number
of unique entities and # R. denotes the number of relations

are subsets of larger datasets. The triples in

FB15K-237 (Toutanova et al., 2015) are sampled

from FB15K (Bordes et al., 2013) with redun-

dant relations removed. We perform the reasoning

tasks on 20 relations which have enough reason-

ing paths. These tasks consists of relations from

different domains like Sports, People, Locations,

Film, etc. Besides, we present a new NELL sub-

set that is suitable for multi-hop reasoning from

the 995th iteration of the NELL system. We first

remove the triples with relation generalizations or

haswikipediaurl. These two relations appear more

than 2M times in the NELL dataset, but they have

no reasoning values. After this step, we only se-

lect the triples with Top-200 relations. To facilitate

path finding, we also add the inverse triples. For

each triple (h, r, t), we append (t, r−1, h) to the

datasets. With these inverse triples, the agent is

able to step backward in the KG.

For each reasoning task ri, we remove all the

triples with ri or r−1
i from the KG. These removed

triples are split into train and test samples. For

the link prediction task, each h in the test triples

{(h, r, t)} is considered as one query. A set of

candidate target entities are ranked using different

methods. For fact prediction, the true test triples

are ranked with some generated false triples.

4.2 Baselines and Implementation Details

Most KG reasoning methods are based on either

path formulas or KG embeddings. we explore

methods from both of these two classes in our ex-

periments. For path based methods, we compare

our RL model with the PRA (Lao et al., 2011a)

algorithm, which has been used in a couple of rea-

soning methods (Gardner et al., 2013; Neelakan-

tan et al., 2015). PRA is a data-driven algorithm

using random walks (RW) to find paths and obtain

path features. For embedding based methods, we

evaluate several state-of-the-art embeddings de-

signed for knowledge base completion, such as

TransE (Bordes et al., 2013), TransH (Wang et al.,

2014), TransR (Lin et al., 2015) and TransD (Ji

et al., 2015) .

The implementation of PRA is based on the
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FB15K-237 NELL-995

Tasks PRA RL TransE TransR Tasks PRA RL TransE TransR

teamSports 0.987 0.955 0.896 0.784 athletePlaysForTeam 0.547 0.750 0.627 0.673
birthPlace 0.441 0.531 0.403 0.417 athletePlaysInLeague 0.841 0.960 0.773 0.912

personNationality 0.846 0.823 0.641 0.720 athleteHomeStadium 0.859 0.890 0.718 0.722
filmDirector 0.349 0.441 0.386 0.399 athletePlaysSport 0.474 0.957 0.876 0.963

filmWrittenBy 0.601 0.457 0.563 0.605 teamPlaySports 0.791 0.738 0.761 0.814
filmLanguage 0.663 0.670 0.642 0.641 orgHeadquaterCity 0.811 0.790 0.620 0.657
tvLanguage 0.960 0.969 0.804 0.906 worksFor 0.681 0.711 0.677 0.692
capitalOf 0.829 0.783 0.554 0.493 bornLocation 0.668 0.757 0.712 0.812

organizationFounded 0.281 0.309 0.390 0.339 personLeadsOrg 0.700 0.795 0.751 0.772
musicianOrigin 0.426 0.514 0.361 0.379 orgHiredPerson 0.599 0.742 0.719 0.737

... ...

Overall 0.541 0.572 0.532 0.540 0.675 0.796 0.737 0.789

Table 2: Link prediction results (MAP) on two datasets.

code released by (Lao et al., 2011a). We use the

TopK negative mode to generate negative samples

for both train and test samples. For each pos-

itive samples, there are approximately 10 corre-

sponding negative samples. Each negative sample

is generated by replacing the true target entity t

with a faked one t
′

in each triple (h, r, t). These

positive and negative test pairs generated by PRA

make up the test set for all methods evaluated in

this paper. For TransE,R,H,D, we learn a separate

embedding matrix for each reasoning task using

the positive training entity pairs. All these embed-

dings are trained for 1,000 epochs. 2

Our RL model make use of TransE to get the

continuous representation of the entities and rela-

tions. We use the same dimension as TransE, R

to embed the entities. Specifically, the state vec-

tor we use has a dimension of 200, which is also

the input size of the policy network. To reason

using the path formulas, we adopt a similar lin-

ear regression approach as in PRA to re-rank the

paths. However, instead of using the random walk

probabilities as path features, which can be com-

putationally expensive, we simply use binary path

features obtained by the bi-directional search. We

observe that with only a few mined path formulas,

our method can achieve better results than PRA’s

data-driven approach.

4.3 Results

4.3.1 Quantitative Results

Link Prediction This task is to rank the target en-

tities given a query entity. Table 2 shows the mean

average precision (MAP) results on two datasets.

2The implementation we used can be found at https:
//github.com/thunlp/Fast-TransX

Fact Prediction Results

Methods FB15K-237 NELL-995

RL 0.311 0.493

TransE 0.277 0.383

TransH 0.309 0.389

TransR 0.302 0.406

TransD 0.303 0.413

Table 3: Fact prediction results (MAP) on two datasets.

# of Reasoning Paths

Tasks PRA RL

worksFor 247 25

teamPlaySports 113 27

teamPlaysInLeague 69 21

athletehomestadium 37 11

organizationHiredPerson 244 9

...

Average # 137.2 20.3

Table 4: Number of reasoning paths used by PRA and our RL
model. RL achieved better MAP with a more compact set of
learned paths.

Since path-based methods generally work better

than embedding methods for this task, we do not

include the other two embedding baselines in this

table. Instead, we spare the room to show the de-

tailed results on each relation reasoning task.

For the overall MAP shown in the last row of the

table, our approach significantly outperforms both

the path-based method and embedding methods on

two datasets, which validates the strong reasoning

ability of our RL model. For most relations, since

the embedding methods fail to use the path infor-
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Figure 2: The distribution of paths lengths on two datasets

mation in the KG, they generally perform worse

than our RL model or PRA. However, when there

are not enough paths between entities, our model

and PRA can give poor results. For example,

for the relation filmWrittenBy, our RL model only

finds 4 unique reasoning paths, which means there

is actually not enough reasoning evidence existing

in the KG. Another observation is that we always

get better performance on the NELL dataset. By

analyzing the paths found from the KGs, we be-

lieve the potential reason is that the NELL dataset

has more short paths than FB15K-237 and some

of them are simply synonyms of the reasoning re-

lations.

Fact Prediction Instead of ranking the target en-

tities, this task directly ranks all the positive and

negative samples for a particular relation. The

PRA is not included as a baseline here, since the

PRA code only gives a target entity ranking for

each query node instead of a ranking of all triples.

Table 3 shows the overall results of all the meth-

ods. Our RL model gets even better results on this

task. We also observe that the RL model beats all

the embedding baselines on most reasoning tasks.

4.3.2 Qualitative Analysis of Reasoning Paths

To analyze the properties of reasoning paths, we

show a few reasoning paths found by the agent

in Table 5. To illustrate the effect of the effi-

ciency reward function, we show the path length

distributions in Figure 2. To interpret these paths,

take the personNationality relation for example,

the first reasoning path indicates that if we know

facts placeOfBirth(x,y) and locationContains(z,y)

then it is highly possible that person x has nation-

ality z. These short but predictive paths indicate

the effectiveness of the RL model. Another im-

portant observation is that our model use much
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Figure 3: The success ratio (succ10) during training. Task:
athletePlaysForTeam.3

fewer reasoning paths than PRA, which indicates

that our model can actually extract the most reli-

able reasoning evidence from KG. Table 4 shows

some comparisons about the number of reasoning

paths. We can see that, with the pre-defined re-

ward functions, the RL agent is capable of picking

the strong ones and filter out similar or irrelevant

ones.

4.3.3 Effect of Supervised Learning

As mentioned in Section 3.2, one major challenge

for applying RL to KG reasoning is the large ac-

tion space. We address this issue by applying

supervised learning before the reward retraining

step. To show the effect of the supervised train-

ing, we evaluate the agent’s success ratio of reach-

ing the target within 10 steps (succ10) after differ-

ent number of training episodes. For each train-

ing episode, one pair of entities (esource, etarget)
in the train set is used to find paths. All the cor-

rect paths linking the entities will get a +1 global

reward. We then plug in some true paths for train-

ing. The succ10 is calculated on a held-out test set

that consists of 100 entity pairs. For the NELL-

995 dataset, since we have 200 unique relations,

the dimension of the action space will be 400 af-

ter we add the backward actions. This means that

random walks will get very low succ10 since there

may be nearly 40010 invalid paths. Figure 3 shows

the succ10 during training. We see that even the

agent has not seen the entity before, it can actually

pick the promising relation to extend its path. This

also validates the effectiveness of our state repre-

sentations.

3The confidence band is generated using 50 different runs.
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Relation Reasoning Path

filmCountry

filmReleaseRegion

featureFilmLocation→ locationContains−1

actorFilm−1 → personNationality

personNationality

placeOfBirth→ locationContains−1

peoplePlaceLived→ locationContains−1

peopleMarriage→ locationOfCeremony→ locationContains−1

tvProgramLanguage

tvCountryOfOrigin→ countryOfficialLanguage

tvCountryOfOrigin→ filmReleaseRegion−1 → filmLanguage

tvCastActor→ filmLanguage

personBornInLocation

personBornInCity

graduatedUniversity→ graduatedSchool−1 → personBornInCity

personBornInCity→ atLocation−1 → atLocation

athletePlaysForTeam

athleteHomeStadium→ teamHomeStadium−1

athletePlaysSport→ teamPlaysSport−1

athleteLedSportsTeam

personLeadsOrganization

worksFor

organizationTerminatedPerson−1

mutualProxyFor−1

Table 5: Example reasoning paths found by our RL model. The first three relations come from the FB15K-237 dataset. The
others are from NELL-995. Inverses of existing relations are denoted by −1.

5 Conclusion and Future Work

In this paper, we propose a reinforcement learn-

ing framework to improve the performance of re-

lation reasoning in KGs. Specifically, we train a

RL agent to find reasoning paths in the knowledge

base. Unlike previous path finding models that are

based on random walks, the RL model allows us

to control the properties of the found paths. These

effective paths can also be used as an alternative to

PRA in many path-based reasoning methods. For

two standard reasoning tasks, using the RL paths

as reasoning formulas, our approach generally out-

performs two classes of baselines.

For future studies, we plan to investigate

the possibility of incorporating adversarial learn-

ing (Goodfellow et al., 2014) to give better re-

wards than the human-defined reward functions

used in this work. Instead of designing rewards

according to path characteristics, a discriminative

model can be trained to give rewards. Also, to ad-

dress the problematic scenario when the KG does

not have enough reasoning paths, we are interested

in applying our RL framework to joint reasoning

with KG triples and text mentions.
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