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Figure 1. Besides extreme variability in articulations, many of the

joints are barely visible. We can guess the location of the right

arm in the left image only because we see the rest of the pose and

anticipate the motion or activity of the person. Similarly, the left

body half of the person on the right is not visible at all. These

are examples of the need for holistic reasoning. We believe that

DNNs can naturally provide such type of reasoning.

Abstract

We propose a method for human pose estimation based

on Deep Neural Networks (DNNs). The pose estimation

is formulated as a DNN-based regression problem towards

body joints. We present a cascade of such DNN regres-

sors which results in high precision pose estimates. The

approach has the advantage of reasoning about pose in a

holistic fashion and has a simple but yet powerful formula-

tion which capitalizes on recent advances in Deep Learn-

ing. We present a detailed empirical analysis with state-of-

art or better performance on four academic benchmarks of

diverse real-world images.

1. Introduction

The problem of human pose estimation, defined as the

problem of localization of human joints, has enjoyed sub-

stantial attention in the computer vision community. In

Fig. 1, one can see some of the challenges of this prob-

lem – strong articulations, small and barely visible joints,

occlusions and the need to capture the context.

The main stream of work in this field has been motivated

mainly by the first challenge, the need to search in the large

space of all possible articulated poses. Part-based models

lend themselves naturally to model articulations ([16, 8])

and in the recent years a variety of models with efficient

inference have been proposed ([6, 18]).

The above efficiency, however, is achieved at the cost of

limited expressiveness – the use of local detectors, which

reason in many cases about a single part, and most impor-

tantly by modeling only a small subset of all interactions

between body parts. These limitations, as exemplified in

Fig. 1, have been recognized and methods reasoning about

pose in a holistic manner have been proposed [15, 20] but

with limited success in real-world problems.

In this work we ascribe to this holistic view of human

pose estimation. We capitalize on recent developments of

deep learning and propose a novel algorithm based on a

Deep Neural Network (DNN). DNNs have shown outstand-

ing performance on visual classification tasks [14] and more

recently on object localization [22, 9]. However, the ques-

tion of applying DNNs for precise localization of articulated

objects has largely remained unanswered. In this paper we

attempt to cast a light on this question and present a simple

and yet powerful formulation of holistic human pose esti-

mation as a DNN.

We formulate the pose estimation as a joint regression

problem and show how to successfully cast it in DNN set-

tings. The location of each body joint is regressed to using

as an input the full image and a 7-layered generic convolu-

tional DNN. There are two advantages of this formulation.

First, the DNN is capable of capturing the full context of

each body joint – each joint regressor uses the full image

as a signal. Second, the approach is substantially simpler

to formulate than methods based on graphical models – no

need to explicitly design feature representations and detec-

tors for parts; no need to explicitly design a model topology

and interactions between joints. Instead, we show that a

generic convolutional DNN can be learned for this problem.

Further, we propose a cascade of DNN-based pose pre-

dictors. Such a cascade allows for increased precision of

joint localization. Starting with an initial pose estimation,

based on the full image, we learn DNN-based regressors

which refines the joint predictions by using higher resolu-

tion sub-images.

We show state-of-art results or better than state-of-art on
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four widely used benchmarks against all reported results.

We show that our approach performs well on images of peo-

ple which exhibit strong variation in appearance as well as

articulations. Finally, we show generalization performance

by cross-dataset evaluation.

2. Related Work

The idea of representing articulated objects in general,

and human pose in particular, as a graph of parts has been

advocated from the early days of computer vision [16]. The

so called Pictorial Strictures (PSs), introduced by Fishler

and Elschlager [8], were made tractable and practical by

Felzenszwalb and Huttenlocher [6] using the distance trans-

form trick. As a result, a wide variety of PS-based models

with practical significance were subsequently developed.

The above tractability, however, comes with the limita-

tion of having a tree-based pose models with simple binary

potential not depending on image data. As a result, research

has focused on enriching the representational power of the

models while maintaining tractability. Earlier attempts to

achieve this were based on richer part detectors [18, 1, 4].

More recently, a wide variety of models expressing complex

joint relationships were proposed. Yang and Ramanan [26]

use a mixture model of parts. Mixture models on the full

model scale, by having mixture of PSs, have been studied

by Johnson and Everingham [13]. Richer higher-order spa-

tial relationships were captured in a hierarchical model by

Tian et al. [24]. A different approach to capture higher-

order relationship is through image-dependent PS models,

which can be estimated via a global classifier [25, 19, 17].

Approaches which ascribe to our philosophy of reason-

ing about pose in a holistic manner have shown limited

practicality. Mori and Malik [15] try to find for each test

image the closest exemplar from a set of labeled images

and transfer the joint locations. A similar nearest neighbor

setup is employed by Shakhnarovich et al. [20], who how-

ever use locality sensitive hashing. More recently, Gkioxari

et al. [10] propose a semi-global classifier for part config-

uration. This formulation has shown very good results on

real-world data, however, it is based on linear classifiers

with less expressive representation than ours and is tested

on arms only. Finally, the idea of pose regression has been

employed by Ionescu et al. [11], however they reason about

3D pose.

The closest work to ours uses convolution NNs together

with Neighborhood Component Analysis to regress toward

a point in an embedding representing pose [23]. However,

this work does not employ a cascade of networks. Cascades

of DNN regressors have been used for localization, however

of facial points [21].

3. Deep Learning Model for Pose Estimation

We use the following notation. To express a pose, we en-

code the locations of all k body joints in pose vector defined

as y = (. . . ,yT
i , . . .)

T , i ∈ {1, . . . , k}, where yi contains

the x and y coordinates of the ith joint. A labeled image is

denoted by (x,y) where x stands for the image data and y

is the ground truth pose vector.

Further, since the joint coordinates are in absolute image

coordinates, it proves beneficial to normalize them w. r. t. a

box b bounding the human body or parts of it. In a trivial

case, the box can denote the full image. Such a box is de-

fined by its center bc ∈ R
2 as well as width bw and height

bh: b = (bc, bw, bh). Then the joint yi can be translated by

the box center and scaled by the box size which we refer to

as normalization by b:

N(yi; b) =

(

1/bw 0
0 1/bh

)

(yi − bc) (1)

Further, we can apply the same normalization to the ele-

ments of pose vector N(y; b) = (. . . , N(yi; b)
T , . . .)T re-

sulting in a normalized pose vector. Finally, with a slight

abuse of notation, we use N(x; b) to denote a crop of the

image x by the bounding box b, which de facto normalizes

the image by the box. For brevity we denote by N(·) nor-

malization with b being the full image box.

3.1. Pose Estimation as DNN­based Regression

In this work, we treat the problem of pose estimation as

regression, where the we train and use a function ψ(x; θ) ∈
R

2k which for an image x regresses to a normalized pose

vector, where θ denotes the parameters of the model. Thus,

using the normalization transformation from Eq. (1) the

pose prediction y∗ in absolute image coordinates reads

y∗ = N−1(ψ(N(x); θ)) (2)

Despite its simple formulation, the power and complex-

ity of the method is in ψ, which is based on a convolutional

Deep Neural Network (DNN). Such a convolutional net-

work consists of several layers – each being a linear trans-

formation followed by a non-linear one. The first layer takes

as input an image of predefined size and has a size equal to

the number of pixels times three color channels. The last

layer outputs the target values of the regression, in our case

2k joint coordinates.

We base the architecture of the ψ on the work by

Krizhevsky et al. [14] for image classification since it has

shown outstanding results on object localization as well

[22]. In a nutshell, the network consists of 7 layers (see

Fig. 2 left). Denote by C a convolutional layer, by LRN
a local response normalization layer, P a pooling layer

and by F a fully connected layer. Only C and F layers
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Figure 2. Left: schematic view of the DNN-based pose regression. We visualize the network layers with their corresponding dimensions,

where convolutional layers are in blue, while fully connected ones are in green. We do not show the parameter free layers. Right: at stage

s, a refining regressor is applied on a sub image to refine a prediction from the previous stage.

contain learnable parameters, while the rest are parame-

ter free. Both C and F layers consist of a linear trans-

formation followed by a nonlinear one, which in our case

is a rectified linear unit. For C layers, the size is de-

fined as width × height × depth, where the first two di-

mensions have a spatial meaning while the depth defines

the number of filters. If we write the size of each layer in

parentheses, then the network can be described concisely

as C(55 × 55 × 96) − LRN − P − C(27 × 27 × 256) −
LRN − P − C(13 × 13 × 384) − C(13 × 13 × 384) −
C(13 × 13 × 256) − P − F (4096) − F (4096). The filter

size for the first two C layers is 11 × 11 and 5 × 5 and for

the remaining three is 3 × 3. Pooling is applied after three

layers and contributes to increased performance despite the

reduction of resolution. The input to the net is an image

of 220 × 220 which via stride of 4 is fed into the network.

The total number of parameters in the above model is about

40M. For further details, we refer the reader to [14].

The use of a generic DNN architecture is motivated by

its outstanding results on both classification and localization

problems. In the experimental section we show that such a

generic architecture can be used to learn a model resulting

in state-of-art or better performance on pose estimation as

well. Further, such a model is a truly holistic one — the

final joint location estimate is based on a complex nonlinear

transformation of the full image.

Additionally, the use of a DNN obviates the need to de-

sign a domain specific pose model. Instead such a model

and the features are learned from the data. Although the re-

gression loss does not model explicit interactions between

joints, such are implicitly captured by all of the 7 hidden

layers – all the internal features are shared by all joint re-

gressors.

Training The difference to [14] is the loss. Instead of a

classification loss, we train a linear regression on top of the

last network layer to predict a pose vector by minimizing

L2 distance between the prediction and the true pose vec-

tor. Since the ground truth pose vector is defined in abso-

lute image coordinates and poses vary in size from image to

image, we normalize our training set D using the normal-

ization from Eq. (1):

DN = {(N(x), N(y))|(x,y) ∈ D} (3)

Then the L2 loss for obtaining optimal network parameters

reads:

argmin
θ

∑

(x,y)∈DN

k
∑

i=1

||yi − ψi(x; θ)||
2
2 (4)

For clarity we write out the optimization over individual

joints. It should be noted, that the above objective can

be used even if for some images not all joints are labeled.

In this case, the corresponding terms in the sum would be

omitted.

The above parameters θ are optimized for using Back-

propagation in a distributed online implementation. For

each mini-batch of size 128, adaptive gradient updates are

computed [3]. The learning rate, as the most important pa-

rameter, is set to 0.0005. Since the model has large number

of parameters and the used datasets are of relatively small

size, we augment the data using large number of randomly

translated image crops (see Sec. 3.2), left/right flips as well

as DropOut regularization for the F layers set to 0.6.

3.2. Cascade of Pose Regressors

The pose formulation from the previous section has the

advantage that the joint estimation is based on the full im-

age and thus relies on context. However, due to its fixed

input size of 220 × 220, the network has limited capacity

to look at detail – it learns filters capturing pose properties

at coarse scale. These are necessary to estimate rough pose

but insufficient to always precisely localize the body joints.

Note that we cannot easily increase the input size since this

will increase the already large number of parameters. In or-

der to achieve better precision, we propose to train a cascade

of pose regressors. At the first stage, the cascade starts off

by estimating an initial pose as outlined in the previous sec-

tion. At subsequent stages, additional DNN regressors are



trained to predict a displacement of the joint locations from

previous stage to the true location. Thus, each subsequent

stage can be thought of as a refinement of the currently pre-

dicted pose, as shown in Fig. 2.

Further, each subsequent stage uses the predicted joint

locations to focus on the relevant parts of the image – sub-

images are cropped around the predicted joint location from

previous stage and the pose displacement regressor for this

joint is applied on this sub-image. In this way, subsequent

pose regressors see higher resolution images and thus learn

features for finer scales which ultimately leads to higher

precision.

We use the same network architecture for all stages of

the cascade but learn different network parameters. For

stage s ∈ {1, . . . , S} of total S cascade stages, we de-

note by θs the learned network parameters. Thus, the

pose displacement regressor reads ψ(x; θs). To refine a

given joint location yi we will consider a joint bounding

box bi capturing the sub-image around yi: bi(y;σ) =
(yi, σdiam(y), σdiam(y)) having as center the i-th joint

and as dimension the pose diameter scaled by σ. The diam-

eter diam(y) of the pose is defined as the distance between

opposing joints on the human torso, such as left shoulder

and right hip, and depends on the concrete pose definition

and dataset.

Using the above notation, at the stage s = 1 we start with

a bounding box b0 which either encloses the full image or

is obtained by a person detector. We obtain an initial pose:

Stage 1 : y1 ← N−1(ψ(N(x; b0); θ1); b
0) (5)

At each subsequent stage s ≥ 2, for all joints i ∈ {1, . . . , k}
we regress first towards a refinement displacement ys

i −

y
(s−1)
i by applying a regressor on the sub image defined

by b
(s−1)
i from previous stage (s − 1). Then, we estimate

new joint boxes bsi :

Stage s: ysi ← y
(s−1)
i +N−1(ψi(N(x; b); θs); b)(6)

for b = b
(s−1)
i

bsi ← (ysi , σdiam(ys), σdiam(ys)) (7)

We apply the cascade for a fixed number of stages S,

which is determined as explained in Sec. 4.1.

Training The network parameters θ1 are trained as

outlined in Sec. 3.1, Eq. (4). At subsequent stages

s ≥ 2, the training is done identically with one im-

portant difference. Each joint i from a training exam-

ple (x,y) is normalized using a different bounding box

(y
(s−1)
i , σdiam(y(s−1)), σdiam(y(s−1))) – the one cen-

tered at the prediction for the same joint obtained from pre-

vious stage – so that we condition the training of the stage

based on the model from previous stage.

Since deep learning methods have large capacity, we

augment the training data by using multiple normalizations

for each image and joint. Instead of using the prediction

from previous stage only, we generate simulated predic-

tions. This is done by randomly displacing the ground truth

location for joint i by a vector sampled at random from a

2-dimensional Normal distribution N
(s−1)
i with mean and

variance equal to the mean and variance of the observed dis-

placements (y
(s−1)
i − yi) across all examples in the train-

ing data. The full augmented training data can be defined

by first sampling an example and a joint from the original

data at uniform and then generating a simulated prediction

based on a sampled displacement δ from N
(s−1)
i :

Ds
A = {(N(x; b), N(yi; b))|

(x,yi) ∼ D, δ ∼ N
(s−1)
i ,

b = (yi + δ, σdiam(y))}

The training objective for cascade stage s is done as in

Eq. (4) by taking extra care to use the correct normalization

for each joint:

θs = argmin
θ

∑

(x,yi)∈Ds

A

||yi − ψi(x; θ)||
2
2 (8)

4. Empirical Evaluation

4.1. Setup

Datasets There is a wide variety of benchmarks for hu-

man pose estimation. In this work we use datasets, which

have large number of training examples sufficient to train a

large model such as the proposed DNN, as well as are real-

istic and challenging.

The first dataset we use is Frames Labeled In Cinema

(FLIC), introduced by [19], which consists of 4000 train-

ing and 1000 test images obtained from popular Hollywood

movies. The images contain people in diverse poses and es-

pecially diverse clothing. For each labeled human, 10 upper

body joints are labeled.

The second dataset we use is Leeds Sports Dataset [12]

and its extension [13], which we will jointly denote by LSP.

Combined they contain 11000 training and 1000 testing im-

ages. These are images from sports activities and as such

are quite challenging in terms of appearance and especially

articulations. In addition, the majority of people have 150

pixel height which makes the pose estimation even more

challenging. In this dataset, for each person the full body is

labeled with total 14 joints.

For all of the above datasets, we define the diameter of a

pose y to be the distance between a shoulder and hip from

opposing sides and denote it by diam(y). It should be noted,

that the joints in all datasets are arranged in a tree kinemat-

ically mimicking the human body. This allows for a defini-



tion of a limb being a pair of neighboring joints in the pose

tree.

Metrics In order to be able to compare with published re-

sults we will use two widely accepted evaluation metrics.

Percentage of Correct Parts (PCP) measures detection rate

of limbs, where a limb is considered detected if the distance

between the two predicted joint locations and the true limb

joint locations is at most half of the limb length [5]. PCP

was the initially preferred metric for evaluation, however it

has the drawback of penalizing shorter limbs, such as lower

arms, which are usually harder to detect.

To address this drawback, recently detection rates of

joints are being reported using a different detection crite-

rion – a joint is considered detected if the distance between

the predicted and the true joint is within a certain fraction of

the torso diameter. By varying this fraction, detection rates

are obtained for varying degrees of localization precision.

This metric alleviates the drawback of PCP since the de-

tection criteria for all joints are based on the same distance

threshold. We refer to this metric as Percent of Detected

Joints (PDJ).

Experimental Details For all the experiments we use the

same network architecture. Inspired by [7], we use a body

detector on FLIC to obtain initially a rough estimate of the

human body bounding box. It is based on a face detector –

the detected face rectangle is enlarged by a fixed scaler. This

scaler is determined on the training data such that it contains

all labeled joints. This face-based body detector results in

a rough estimate, which however presents a good starting

point for our approach. For LSP we use the full image as

initial bounding box since the humans are relatively tightly

cropped by design.

Using a small held-out set of 50 images for both datasets

to determine the algorithm hyperparameters. To measure

optimality of the parameters we used average over PDJ at

0.2 across all joints. The scaler σ, which defines the size of

the refinement joint bounding box as a fraction of the pose

size, is determined as follows: for FLIC we chose σ = 1.0
after exploring values {0.8, 1.0, 1.2}, for LSP we use σ =
2.0 after trying {1.5, 1.7, 2.0, 2.3}. The number of cascade

stages S is determined by training stages until the algorithm

stopped improving on the held-out set. For both FLIC and

LSP we arrived at S = 3.

To improve generalization, for each cascade stage start-

ing at s = 2 we augment the training data by sampling 40
randomly translated crop boxes for each joint as explained

in Sec. 3.2. Thus, for LSP with 14 joints and after mirror-

ing the images and sampling the number training examples

is 11000 × 40 × 2 × 14 = 12M , which is essential for

training a large network as ours.

The presented algorithm allows for an efficient imple-

mentation. The running time is approx. 0.1s per image,

as measured on a 12 core CPU. This compares favorably

to other approaches, as some of the current state-of-art ap-

proaches have higher complexity: [19] runs in approx. 4s,
while [26] runs in 1.5s. The training complexity, however,

is higher. The initial stage was trained within 3 days on

approx. 100 workers, most of the final performance was

achieved after 12 hours though. Each refinement stage was

trained for 7 days since the amount of data was 40× larger

than the one for the initial stage due to the data augmenta-

tion in Sec. 3.2. Note that using more data led to increased

performance.

4.2. Results and Discussion

Comparisons We present comparative results to other ap-

proaches. We compare on LSP using PCP metric in Fig. 1.

We show results for the four most challenging limbs – lower

and upper arms and legs – as well as the average value

across these limbs for all compared algorithms. We clearly

outperform all other approaches, especially achieving bet-

ter estimation for legs. For example, for upper legs we ob-

tain 0.78 up from 0.74 for the next best performing method.

It is worth noting that while the other approaches exhibit

strengths for particular limbs, none of the other dataset con-

sistently dominates across all limbs. In contrary, DeepPose

shows strong results for all challenging limbs.

Using the PDJ metric allows us to vary the threshold for

the distance between prediction and ground truth, which de-

fines a detection. This threshold can be thought of as a

localization precision at which detection rates are plotted.

Thus one could compare approaches across different de-

sired precisions. We present results on FLIC in Fig. 3 com-

paring against additional four methods as well is on LSP in

Fig. 4. For each dataset we train and test according the pro-

tocol for each dataset. Similarly to previous experiment we

outperform all five algorithms. Our gains are bigger in the

low precision domain, in the cases where we detect rough

pose without precisely localizing the joints. On FLIC, at

normalized distance 0.2 we obtain a an increase of detection

rates by 0.15 and 0.2 for elbow and wrists against the next

best performing method. On LSP, at normalized distance

0.5 we get an absolute increase of 0.1. At low precision

regime of normalized distance of 0.2 for LSP we show com-

parable performance for legs and slightly worse arms. This

can be attributed to the fact that the DNN-based approach

computes joint coordinates using 7 layers of transformation,

some of which contain max pooling.

Another observation is that our approach works well for

both appearance heavy movie data as well as string articu-

lation such as the sports images in LSP.

Effects of cascade-based refinement A single DNN-

based joint regressor gives rough joint location. However,

to obtain higher precision the subsequent stages of the cas-

cade, which serve as a refinement of the initial prediction,

are of paramount importance. To see this, in Fig. 5 we
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Figure 3. Percentage of detected joints (PDJ) on FLIC for two joints: elbow and wrist. We compare DeepPose, after two cascade stages,

with four other approaches.

Method
Arm Leg

Ave.
Upper Lower Upper Lower

DeepPose-st1 0.5 0.27 0.74 0.65 0.54

DeepPose-st2 0.56 0.36 0.78 0.70 0.60

DeepPose-st3 0.56 0.38 0.77 0.71 0.61

Dantone et al. [2] 0.45 0.25 0.65 0.61 0.49

Tian et al. [24] 0.52 0.33 0.70 0.60 0.56

Johnson et al. [13] 0.54 0.38 0.75 0.66 0.58

Wang et al. [25] 0.565 0.37 0.76 0.68 0.59

Pishchulin [17] 0.49 0.32 0.74 0.70 0.56

Table 1. Percentage of Correct Parts (PCP) at 0.5 on LSP for Deep-

Pose as well as five state-of-art approaches.
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Figure 4. Percentage of detected joints (PDJ) on LSP for four

limbs for DeepPose and Johnson et al. [13] over an extended range

of distances to true joint: [0, 0.5] of the torso diameter. Results of

DeepPose are plotted with solid lines while all the results by [13]

are plotted in dashed lines. Results for the same joint from both

algorithms are colored with same color.

present the joint detections at different precisions for the ini-

tial prediction as well as two subsequent cascade stages. As

expected, we can see that the major gains of the refinement

procedure are at high-precision regime of at normalized dis-

tances of [0.15, 0.2]. Further, the major gains are achieved

after one stage of refinement. The reason being that subse-

quent stages end up using smaller sub-images around each

joint. And although the subsequent stages look at higher

resolution inputs, they have more limited context.

Examples of cases, where refinement helps, are visual-
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Figure 5. Percent of detected joints (PDJ) on FLIC or the first three

stages of the DNN cascade. We present results over larger spec-

trum of normalized distances between prediction and ground truth.

ized in Fig. 6. The initial stage is usually successful at es-

timating a roughly correct pose, however, this pose is not

”snapped” to the correct one. For example, in row three the

pose has the right shape but incorrect scale. In the second

row, the predicted pose is translated north from the ideal

one. In most cases, the second stage of the cascade resolves

this snapping problem and better aligns the joints. In more

rare cases, such as in first row, further facade stages improve

on individual joints.

Cross-dataset Generalization To evaluate the general-

ization properties of our algorithm, we used the trained

models on LSP and FLIC on two related datasets. The full-

body model trained on LSP is tested on the test portion of

the Image Parse dataset [18] with results presented in Ta-

ble 2. The ImageParse dataset is similar to LSP as it con-

tains people doing sports, however it contains a lot of peo-

ple from personal photo collections involved in other activ-

ities. Further, the upper-body model trained on FLIC was

applied on the whole Buffy dataset [7]. We can see that our

approach can retain state-of-art performance compared to

other approaches. This shows good generalization abilities.

Example poses To get a better idea of the performance of

our algorithm, we visualize a sample of estimated poses on

images from LSP in Fig. 8. We can see that our algorithm is

able to get correct pose for most of the joints under variety

of conditions: upside-down people (row 1, column 1), se-
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Figure 6. Predicted poses in red and ground truth poses in green

for the first three stages of a cascade for three examples.
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Figure 7. Percentage of detected joints (PDJ) on Buffy dataset

for two joints: elbow and wrist. The models have been trained on

FLIC. We compare DeepPose, after two cascade stages, with four

other approaches.

Method
Arm Leg

Ave.
Upper Lower Upper Lower

DeepPose 0.8 0.75 0.71 0.5 0.69

Pishchulin [17] 0.80 0.70 0.59 037 0.62

Johnson et al. [13] 0.75 0.67 0.67 0.46 0.64

Yang et al. [26] 0.69 0.64 0.55 0.35 0.56

Table 2. Percentage of Correct Parts (PCP) at 0.5 on Image Parse

dataset for DeepPose as well as two state-of-art approaches on Im-

age Parse dataset. Results obtained from [17].

vere foreshortening (row1, column 3), unusual poses (row

3, column 5), occluded limbs as the occluded arms in row

3, columns 2 and 6, unusual illumination conditions (row 3,

column 3). In most of the cases, when the estimated pose is

not precise, it still has a correct shape. For example, in the

last row some of the predicted limbs are not aligned with

the true locations, however the overall shape of the pose is

correct. A common failure mode is confusing left with right

side when the person was photographed from the back (row

6, column 6). Results on FLIC (see Fig. 9) are usually better

with occasional visible mistakes on lower arms.

5. Conclusion

We present, to our knowledge, the first application of

Deep Neural Networks (DNNs) to human pose estimation.

Our formulation of the problem as DNN-based regression to

joint coordinates and the presented cascade of such regres-

sors has the advantage of capturing context and reasoning

about pose in a holistic manner. As a result, we are able to

achieve state-of-art or better results on several challenging

academic datasets.

Further, we show that using a generic convolutional neu-

ral network, which was originally designed for classifica-

tion tasks, can be applied to the different task of localiza-

tion. In future, we plan to investigate novel architectures

which could be potentially better tailored towards localiza-

tion problems in general, and in pose estimation in particu-

lar.
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