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Abstract The perception of the visual world through

basic building blocks, such as cubes, spheres, and cones,

gives human beings a parsimonious understanding of

the visual world. Thus, efforts to find primitive-based

geometric interpretations of visual data date back to

1970s studies of visual media. However, due to the

difficulty of primitive fitting in the pre-deep learning

age, this research approach faded from the main stage,

and the vision community turned primarily to semantic

image understanding. In this paper, we revisit the

classical problem of building geometric interpretations

of images, using supervised deep learning tools. We

build a framework to detect primitives from images in

a layered manner by modifying the YOLO network;

an RNN with a novel loss function is then used

to equip this network with the capability to predict

primitives with a variable number of parameters. We

compare our pipeline to traditional and other baseline

learning methods, demonstrating that our layered

detection model has higher accuracy and performs

better reconstruction.

Keywords layered image decomposition; primitive

detection; biologically inspired vision; deep

learning

1 Tsinghua University, Beijing, 100084, China. E-mail:

huang-jh18@mails.tsinghua.edu.cn (�).

2 Computer Science Department, University of Toronto,

Toronto, M5S2E4, Canada. E-mail: jungao@cs.toronto.edu.

3 Stanford University, Stanford, 94305, United States.

E-mail: V. Ganapathi-Subramanian, vigansub@stanford.edu;

C. Tang, chengcheng.tang@cs.stanford.edu; L. J. Guibas,

guibas@cs.stanford.edu.

4 University of California San Diego, La Jolla, 92093,

United States. E-mail: haosu@eng.ucsd.edu.

5 University of Wisconsin-Madison, Madison, 53715, United

States. E-mail: yinl@cs.wisc.edu.

Manuscript received: 2018-11-30; accepted: 2018-12-03

1 Introduction

The computer vision community has been interested

in performing detection tasks on images for a long

time. The success of object detection techniques has

been a shot-in-the-arm for better image understand-

ing. The potent combination of deep learning

techniques with traditional techniques [1, 2] has

yielded state-of-the-art techniques which focus on

detecting objects in an image through bounding

box proposals. While this works well for tasks that

require strong object localization, other applications

in robotics and autonomic systems require a more

detailed understanding of the objects in the image.

Thus, another well-studied task in visual media

processing is that of instance segmentation, where

a per-pixel class label is assigned to an input image.

Such dense labeling schemes are too redundant, and

an intermediate representation needs to be developed.

Understanding images or shapes in terms of basic

primitives is a very natural human abstraction. The

parsimonious nature of primitive-based descriptions,

especially when the task at hand does not require

fine-grained knowledge of the image, makes them easy

to use and a good choice. This has been explored

extensively in the realms of both computer vision

and graphics. Various traditional approaches exist

for modeling images and objects, such as blocks

world [3], generalized cylinders [4], and geons [5].

While primitive-based modeling generally uses classical

techniques, using machine learning techniques to

extract these primitives can help us to attack more

complex images, with multiple layers of information in

them. Basic primitive elements such as rectangles,

circles, triangles, and spline curves are usually

the building blocks of objects in images, and in

combination, provide simple, yet extremely informative
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representations of complex images. Labeling image

pixels with high-level primitive information also aids

in vectorizing rasterized images.

Complex images have multiple layers of information

embedded in them. It is shown in Ref. [6], that

human analysis of an image is always performed in

a top–down manner. For example, when given an

image of a room, the biggest objects such as desks,

beds, chairs, etc., are observed. Then the focus shifts

to specific objects, e.g., objects on the desk such

as books and monitor; this analysis is performed

recursively. When analyzing an image of a window,

humans tend to focus on the border of the window

first; the inner structure within the window and

decorations are considered later. However, original

object detection networks neglect this layered search

and treat objects from different information layers

the same. Layered detection has added value when

there are internal occlusions in the image, which make

traditional object detection more difficult to perform.

In this work, we attempt to generate a deep network

that separates multiple information layers as in Fig. 1,

and is able to detect the positions of the primitives in

each layer as well as estimating their parameters (e.g.,

the width, height, and orientation of a rectangle or

the number and positions of control points of a spline).

The proposed method is shown to be more accurate

than traditional methods and other learning-based

approaches.

This paper is organized as follows. We consider

related work in Section 2, and provide an analysis

of the novelty of our work. Then, in Section 3,

we propose a framework based on the traditional

YOLOv2 network [2], to provide parameters that are

fully interpretable and high-level. We also tackle

the problem of regressing parameters for primitives

Fig. 1 Motivation: given an image composed of abstract shapes, our

framework can decompose overlapping primitives into multiple layers

and estimate their parameters.

with a variable number of unknowns. Then, we

propose a layered architecture in Section 4, which can

learn to separate different information layers of the

image and regress parameters in each layer separately.

In Section 6, we give experiments used to evaluate

the performance of our network against existing

traditional state-of-the-art techniques, and in Section

7, we show how this framework could be applied

to image editing and recognition by components.

We also discuss the limitations of our framework.

Finally, in Section 9, we attempt to envisage how

the framework provided in this work would help

to solve the important problem of primitive-based

representations, which has applications that lie at the

intersection of vision, AI, and robotics.

To sum up, our contributions in this paper include:

• A framework based on the YOLOv2 network that

enables class-wise parameter regression for different

primitives.

• An RNN model to estimate a sequence of a variable

number of control points representing a closed

spline curve in a single 2D image.

• A layered primitive detection model to extract

relationship information from an image.

2 Related work

Our task of decomposing an input image into layers

of correlated and possibly overlapping geometric

primitives is inherently linked to three categories

of problems, which have been treated and studied

independently in the traditional setting. Object

detection and high-level vision, regression and

reconstruction of geometric components such as

splines and primitives, and finally, understanding

relationships and layout of objects and entities are

problems that provide information at different scales,

all of great importance to the computer vision

and graphics communities. After considering these

three categories of applications, we conclude the

discussion of related work with relevant machine

learning methodologies, with a focus on recurrent

neural networks.

2.1 Object detection and high-level vision

Among the traditional model-driven approaches

to object detection, the generalized Hough

transform [7] is a classical technique applicable to

detecting particular classes of shapes up to rigid
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transformations. Variability of shapes as well as

input nuances are tackled by deep-learning based

techniques; faster-RCNN [8] utilizes region proposal

networks (RPN) to locate objects and fast-RCNN

to determine the semantic class of each object.

Recent works like YOLO [1, 2] and SSD [9] formulate

the task of detection as a regression problem and

propose end-to-end trainable solutions. We use the

detection framework of the efficient YOLOv2 [2] as

the backbone of our framework. However, unlike

YOLO or YOLOv2, as well as providing bounding

boxes and class labels, our framework also regresses

geometric parameters and handles the problem of

occlusion, in layered fashion.

To construct high-level objects using simple

primitives, Biederman [5] introduced the idea of visual

composition. Recently, SCAN [10] tries to compose

visual primitives in a hierarchical way and learn an

implicit hierarchy of concepts as well as their logical

relations using a β-VAE network. While they build

their hierarchy over concepts, our work is based on

visual containment relationships for different shapes.

Lake et al. [11] proposed a probabilistic program

induction scheme to parse hand-writing images into

several strokes and sub-strokes using a few images

as training data, but their method is limited to the

specific domain of hand-written characters.

2.2 Spline fitting and vectorization

Primitives and splines are widely used for representing

geometry or images due to their succinctness and

precision. Thus, recovering them by fitting input

data is a long-standing problem in graphics. The

idea of iteratively minimizing a distance metric [12–

14], serving as a foundation of many studies, has been

improved by either more effective distance metrics

[15] or more efficient optimization techniques [16].

However, most previous works fail due to lack of

decent initialization, which is overcome by a learning-

based algorithm in our case. It is worth noting that

vectorizing rasterized images [17, 18] also aims to

solve a related problem. However, since previous

works do not decompose an image into assemblies

of clean primitives, there is a loss of high-level

information about shape and layering.

2.3 Layered object detection

Multiple works have of late attempted to introduce

composable layers into the process of object detection.

Liu et al. [9] attempt to use feature hierarchies

and detect objects based on different feature maps.

Lin et al. [19] further improve this elegant idea

by adding top–down convolutional layers and skip

connections. However, these works only focus on how

to combine features at different scales regardless of

the relationships between objects and the associated

layers composing the original image. The work

by Bellver et al. [6] formulates detection as a

reinforcement learning problem and represents an

image as a predefined hierarchical tree, leaving the

agent to iteratively select subsequent parts to look

at. The work most relevant to ours is CSGNet [20],

a recursive neural network model which generates a

structured program defining the relationships between

a sparse set of primitives. However, the possible

positions and sizes of the primitives are limited

to the size of a finite action space. In contrast,

our work allows more detailed transformations of

primitives, and our layered representation is less

prone to redundancy.

2.4 Recurrent neural networks

The recurrent neural network (RNN) (and its variants

LSTM [21], GRU [22]) is a common model widely used

in natural language processing which has recently

been applied to computer vision tasks. One key

inspiration for our work is polygon-RNN [23], in which

a sequence of vertices forming a polygon is predicted

in a recurrent manner. One of the key differences

in our work is that we aim to abstract the simplest

types of representation on different layers, based on

general splines instead of polylines, or interpolating

cubic Bézier curves as in the polygon-RNN.

The discussion above only samples the studies

most relevant to our work. There are many other

relevant areas such as image parsing, dense captioning,

structure-aware geometry processing, and more.

Despite richness of relevant works across a wide range

which manifest the importance of the topic, we believe

that the problem of understanding images as abstract

compositions is underexplored.

3 Basic model

In this section, we propose a framework based on

a standard modification of the YOLOv2 model [2],

inspired by Ref. [24], to perform parameter regression.

The parameters regressed by the model, as opposed
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to those in Ref. [24], are fully interpretable and high-

level.

3.1 Adapting YOLO for parameter regression

The primary idea of this model is to extend the

architecture of the state-of-the-art object detector

YOLOv2 to detect primitives in an image, and

in addition, to estimate the parameters of each

primitive. The deep neural network architecture

is capable of extracting more detailed descriptors

of detected objects, as well as the bounding box

location. Providing additional structural information

about the object to the YOLOv2 architecture aids in

augmenting the learned features.

The YOLOv2 network in the original paper

consumes an entire image and segments it into a

grid of size S × S. Each square in the grid can

contain multiple primitives. The networks model

this multiplicity by containing up to B possible

anchors (primitives in this case). Thus, traditional

YOLOv2 networks learn S ×S ×B × (K +5) different

parameters; the K + 5 term arises since, in addition

to the class labels for the K different primitive

classes, the network also predicts 1 object probability

value and 4 bounding-box related values [2]. While

regressing parameters for the bounding boxes, the

regressor needs to predict M extra variables for each

bounding box being predicted. The M variables

are the total number of possible parameters from

all different primitive categories. This increases the

number of parameters predicted by the network to

S × S × B × (5 + K + M).

To achieve this end, a new loss term is added to the

loss function previously proposed in Ref. [24]. The

new term, Lp, feeds information about the primitive

parameters into the network. This term is defined as

Lp =
S∑

i=0

S∑

j=0

B∑

k=0

1
(k)
i,j

K∑

l=0

1
(l)
(i,j),k

∑

m∈X(l)

L(t
(m)
(i,j),k

, t̂
(m)
(i,j),k

)

(1)

where 1
(k)
i,j is an indicator function that determines if

grid square (i, j) is assigned a positive object label for

bounding box k. The indicator 1
(l)
(i,j),k

is a function

that determines if bounding box k of grid square (i, j)

belongs to the primitive defined by l. The purpose

of introducing this term is to include a weighing for

a primitive in the loss only when the primitive is

plausible for the image. X(l) is the set of parameters

for primitive l. The terms t and t̂ denote the target

and predicted parameters respectively.

3.2 Definition of primitive parameters

Primitives with fixed number of parameters.

Simple primitives like rectangles or circles have fixed

numbers of parameters, and so the values of these

parameters can be used directly as ground truth

for training. For parameters lying within [0, 1], we

can further increase the network training stability

by applying a sigmoid function to the network

output to constrain the estimated parameters.

Readers are referred to Section S1 in the Electronic

Supplementary Material (ESM) for detailed definitions

of primitive parameters.

Primitives with variable number of para-

meters. Some of the primitives discussed in this

paper, including closed B-spline curves, have a

variable number of control points. This permits

primitives to represent different kinds of shapes,

but it is not compatible with the previously defined

model. This incompatibility is solved by learning a

fixed-length embedding of the control point positions.

In addition, a recurrent neural network (RNN) is

appended to the model, to serve as a decoder to

output the control points in a sequential manner. At

time step i, the model predicts the position of the

ith control point ci, and a stop probability pi ∈ [0, 1],

that indicates the end of the curve. We apply cross-

entropy life loss to the stop probability while training

the RNN.

The loss functions for the RNN-based model must

be designed with care. Naively, one can use a

simple mean-squared error (MSE) loss for control

point position prediction and a cross entropy loss for

probability prediction. However, this only handles

the situation where the sequence of control points is

fixed and well-defined. Note that every point in the

control point sequence C = (c1, . . . , cN ) of a closed

spline curve can be viewed as the starting point of

the sequence. Thus, in order to predict a control

point sequence invariant to the position of starting

point, a circular loss similar to that used in Ref. [23]

is defined as follows:

Lcirc = min
k∈[1,N ]

(min(L(C, Gk), L(C, G′

k))) (2)

where L is the MSE loss, Gk is the ground truth

control point sequence rotated by k places, i.e., if gi

denotes the ith control point in the ground truth, then

Gk is the sequence (gk, · · · , gN , g1, · · · , gk−1) and G′

k
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is the inverse sequence of Gk. In this way, the ground

truth sequence that leads to minimum MSE loss is

considered to be the target sequence, making the

loss function rotation-invariant. Also note that the

introduction of G′

k guarantees the loss to be invariant

to clockwise and anti-clockwise sequencing.

4 Layered detection model

4.1 Layered detection

We use a layered model to capture the nested

structure of primitives in an image. The idea is

inspired by two observations. Our first observation

is from how multiple layers in design tools, such as

Adobe Photoshop and Illustrator, can help create a

vector graphics image. With layers, artists can plan

the arrangement of items in the space in a top–down

manner. This fact that all vector icon images can be

decomposed into multiple layers, as shown in Fig. 1,

serves as inspiration to extend the model proposed

in Section 3 to include layered detection. Secondly,

for the detection of each layer, it allows one to focus

on a specific part of the image, instead of working on

the entire image. For example in Fig. 1, the white

rectangle in the lower-right of the image is completely

inside the black disk: one can focus in the interior

of the disk where the only accessible primitive is the

rectangle.

However, training separate networks for different

levels of detection is a redundant and time-consuming

process, since intuitively, the parameters regressed

by these networks are likely to be related. Therefore,

we propose a layered detection model to perform this

regression task, thereby making the training process

both faster and cognizant of previous learning. We

perform region of interest (RoI) pooling [25] on the

intermediate output of our network. This enables

us to extract regions in the image to focus on, to

perform detection at the next level.

4.2 Architecture

After an image is forwarded through the backbone

network, simple post-processing steps including

thresholding and non-maximal suppression are

performed to obtain the final prediction results.

The backbone network is the previously discussed

YOLO network with modified loss; the difference

lies in that the backbone network is intended to

only predict primitives in the top layer, i.e., the

outermost primitives in the image. Following this,

the coordinates of the bounding boxes of detected

primitives are fed into an RoI pooling layer. The RoI

pooling layers consume the intermediate output of

the network and pool it into a uniform sized feature

map for detection following the layering. Figure 2

illustrates this model.

Specifically, the architecture of the backbone

network can be treated as multiple consecutive

modules, which contain several convolution layers

with ReLU activation; each module is combined with

pooling layers. We denote the modules by f1, · · · , fM

(from shallow layers to deep layers). The deepest layer

fM has output J1 that is processed by the detection

block d1. Subsequent detection blocks di process the

output of convolutional layer fM−i+1. We do not

use the whole feature map Ji as the input to di, but

instead, we crop the feature map using the prediction

results from di−1 and resize it to a uniform size. In

Fig. 2 The detection process in our layered model. Cuboids denote input images or feature maps. Dark blue arrows, dark green arrows, and

dark purple arrows represent conv layers, RoI pooling layers, and detection blocks, respectively; notation is consistent with that in the text.

The final output of our network is a layered primitive tree containing both shape information and layer information.
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this way, the layering is represented explicitly by

cropping within the interior of an image. This model

can be expressed as

B(1) = d1(J1) (3)

B(i) = di(R[Ji; B(i − 1)]), i � 2 (4)

where R[J ; B(i)] represents feature map J cropped

using bounding box information from B(i) which is

fed to an RoI pooling layer to obtain a uniform size

output for future processing.

Lower level feature maps are employed for deeper

layer detection since deeper layer primitives are

usually smaller in size and thus clearer feature maps

are required to perform accurate detection. For

consistency within different regions in image, we

perform training using local coordinates within the

parent bounding box as the ground truth for B(i).

For example, consider an image with a rectangle

inside a circle. Then, the ground truth coordinates

for the rectangle should lie within the local coordinate

system with respect to the circle. Therefore, predicted

coordinates are transformed before calculating the

loss functions. These local coordinates are used for

ground truth since RoI pooling is known to capture

partial information in the image, as testified by faster-

RCNN [8]. Meanwhile, since there are multiple

layers of convolutional operations, the feature map

can encode some information outside the bounding

box, thus providing the model with the capability to

correct mistakes made in outer layers, by considering

both local and global information while making

detections in inner layers.

It is worth noting that the information passed from

higher to lower layers is not simply restricted to the

explicit bounding box position. The feature map in

shallower convolutional layers is used to predict both

higher and lower level primitives (e.g., in Fig. 2, J2

affects both B(1) and B(2)). Although we only pass

the bounding box information explicitly, knowledge

from higher layers can be passed implicitly via these

related feature maps.

5 Implementation

In this section, we present our implementation details.

5.1 Primitive and parameter selection

Four types of primitives are used in our experiments:

rectangles, triangles, ellipses, and closed spline curves.

We observed that the predicted bounding box position

is usually more accurate than the regressed parameters.

Hence, a local parameter with respect to the bounding

box is defined for each primitive so as to be able to

perform better reconstruction. Readers are referred to

Section S1 in the ESM for detailed descriptions of the

parameters used.

5.2 Network architecture

Our code is adapted from an open source PyTorch

implementation ① . The backbone network uses the

Darknet-19 architecture configured as in Redmon and

Farhadi [2]. We set the depth of our layered detection

model to 3, using three detection blocks. Detailed

configuration of detection block di (i = 1, 2, 3) is

provided in Section S2 of the ESM.

5.3 Training

The entire hierarchical model can be trained fully end-

to-end. Additionally, we adopt a method similar to

scheduled sampling [26] to enhance training stability

and testing performance. The predicted information

B(i − 1) from level i − 1, which is fed into level i, is

substituted by the ground truth value for level i − 1

with probability p. The value of p is set to 0.9 in the

first 10 epochs and is subsequently decreased by 0.05

every 2 epochs.

An RNN decoder model is pre-trained separately

to regress a fixed length embedding for control point

positions. While training this RNN model, the grid

number S is set to 1 in the YOLOv2 detection

framework and the features of closed spline curve

images are extracted with our backbone Darknet-

19 network. The pre-trained RNN decoder learns

to decode the fixed length embedding and output

positions of control points sequentially. When the

layered model is being trained, the value of the

embedding is used as direct supervision. In the

first 5 epochs, the embedding is supervised and in

subsequent epochs, the network is trained with the

positions of control points instead. Note that the

RNNs share the same weights across different levels

of the hierarchy.

5.4 Data synthesis

Following previous works [10, 27], we use synthetic

datasets due to the lack of annotated datasets. The

hierarchical model was trained with 150,000 synthetic

① https://github.com/longcw/yolo2-pytorch
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pictures of size 416 × 416. When we generated the

training data, we kept the containment relationships

across layers; there may be multiple primitives in each

layer. The number of primitives in a single image

is restricted to 8, the maximum number of layers

to 3, and the number of control points of closed

spline curves varies from 5 to 7. In order to test the

robustness of our method, noise was added to the

shapes of the primitives, as well as hatching patterns

for primitives and some skewing of the image itself.

Selected dataset images are shown in Fig. 3.

6 Experiments and results

6.1 Ablation study for circular loss

During the pretraining process for the RNN decoder

to predict control point positions, we compare the

training and validation losses using two different loss

functions, i.e., the previously defined Lcirc and a

simple MSE loss. As shown in Table 1, training

with circular loss leads to better convergence loss

and thus better prediction results. Figure 4 shows

two examples comparing the prediction results given

the same curve image as input. We found that using

circular loss eliminates the ambiguity of starting point

and clock direction in the training data, and leads to

more accurate fitting results.

Table 1 Error and accuracy measures during training and testing

with two different loss functions. Loss denotes the MSE distance

between the ground truth and predicted positions of control points

(distances are normalized to lie in the unit interval). # Point Acc.

denotes the frequency of predicting the number of control points

correctly

Training Validation

Loss # Point Acc. Loss # Point Acc.

LMSE 0.12203 74.60 0.12210 74.93

Lcirc 0.04365 76.32 0.04369 75.83

6.2 Comparisons to other methods

Although our model detects primitives in a layered

manner, simple object detection measurements

including precision and recall rate (or mAP for

methods with confidence score output) can be applied

to test model accuracy. Meanwhile, we define our

reconstruction loss as the pixel-wise RMSE between

the input picture and the re-rendered picture using

the predicted results from the network. There are

multiple approaches to shape detection; we set up 5

independent baselines for comparison. The first two

baselines are traditional methods while the last three

are learning-based approaches:

• Contour method. In this method, edge detection

is first applied to the input image; each

independent contour is separated. A post-

processing approximation step is then employed to

replace almost collinear segments with a single line

segment with a parameter q controlling the strength

of approximation. The type of shape is determined

by counting the number of line segments (i.e., its

number of edges). This method is implemented

using findContours and approxPolyDP functions

of OpenCV [28].

• Hough transform [29]. This is widely used to find

imperfect shape instances in images by a voting

procedure in parameter space. For rectangles and

triangles, whose edges are straight line segments,

we first use Hough line transform to detect all

possible lines and then recover the parameters of

the primitives by solving a set of linear equations.

For ellipses, we use the method described in

Ref. [30].

• CSGNet [20]. In 2D, this takes a single image

as input and generates a program defining the

shapes presented. This model allows for more

Fig. 3 Examples drawn from our synthetic training dataset. For the Pure dataset, we synthesized simple binary images for training. The

Pure+Noise dataset modified the Pure dataset by adding noise and random affine transformations to each image. The Tex. (short for

“Textured”) dataset allows testing of the robustness of shape detection methods by adding hatching patterns to the shapes. The Textured+Noise

dataset imitates real world hand drawn shape pictures. The Natural dataset imitates colored versions of real world images.
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Fig. 4 Two closed spline curve fitting cases using circular loss and

MSE loss.

complex Boolean operations between shapes but

the sizes and positions of the primitives are highly

discretized. We use the post-processed (optimized)

top-1 prediction as the output of this algorithm.

• Flat model. This method uses a learning approach

trained using the YOLOv2 architecture. The

ground truth of the detector is directly set to

all primitives in the canvas, regardless of their

hierarchical information.

• Recursive model. We train only one detector to

detect the primitive in the first hierarchy (i.e., the

outermost primitive at the current level). Once the

detector successfully detects some primitives in the

current level, we crop the detected region, resize

the cropped region to the network input size, and

feed the image into the same network again.

Results from these different models are compared in

Table 2 (precision–recall–reconstruction comparison)

and Table 3 (primitive–reconstruction comparison).

Some of the prediction results from different methods

are shown in Fig. 5 using the same input in each case.

The contour method with small q value traces

the pixels on the contour precisely but ignores the

high-level shape information of the shape boundary,

leading to a high reconstruction performance but low

precision and recall accuracy in shape classification

tasks. Using a greater q value simply approximates

continuous curves with polygons, leading to poor

reconstruction performance. It is also observed that

the contour method cannot separate overlapping

primitives since it only attempts to detect boundaries

in images. The Hough transform-based method for

line segment detection and circle detection requires

a careful choice of parameters; it generally leads

to higher recall values than the contour method.

This method partially solves the overlap problem

by extending detected line segments and finding

intersections, but cannot effectively distinguish

extremely short line segments and segments of a

circle.

The above problems can be overcome by learning-

based models. Learning-based models generally have

better performance across all different datasets and

the gap in performance widens as we add more noise

to our dataset, which is partially due to the fact

that the learned features extracted from the image

using our data-driven method are more effective

and representative in comparison to hand-crafted

features of traditional methods. Despite the feature

improvement, the absence of effective shape and

relationship representations can be fatal to the final

detection results. Using CSGNet [20], the possible

locations and sizes of primitives are restricted due

to the size limitation of the action space. In order

to compose the target shape, redundant shapes and

expressions are generated.

Table 2 Precision, recall, and reconstruction loss measures using various methods as described in Fig. 3. Prec and Recall denote the precision

and recall values as percentages respectively while Recon measures the RMSE loss between the original picture and the reconstructed picture

using the layered prediction results

Method
Pure Pure+Noise Textured Textured+Noise Natural

Prec Recall Recon Prec Recall Prec Recall Prec Recall Prec Recall

Contour (q = 4 × 10−4) 78.8 42.9 1.44 10.1 37.7 10.8 54.6 10.0 47.5 5.9 62.2

Contour (q = 2 × 10−3) 94.0 72.8 1.70 32.5 60.1 16.8 88.0 15.6 73.2 6.4 70.3

Hough transform 32.6 78.6 1.61 5.1 73.7 — — — — — —

CSGNet (optimized) [20] 37.1 65.4 28.7 — — — — — — — —

Flat model 99.7 91.0 — 99.5 90.0 99.6 91.2 99.4 91.0 57.9 62.2

Recursive model 96.1 72.4 1.64 60.1 61.2 74.0 60.1 95.8 49.9 98.9 84.5

Our model 99.7 96.1 1.61 99.5 95.0 99.6 95.8 99.5 95.4 97.9 87.6

Our model (optimized∗) 99.7 96.1 1.39 99.6 95.0 — — — — — —

* It is impossible to measure reconstruction loss for images with texture or noise, making it unclear how to define the optimization target.
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Table 3 Average precision (AP) measures of learning-based shape

detection methods. Values are presented in percentage

Mean Parallelogram Triangle Oval Spline

Flat 87.2 87.2 86.3 84.4 90.9

Recursive 54.3 43.8 53.8 76.0 43.6

Ours 90.5 88.2 90.7 90.9 92.0

Fig. 5 Detection results examples. Shapes detected at different

levels are marked in different colors: level 1, pink; level 2, orange; level

3, blue. For the flat model, there is no predicted layer information, so

all shapes are marked in green.

Other learning-based baselines fix this with simple

containment representations but problems still occur

due to lack of layering or incorrect layering. The

flat model detects almost all primitives regardless of

their layer. However, in cases where two primitives

of the same kind (e.g., concentric circles forming

an annulus) overlap, the post-processing step (non-

maxima suppression) eliminates one of them and

predicts the median result, which is undesirable. It is

also difficult to reconstruct the original image using

the detected primitives due to the loss of layering

information. In the recursive model, the layering

information is preserved, but if the detection in

an outer layer is not accurate enough, the error

snowballs and the inner layer primitives cannot be

well-reconstructed. Unlike the baselines, our method

can extract high-level shape information as well as

containment relationships. Our model outperforms

the others both quantitatively and qualitatively,

except for the reconstruction loss. However, after

appending a simple local optimizer to our model,

denoted Our model (optimized) in Table 2, the

reconstruction loss is further decreased.

The trained model was applied directly to Google

Material icons [31] (lines 1–4 of Fig. 6, using Pure

model) and a small real world dataset containing

150 images selected from the PASCAL VOC2012

dataset [32] and the Internet (lines 5–8 of Fig. 6,

using Natural model). To the best of our knowledge,

no public dataset exists that provides ground truth

annotations at geometric primitive level. So we have

manually annotated the 150 images from this small

real world dataset. Testing using our trained model

reached an mAP (the metric used in all experiments)

of 54.5%. Readers are referred to Sections S3 and S4

in the ESM for further results.

While DeepPrimitive manages to decompose the

real world images into relevant primitives, it is to be

remembered that this is not the primary focus of our

Fig. 6 Selected test results for our layered detection model. In each

pair of columns, the left picture shows the original input image as

well as the detection result while the right picture reconstructs the

input image using the detection result (different instances of primitives

within the same hierarchy vary slightly in color for clarity). More test

results are available in Sections S3 and S4 in the ESM.
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work. Our current model is trained only on synthetic

images, but adapting synthetic images to real images

with domain adaptation techniques is one trend in the

vision community. A few recent vision papers have

been trained and tested on purely synthetic datasets

(e.g., Ref. [27]).

7 Applications

Once an image has been decomposed into several

layers and high-level parameters defining the

primitives in the image acquired, one can utilize this

information for a variety of applications. In this

paper, we demonstrate the use of these parameters

in two example applications.

The first application we present is image editing.

It is usually very difficult for an artist to modify

the shapes in a rasterized image directly. With a

low reconstruction loss, our model can decompose

an image into several manipulable components with

high fidelity and flexibility. For example, in Fig. 7, it

is easy for an icon designer to modify parameters of

the shapes, changing the angle between the hands of

the clock, or tweaking the shape of the paint brush

head. For real world images in Fig. 8, we can directly

manage the position of the parts in an image using

high-level editing tools (e.g., as in Ref. [33]).

Fig. 7 Image editing on a rasterized image at a primitive level.

Primitive detection is performed on the image, followed by editing of

the primitives.

Another potential application is recognition-by-

components [5]. Usually, state-of-the-art classifiers

based on deep networks need very much data for

training, and its lack hampers accuracy. Once

primitives in an image have been recognized, one

can easily define classification rules using the layered

information obtained. Additional training data is not

needed and only a single shape detection model has

to be trained. The idea is illustrated in Fig. 9. Given

an image, pre-processing steps such as denoising and

thresholding are performed to extract the borders

of shapes. The proposed model is then applied to

detect the primitives and generate a shape parsing

tree (in XML format in the figure for demonstration

purposes), with which a handcrafted classifier could

easily predict the class of an object in the image by

top–down traversal of the tree.

8 Limitations

As an explorative study aiming to understand and

reconstruct images as primitives composed layer-wise,

there are several limitations left to be resolved in

future work. For images with highly-overlapping

primitives within the same layer, our model cannot

distinguish between them: the output will either be

a single primitive or misclassified primitives. Our

model discovers only containment relationships: if

one higher-level primitive intersects multiple lower-

level primitives, duplicate detections of the higher-

level primitive are possible. The last two images of

line 4 in Fig. 6 demonstrate such failures. These

limitations restrict the layer decomposability of our

model. Meanwhile, only synthetic images are used

for training. Annotated real world data would make

the model more generalizable.

Fig. 8 High-level image editing of real world images based on detected primitives. The first two columns of each group show the original

image and its layered decomposition while the last two columns of each group show manipulated results.
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Fig. 9 Recognition-by-components demonstration using our proposed

hierarchical primitive detection model.

9 Conclusions

This paper demonstrates a data-driven approach

to layered detection of primitives in images, and

subsequent 2D reconstruction. As noted, abstraction

of objects into primitives is a very natural way

for humans to understand objects. As artificial

intelligence moves towards performing tasks in

human-like fashion, there is value in trying to perform

these tasks in the way a human would.

Such tasks often also fall in the intersection of

robotics and computer vision, e.g., in the cases of

autonomous driving and robotics. In such tasks,

building in environment-awareness into cars or robots

based on their field of vision is key, and primitive-

level reconstruction would be useful. Primitive-

level understanding would also help in understanding

physical interactions with objects in manipulation

tasks. While there are many such avenues where

this understanding could be applied, there is a lack

of open datasets for training on real world data. A

good direction for future study would involve learning

tasks of an unsupervised or self-supervised kind.
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