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Abstract

Multi-omics data are good resources for prognosis and survival prediction; however, these are difficult to integrate

computationally. We introduce DeepProg, a novel ensemble framework of deep-learning and machine-learning

approaches that robustly predicts patient survival subtypes using multi-omics data. It identifies two optimal survival

subtypes in most cancers and yields significantly better risk-stratification than other multi-omics integration

methods. DeepProg is highly predictive, exemplified by two liver cancer (C-index 0.73–0.80) and five breast cancer

datasets (C-index 0.68–0.73). Pan-cancer analysis associates common genomic signatures in poor survival subtypes

with extracellular matrix modeling, immune deregulation, and mitosis processes. DeepProg is freely available at

https://github.com/lanagarmire/DeepProg
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Background
Most survival-based molecular signatures are based on

one single type of omics data [1]. Since each omic plat-

form has specific limitations and noises, multi-omics

based integrative approach presumably can yield more

coherent signatures [2]. However, this approach to pre-

dict clinical phenotypes is much less explored compara-

tively, due to the combination of computational and

practical challenges. These challenges include platform-

specific measurement biases [3], different data distribu-

tions which require proper normalizations [4], as well as

very limited sample-sizes with multi-omics measure-

ments due to the high cost [5].

Among the multi-omics data integration methods,

most of them do not model patient survival as the ob-

jective; rather, the survival differences associated with

molecular subtypes are evaluated in a post hoc fashion

[6]. Moreover, many methods use unsupervised ap-

proaches, unsuitable for predicting new patient statuses

iCluster, Similarity Network Fusion (SNF), MAUI, and

Multi-Omics Factor Analysis (MOFA+) are such exam-

ples [7–10]. iCluster is of the earliest methods to cluster

cancer samples into different molecular subtypes based

on multi-omic features, using probabilistic modeling to

project the data to a lower embedding [7]. Similarity

Network Fusion (SNF) algorithm is another popular

clustering method to integrate different omic features,

by first constructing a distinct similarity network for

each omic then fusing the networks using an iterative

procedure [8]. It was applied on multiple TCGA cancer

datasets [11, 12]. MAUI is a non-linear dimension re-

duction framework for multi-omic integration which

uses variational autoencoder to produce latent features

that can be used for either clustering or classification

[9]. Similarly, MOFA+ is a statistical framework using

factor analysis through standard matrix factorization to
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infer latent variables from multi-omic datasets explain-

ing the most source of variation [10].

Identifying disease subtypes is clinically very signifi-

cant. For example, it is generally accepted that cancer of

a specific organ has multiple subtypes. Using molecular

signatures to identify cancer subtypes allows tumor clas-

sification beyond tumor stage, grade, or tissue of origin

[13]. Cancer subtypes sharing similar molecular and

pathway alterations could be treated with the same

drugs [14]. One of such subtypes is survival stratified pa-

tient subtypes based on prognostic signatures [15]. Once

inferred, their signatures can be used as starting points

for follow-up therapeutic or prognostic studies [16].

Moreover, the molecular differences associated with pa-

tient survival help shed light to understand the mechan-

ism of tumor progression [17]. The gained knowledge

not only helps to improve disease monitoring and man-

agement, but also provides information for prevention

and treatment.

Here we propose a unique computational modeling

framework called DeepProg, different from all methods

mentioned above. It explicitly models patient survival as

the objective and is predictive of new patient survival

risks. DeepProg constructs a flexible ensemble of hybrid-

models (a combination of deep-learning and machine

learning models) and integrates their outputs following

the ensemble learning paradigm. We applied DeepProg

on RNA-Seq, Methylation, and miRNA data from 32

cancers in The Cancer Genome Atlas (TCGA), with a

total of around 10,000 samples. DeepProg shows better

predictive accuracies when compared to SNF based

multi-omics integration method and the baseline Cox-

PH method. The gene expression in the worst survival

subtype of all cancers shares common signatures in-

volved in biological functions such as mitotic enhance-

ment, extracellular-matrix destabilization, or immune

deregulation. Moreover, DeepProg can successfully pre-

dict the outcomes for samples from one cancer using

the models built upon other cancers. In short, DeepProg

is a powerful, generic, machine-learning and deep-

learning based method that can be used to predict the

survival subtype of an individual patient.

Methods
TCGA datasets

We obtain the 32 cancer multi-omic datasets from NCBI

using TCGA portal (https://tcga-data.nci.nih.gov/tcga/).

We use the package TCGA-Assembler (versions 2.0.5)

and write custom scripts to download RNA-Seq (UNC

IlluminaHiSeq RNASeqV2), miRNA Sequencing

(BCGSC IlluminaHiSeq, Level 3), and DNA methylation

(JHU-USC HumanMethylation450) data from the TCGA

website on November 4–14, 2017. We also obtain the

survival information from the portal: https://portal.gdc.

cancer.gov/. We use the same preprocessing steps as de-

tailed in our previous study [18]. We first download

RNA-Seq, miRNA-Seq, and methylation data using the

functions DownloadRNASeqData, DownloadmiRNASeq-

Data, and DownloadMethylationData from TCGA-

Assembler, respectively. Then, we process the data with

the functions ProcessRNASeqData, ProcessmiRNASeq-

Data, and ProcessMethylation450Data. In addition, we

process the methylation data with the function Calcula-

teSingleValueMethylationData. Finally, for each omic

data type, we create a gene-by-sample data matrix in the

Tabular Separated Value (TSV) format using a custom

script.

Validation datasets

For breast cancer data, we use four public breast cancer

gene expression microarray datasets and one Metabric

RNA-Seq dataset as the validation datasets. Four public

datasets (all on Affymetrix HG-U133A microarray plat-

form) were downloaded from Gene Expression Omnibus

(GEO). Their accession IDs are GSE4922 [19], GSE1456

[20], GSE3494 [21], and GSE7390 [22]. Their pre-

processing was described in a previous study [23]. For

the Metabric dataset, we obtain approval from the Syn-

apse repository: https://www.synapse.org/#!Synapse:

syn1688369, and used the provided normalized data de-

scribed in the Breast Cancer Challenge [24]. The metab-

ric dataset consists of 1981 breast cancer samples, from

which we extract RNA-Seq data. For hepatocarcinoma

datasets, we use two larger datasets: LIRI and GSE data-

sets, as described in the previous study [18].

DeepProg framework

DeepProg is a semi-supervised flexible hybrid machine-

learning framework that takes multiple omics data

matrices and survival information as the input. For each

sample s, the survival data have two features: the obser-

vation time t and the observed event (death) e. The pipe-

line is composed of the following unsupervised and

supervised learning modules (the detail of each step is

described in the subsequent paragraphs). Module 1: un-

supervised subtype inference: each input matrix is proc-

essed with (a) normalization, (b) transformation using an

autoencoder for each omics data type, and (c) selection

of the survival-associated latent-space features from the

bottle neck layer of autoencoders. The selected survival-

associated latent-space features from all the omics are

then combined for clustering analysis. Module 2: super-

vised prediction of a new sample; this module is com-

posed of the following steps: (a) construction of a

classifier using the training set, (b) selection and

normalization of the common features with the new

sample, and (c) prediction. For both unsupervised and

supervised inferences, we use an ensemble of DeepProg
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models through boosting approach: each model is con-

structed with a random subset (80%) of the training

dataset. The clustering and the prediction results are

combined according to the relevance of each model.

Normalization

As default, DeepProg first selects the top 100 features

from the training set that have the highest variance.

Then, for each sample, we inversely rank the features

and divide them by 100, so that the score is normalized

between 0 and 1. Next, we compute the sample-sample

Pearson correlation matrix of size n, the number of sam-

ples. For each sample, we use the sample-sample dis-

tances as new features and normalize them using the

rank as well. As a result, each sample has n features with

the score of the first feature equal to 1.0 and the last fea-

ture equal to 0.

To normalize a new sample (in the model prediction

stage), we first select the set of common features be-

tween the new sample and the training set. We then per-

form the same steps as described above: (a) selection of

top 100 features, (b) rank-based normalization, (c) dis-

tance computation with the samples from the training

set, and (d) rank normalization.

Autoencoder transformation

An autoencoder is a function f(v) = v′’ that reconstructs

the original input vector v composed of m features

through multiple nonlinear transformations (size(v) =

size(v′) =m). For each omic data type, we create one

autoencoder with one hidden layer of size h (default

100) that corresponds to the following equation:

f vð Þ ¼ tanh W
0

:sðW :vþ b
� �

þ b0Þ

W’, W are two weight matrices of size h by m and m

by h, and b, b’ are two bias vectors of size h and h’. tanh

is a nonlinear, element-wise activation function defined

as

f xð Þ ¼ exp xð Þ− exp −xð Þð Þ= exp xð Þ þ exp −xð Þð Þ:

To train our autoencoders, we search the optimal W*,

W`*, b*, and b’* that minimizes the log-loss function.

We use python (2.7) Keras package (1.2.2) with theano

as tensor library, to build our autoencoders. We use the

Adam optimization algorithm to identify W*, W`*, b*,

and b’*. We train our autoencoder on 10 epochs and

introduce 50% of dropout (i.e., 50% of the coefficients

from W and W’ will be randomly set to 0) at each train-

ing iteration.

Hyperparameter tuning

To help selecting the best set of hyperparameters (i.e.,

number of epochs, network shape, dropout rate…),

DeepProg has an optional hyperparameter tuning mod-

ule based on Gaussian optimization and it relies on the

scikit-optimize (https://scikit-optimize.github.io/stable/)

and the tune (https://docs.ray.io/en/latest/tune.html) py-

thon libraries. The computation of the ensemble of

models and/or the hyperparameters grid-search can op-

tionally be distributed on multiple nodes and external

supercomputers using the python ray framework

(https://docs.ray.io/en/latest/).

Selection of new hidden-layer features linked to survival

For each of the transformed feature in the hidden layer,

we build a univariate Cox-PH model using the python

package lifelines (https://github.com/CamDavidsonPilon/

lifelines) and identify those with log-rank p values (Wil-

coxon test) < 0.01. We then extract all the significant

new latent features from all autoencoders and combine

them as a new matrix Z.

Cancer subtype detection

The default clustering method to identify subtypes is the

Gaussian mixture model-based clustering. We use the

GaussianMixture function from the scikit-learn package

with 1000 iterations, 100 initiations, and a diagonal

covariance matrix. The resulting clusters are sorted

according to their median survival levels: the cluster la-

beled as “0” has the overall lowest median survival, while

the last cluster “N” has the highest survival overall.

Other clustering methods, K-means and dichotomized

Lasso Cox-PH model, can replace the default Gaussian

mixture method.

Construction of supervised classifiers to predict the

cancer subtype in new samples

We use the cluster labels obtained from the above

Gaussian mixture model to build several supervised ma-

chine learning models that can classify any new sample,

under the condition that they have at least a subset of

features in common with those input features from the

training set. First, we compute a Kruskal-Wallis test for

each omic type and each feature, in order to detect the

most discriminative features with respect to the cluster

labels. Then, we select the 50 most discriminative fea-

tures for each omic type and combine them to form a

new training matrix M. We apply Support Vector Ma-

chine (SVM) algorithm to construct a predictive model

using M as the input and the cluster labels as classes. To

find the best hyper-parameters of the classifier, we per-

form a grid-search using a 5-fold cross-validation on M,

with the objective to minimize the errors of the test fold.

The algorithm constructs at first a classifier using all the

omic types from the training samples. If a new sample

shares only a subset of omics data types and a subset of

the features with the training samples (e.g., a sample has
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only RNA-Seq measurement), then DeepProg constructs

a classifier using only this subset of omics data type and

features, before applying it to the new sample. We use

the python sklearn package to construct SVM models

and infer the class probability with the predict_proba

function, by fitting a logistic regression model on the

SVM scores [25].

Boosting procedure to enhance the robustness of

DeepProg

To obtain a more robust model, we aggregate mul-

tiple DeepProg models constructed on a random sub-

set of the training samples. As the default, we use 10

models with 80% of original training samples to con-

struct all the cancer models, except for LUSC and

PRAD which we use 20 models since they are more

difficult to train. The aggregation of these models

(per cancer) works as the following: after fitting, we

eliminate those models without any new features

linked to survival or having no cluster labels signifi-

cantly associated with survival (log-rank p value >

0.05). For a given sample, the probability of belonging

to a particular cancer subtype is the average of the

probabilities given by all the remaining models. We

use the class probability of the worst survival subtype

to assign the final label.

Choosing the correct input number of clusters and

performance metrics

When fitting a model, DeepProg computes several qual-

ity metrics: the log-rank p value for a Cox-PH model

using the cluster labels from all or only the hold-out

samples as described above, the concordance index (C-

index) [26], and the Silhouette score measuring the clus-

ters homogeneity. In addition, DeepProg measures the

clustering stability, that is, the consistency of class label-

ing among the different models during boosting. We

compute the clustering as the following: (a) for each pair

of models, we compute the adjusted Rand Index be-

tween the two set of cluster labels (ARI) [27], and (b) we

then calculate the mean of all the pair-wise rand indexes.

For each cancer model, we test different initial number

of clusters (K = 2,3,4,5). We then select the K presenting

the best overall results based on silhouette score. Fur-

thermore, we also select carefully the K that minimizes

the crossovers on the Kaplan-Meier (KM) plots, when

plotting the stratified patient survival groups according

to the cluster labels.

To identify the input omics features differentially

expressed between the worst survival subtype and

other(s), we perform two-group (worst survival subgroup

and the other remaining samples) Wilcoxon rank-sum

test for each feature, using the Scipy.stats package. We

then select features significantly over- or under-

expressed with p values< 0.001. Next, we rank the differ-

entially expressed features among the 32 cancers. For

this purpose, we construct a Cox-PH model for each

cancer and each significant feature and rank the features

according to their -log10 (log-rank p value). We then

normalize the ranks among these significant features be-

tween 0 and 1, where 1 is attributed to the feature with

the lowest Cox-PH log-rank p value and 0 is assigned to

the feature with the highest Cox-PH log-rank p value in

the set. We then sum the ranks of each feature among

the 32 cancers to obtain its final score.

Impact of tumor heterogeneity for BRCA and HCC on DA

genes

We use xCell web interface [28] to infer the tumor

composition among 67 reference cell types. We con-

struct L1-penalized logistic regression using the stats-

models python library model, fit_regularized function

from the logit class with alpha = 1.0 for each gene

with and without the tissue composition as co-

founders and using the cluster labels as outcome.

Prior to the regression, we scale the features to have

mean = 0 and std = 1 for each features using the

RobustScaler from scikit-learn. We rank the signifi-

cant (the two-tailed t stats p values < 0.05) coefficient

for the two types of models and compared their over-

all similarities using the Kendall-Tau correlation

measurement similar to before [29].

Comparison with other data integration methods

To infer clusters from SNF, we use rpy2 to call SNF

from python with the `ExecuteSNF` function from the

CancerSubtypes R library (v1.16) with the default param-

eters and use the same number of clusters (k) for Deep-

Prog. We also substitute the autoencoder step of the

DeepProg configuration with two other matrix

factorization methods: MOFA+ and MAUI, using TCGA

HCC and BRCA datasets. In each alternative approach,

we transform the multi-omic matrices into 100 new

components, followed by the same remaining steps in

DeepProg (e.g., survival associated feature filtering,

clustering). For MOFA+ method (package MOFA), we

obtain 100 features using the following parameters itera-

tions = 500, convergence_mode=’slow’, startELBO = 1,

freqELBO = 1. For MAUI (package maui for python3,

Released: Sep 17, 2020), we obtain 100 latent features

using the following parameters learning rate = 0.0001,

epochs = 500, one hidden layer of 1100 nodes. However,

none of the 100 features is significantly (P < 0.05) associ-

ated with survival in Cox-PH regression step of Deep-

Prog workflow. Finally, we also substitute the

autoencoder step by standard PCA using the scikit-learn

python library.
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Construction of the co-expression network

For each cancer, we first identify (at most) the top 1000

RNA-Seq genes enriched in the worst subtype according

to their Wilcoxon rank test p value. We then use these

genes to construct a Gene Regulatory Network. For each

pair of genes (nodes), we obtain an interaction score

based on their correlations, and assign it to the edge be-

tween them. For each network, we normalize the scores

by dividing them with the maximal value. We then score

each gene with the sum of its edge scores. We combine

the network obtained for the 32 cancers into a global

pan-cancer co-expression network, using the

GRNBoost2 algorithm from the python package arbor-

eto. Specifically, we use the following steps: (a) aggregat-

ing the nodes, node weights, edges, and edge weights of

each cancer network into a consensus graph; (b) select-

ing the top 200 genes and construct its corresponding

subgraph; (c) performing edge pruning on each gene by

removing all but the top 10 edges, according to their

weights; and (d) applying a community detection algo-

rithm on the graph using the random-walk algorithm

from the python library igraph and visualizing the graph

using Gephi [30].

Code availability

The source code and documentation for the DeepProg

framework is free for non-commercial use under GPL v3

license at: https://github.com/lanagarmire/DeepProg.

The workflow is written in Python3 and tested under

Linux, OSX, and Windows. The package contains in-

structions for installation and usage and the different re-

quirements. A docker image containing all the

dependencies installed is also freely available at: https://

hub.docker.com/repository/docker/opoirion/deepprog_

docker.

Results
DeepProg method overview

DeepProg is a general hybrid and flexible computational

framework to predict patient survival based on one or

more omics data types, such as mRNA transcriptomics,

DNA methylation, and microRNA expression (Fig. 1).

The first phase of DeepProg is composed of dimension

reduction and feature transformation using custom rank

normalizations and auto-encoders, a type of deep

neural-network. It uses “modularized” design for auto-

encoders, where each data type is modeled by one auto-

encoder, to allow flexibility and extendibility to hetero-

geneous data types. In the default implementation, the

auto-encoders have 3 layers, the input layer, the hidden

layer (100 nodes), and the output layer. The transformed

features are then subject to univariate Cox-PH fitting, in

order to further select a subset of features linked to sur-

vival. Next, using unsupervised clustering approach,

DeepProg identifies the optimal number of classes (la-

bels) of survival subpopulations and uses these classes to

construct support vector machine (SVM)-based

machine-learning models, in order to predict a new pa-

tient’s survival group. To ensure the robustness of the

models, DeepProg adopts a boosting approach and

builds an ensemble of models. The boosting approach

yields more accurate p values and C-indices with lower

variances and leads to faster convergence of the models

(Additional File 1: Table S1). Each of these models is

constructed with a random subset (e.g., 4/5) of the ori-

ginal dataset and evaluated using the C-index value from

the remaining hold-out (e.g., 1/5) testing samples. For

efficiency, the computation of DeepProg is fully distrib-

uted, since each model can be fit separately.

Prognostic prediction on 32 TCGA cancers

We applied DeepProg to analyze the multi-omics data

(RNA-Seq, miRNA-Seq, and DNA methylation) of 32

cancers in TCGA (Additional File 2: Table S2). We used

only RNA and MIR for Ovarian Cancer (OV) because

only a small fraction (9 out of 300) of the samples had

the 3-omics data at the time of the manuscript submis-

sion. For each cancer type, we selected the optimal clus-

tering number K that produces the best combination of

silhouette scores and Adjusted Rand Index (Additional

File 3: Table S3), metrics that measure the clustering sta-

bilities and accuracy. Almost all cancers (30 out of 32)

have K = 2 as the most optimum survival-subgroups

(Fig. 2A). With the optimal cluster numbers, we com-

puted the log-rank p values among the different survival

subtypes of each cancer, all of which are statistically sig-

nificant (log-rank p values < 0.05) and have C-indexes

(0.6–1.0) greater than 0.5, the expected value of random

models. Among them, 23 out of 32 cancers have log-

rank p values less than 5e−4, highlighting the values of

the models at differentiating patient survival (Fig. 2B).

Additionally, we investigated the average number of

hidden-layer features significantly associated with sur-

vival, for each omic data type and each cancer (Add-

itional File 4: Fig. S1). Overall, RNA-Seq has the most

amount of important hidden features towards survival

prediction. miRNA hidden features have similar patterns

in all cancers, with fewer total counts. Although vast

heterogeneity exists among 32 cancers, some cancers

known to be closely related, such as colon cancer

(COAD) and gastric cancer (STAD), as well as bladder

cancer (BLCA) and kidney cancer (KIRC), also share

similar prognostic hidden features.

We previously showed that for the prototype of

DeepProg, adding clinical variables such as cancer stage,

ethnicities, etc., did not help improving the predictive re-

sults in HCC [18]. Here, we also directly compare the

performance of DeepProg vs. a simple model based on
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stage stratification (stage I + II vs. stage III + IV) on 32

cancer types. As shown in Additional File 4: Fig. S2A,

DeepProg has significantly better (Rank sum test p value

= 2.4e−3) log-rank p values compared to the simple

model based on stage-stratified survival difference. To

further demonstrate the DeepProg is capable to predict

patient survival outcome beyond tumor stage, we next

focused on late stage (stages III and IV) COAD and

STAD. We constructed DeepProg models using patients

from the latter stages III and IV and compared their re-

sults to survival difference using stage III vs. IV for

stratification (Additional File 4: Fig. S2B-E). The sub-

types for STAD and COAD identified by DeepProg are

clearly more significant (log-rank p values of 5.5e−04

and 2.7e−06 respectively) than those based on tumor

stages (log-rank p values of 0.16 and 0.012 respectively).

Moreover, the subtypes from DeepProg are not signifi-

cantly associated with the stage (Fisher exact p values of

0.08 and 0.14 for COAD and STAD, respectively). Thus,

DeepProg provides much more information to predict

patient survival than the clinical factor tumor stage.

Comparison between DeepProg and other methods

To evaluate the new DeepProg method, we compared

the results from the 32 cancers above with those ob-

tained from the Similarity Network Fusion (SNF)

Fig. 1 The computational framework of DeepProg. DeepProg uses the boosting strategy to build several models from a random subset of the

dataset. For each model, each omic data matrix is normalized and then transformed using an autoencoder. Each of the new hidden-layer features

in autoencoder is then tested for association with survival using univariate Cox-PH models. The features significantly associated with survival are

then subject to clustering (Gaussian clustering by default). Upon determining the optimal cluster, the top features in each omic input data type

are selected through Kruskal-Wallis analysis (default threshold = 0.05). Finally, these top omics features are used to construct a support vector

machine (SVM) classifier and to predict the survival risk group of a new sample. DeepProg combines the outputs of all the classifier models to

produce more robust results
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algorithm [8], a state-of-the-art method to integrate

multi-omics data (Fig. 2B, C, Additional File 4: Fig. S3).

Previously SNF was used to identify cancer subtypes

linked to survival by others [11, 12]. As shown in Fig.

2B, the survival subtypes from SNF only have significant

survival difference in 13 out of 32 cancers (p value<

0.05). In all, DeepProg yields much better log-rank p

values (Fig. 2B) and C-indices (Fig. 2C). Additionally,

considering that TCGA datasets might have changed

since the time of the SNF publication, we also used the

patient subtypes identified in the original SNF paper on

five test datasets and used them to obtain log-rank sur-

vival subtype p values [8]. These p values are all less sig-

nificant, compared to those obtained from DeepProg

using the same five datasets as the inputs (Additional

File 5: Table S4).

We also substituted the autoencoder step of the Deep-

Prog configuration with a simple PCA decomposition

and two matrix factorization methods including MAUI

and MOFA+, using TCGA HCC and BRCA datasets. In

each alternative approach, we transformed the multi-

omic matrices into 100 new components, followed by

the same remaining steps in DeepProg (e.g., survival as-

sociated feature filtering, clustering). While none of the

100 features from MAUI has a p value < 0.05 in Cox-PH

filtering step, PCA and MOFA+ both have much worse

performances compared to the default dimension reduc-

tion step in DeepProg (Fig. 3 and Additional File 6:

Fig. 2 DeepProg performance for the 32 TCGA cancer datasets. A Kaplan-Meier plots for each cancer type, where the survival risk group

stratification is determined by DeepProg. B The density distributions of -log10 (log-rank p value) for the Cox-PH models based on the subtypes

determined by DeepProg (light grey line), SNF (dark grey line), or the pair-wise -log10 (log-rank p value) differences between DeepProg and SNF

(blue line). C Smoothed C-index distributions for the Cox-PH models based on the subtypes determined by DeepProg (light grey line), SNF (dark

grey line), or the pair-wise C-index difference between DeepProg and SNF (blue line)
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Table S5). On HCC testing data, C-indices from PCA

and MOFA+ are 0.60 and 0.59 respectively (Fig. 3A, B),

compared to that of 0.76 by DeepProg (Fig. 3C). On

BRCA testing data, PCA and MOFA+ yield C-indices of

0.58 and 0.62 respectively (Fig. 3D, E), whereas Deep-

Prog has a C-index of 0.77 (Fig. 3F). In conclusion, based

on the HCC and BRCA benchmarks, DeepProg is signifi-

cantly better to infer subtypes linked to survival from

multi-omics data compared to the matrix factorization

methods and PCA.

Lastly, we compared DeepProg with a baseline model,

where the Z-score normalized features are directly fit by

the Cox-PH model with Lasso penalization without the

autoencoder step. The samples are dichotomized into

the same number of clusters as in DeepProg, subjective

to the same parameterization whenever applicable. On

the same hold-out samples across 32 cancers, DeepProg

shows significantly better log-rank p values (p value<

0.0005, 2-sided t test) than the baseline Cox-PH model

(Additional File 4: Fig. S4).

Validation of DeepProg performance by other cohorts

One key advantage of the DeepProg workflow is its abil-

ity to predict the survival subtype of any new individual

sample that has some common RNA, miRNA, or DNA

methylation features with the training dataset (Fig. 1B).

DeepProg normalizes a new sample by taking the rela-

tive rank of the features and use them to compute the

distances to the samples in the training set (see the

“Methods” section). To validate the patient survival risk

stratification of DeepProg models, we applied them on

additional independent cancer datasets, two from hepa-

tocellular carcinoma (HCC) cohorts (Fig. 4A, B) and

four from breast cancer (BRCA) cohorts (Fig. 4C, F).

The two HCC validation sets are LIRI dataset with 230

RNA-Seq samples and GSE dataset with 221 gene ex-

pression array results (see the “Methods” section). We

obtained a C-index of 0.80 and log-rank p value of 1.2e

−4 (LIRI) and a C-index of 0.73 and log-rank p value of

1.5e−5 (GSE), respectively (Fig. 4A, B). The four BRCA

datasets have C-indices of 0.68–0.73, all with significant

Fig. 3 Comparing the performance of DeepProg and its variations, where the default autoencoder is substituted by a simple PCA decomposition

or MOFA+ method to generate an input matrix of the same dimensions, using TCGA HCC (A–C) and BRCA (D–F) datasets. Methods in

comparison: A, D PCA; B, E MOFA+; C, F DeepProg default
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log-rank p values (< 0.05) for survival difference (Fig. 4C,

F). We thus validated the predictability of DeepProg by

additional HCC and BRCA cohorts.

Identification of signature genes for the worst survival

subtypes reveals pan-cancer patterns

In order to identify the key features that are associated

with patient survival differences, we conducted a com-

prehensive analysis of features in each omic layer that

are significantly over- or under-expressed among the

subset of patients with the poorest survival. Next, among

the over- or under-expressed features we selected im-

portant features from the input data types whose Wil-

coxon rank test p values are less than 1e−4. For each of

these features, we computed the univariate Cox-PH re-

gression in each cancer type and ranked them based on

the -log10 (p values). Upon normalizing these ranks be-

tween 0 and 1, we obtained a pan-cancer rank by sum-

ming over all 32 cancer types (see the “Methods”

section). We describe the results in RNA-Seq analysis in

the following and summarize the results on microRNA

and DNA methylation analysis in Additional File 7.

The RNA-Seq analysis shows some emerging patterns

of over-represented genes within the poorest survival

group (Fig. 5A). CDC20 is ranked first, and some other

genes from the cell division cycle (CDC) family, includ-

ing CDCA8, CDCA5, CDC25C, and CDCA2, are also

among the top 100 genes (Additional File 8: Table S6).

Additionally, numerous genes from the Kinesin Family

Member (KIF) (i.e., KIF4A, KIF2C, KIF23, KIF20A,

KIF18A, KIFC1, KIF18B, and KIF14) are present in the

top 100 genes (Additional File 8: Table S6). The CDC

genes [31–35] and KIF genes over expression [36, 37]

have been reported in the metastasis process and linked

to poor prognosis. Many other genes over-expressed in

the poor survival group are concordant with previous

studies, such as ITGA5, CALU, PLKA1, KPNA2, APCD

DL1, LGALS1, GLT25D1, CKAP4, IGF2BP3, and

ANXA5 [38]. Using the ranking values, we clustered the

cancers and the genes and detected two clear gene clus-

ters, enriched with biological functions of cell-cycle and

mitosis (Adj. p value = 3e−42) and extracellular matrix

organization pathway (Adj. p value = 6e−9), respectively

(Fig. 5A). In addition, the analysis shows two distinct

Fig. 4 Validation of DeepProg subtype predictions by independent breast cancer and liver cancer cohorts. RNA-Seq Validation datasets for HCC:

A LIRI (n = 230) and B GSE (n = 221) and validation datasets for BRCA: C Patiwan (n = 159), D Metabric (n = 1981), E Anna (n = 249), and F Miller

(n = 236)
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Fig. 5 (See legend on next page.)
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groups of cancers, where GBM, HNSC, OV, STAD,

COAD, LUSC, and KIRC are in one group, and cancers

such as PRAD, PAAD, and LUAD are in the other group

(Fig. 5A).

Among the genes that are under-expressed in the

poorest survival groups, CBX7 and EZH1 are the top 2

genes (Additional File 8: Table S6). Downregulation of

CBX7 was shown to play a critical role in cancer pro-

gression [39]. Similarly, EZH1 inhibition was shown to

be involved in cell proliferation and carcinogenesis [40,

41]. Additionally, multiple genes in zinc finger family are

downregulated (ZBTB7C, ZMAT1, ZNF18, ZNF540,

ZNF589, ZNF554, and ZNF763). ZNF genes are a large

family of transcription factor and many of them were

shown relevance in cancer progression [42].

RNA-Seq co-expression network analysis

To characterize further the RNA-Seq gene expression

associated with the poorest survival subtypes, we per-

formed a global gene co-expression analysis. For each

cancer type, we selected differentially expressed genes

from the worst survival subtype (Fig. 5A) and con-

structed a pan-cancer consensus co-expression network.

As an illustration, we constructed a subgraph of co-

expression using the top 200 genes and the most signifi-

cant edges (Fig. 5B) and performed gene community de-

tection using random-walks algorithm [43]. A large

fraction of top co-expressed genes overlap with the top

survival genes highlighted earlier. For example, a tight

cluster (group 1) is composed of multiples CDC and KIF

genes, together with BUB1, MCM10, AURKB, CENPA,

CENPF, and PLK1. These genes are related to mitosis

and cell cycle pathway (q value = 2e−28). Two clusters

(groups 4 and 5) that include multiple collagens are

enriched with extracellular matrix (ECM) organization

and receptors function (q value = 2e−16) (Fig. 5B). These

results follow the conclusions of previous studies

highlighting close correlations between ECM genes, not-

ably SPARC and COL1A1, and tumor invasiveness [44].

In addition, the network unveiled two major groups of

genes associated with immunoregulation between lymph-

oid and non-lymphoid cell pathway (group 2, q value =

6e−10) and smooth muscle contraction (group 3, q value

= 7e−12), respectively. Similar to signature gene results

(Fig. 5A), gene-cancer cluster map shows very close

similarities between COAD and STAD on RNA co-

expression (Fig. 5C), which was observed earlier in fea-

tures, and was reported as pan-gastrointestinal cancers

from the cancer tissue-of-origin study (Hoadley et al.,

2018).

To address potential confounding of tumor heterogen-

eity within patients, we used xCell [28] to deconvolute

the cell types for each patient. We then adjusted the

genes for all cell type compositions using logistic regres-

sion, similar to what we did before [44]. We performed a

comparison between before and post cell-type adjust-

ment over the two sets of differentially expressed (DE)

genes using Kendall-Tau correlation scores, similar to

previous study [29]. On HCC and BRCA, Kendall-Tau

correlation scores are 0.52 (p value < 1.04e−25) and 0.55

(p value < 3.5e−150) respectively. The highly significant

p values reject the hypothesis that these two DE gene

rankings are independent.

Similar cancer types can be used as predictive models

Motivated by the similarities observed among some can-

cers, we explored if the models are suitable for transfer

learning, that is, the model built on one particular can-

cer type can be used to predict survival of patients in an-

other cancer type. We tested all pairs of 32 cancers, used

alternatively as training and test datasets. Many of the

cancer models are effective at predicting other cancer

types (Fig. 6A). Interestingly, models built on mesotheli-

oma (MESO) data significantly predict the subtypes of

12 other cancer types, with long-rank p values ranging

from 0.048 to 4.8e−6, and C-indices ranging from 0.58

to 0.82. In general, cancer types that are biologically

more relevant have higher predictive accuracies of cross-

cancer predictions, for example, the cancer pair COAD/

STAD, the two close cancer types identified by the earl-

ier signature gene analysis (Fig. 5C). The STAD model

significantly predicts the subtypes of COAD samples (p

value = 0.018, CI = 0.60) (Fig. 6B), and vice versa for the

COAD model prediction on STAD samples (p value =

5.4e−3, CI = 0.66) (Fig. 6C).

Intrigued by the apparent lack of predictability be-

tween READ and COAD (Fig. 5A), we investigated fur-

ther the potential source. READ shows similar top 100

gene expression patterns with STAD and COAD; how-

ever, is quite different in the top 100 features at the

(See figure on previous page.)

Fig. 5 Pan-cancer analysis of RNA-Seq gene signatures in the worst survival vs. other groups. A Top 100 over- and under-expressed genes for

RNA, MIR, and METH omics ranked by survival predictive power. The colors correspond to the ranks of the genes based on their –log10 (log-rank

p value) of the univariate Cox-PH model. Based on these scores, the 32 cancers and the features are clustered using the WARD method. B Co-

expression network constructed with the top 200 differentially expressed genes from the 32 cancers. The 200 genes are clustered from the

network topology with the Louvain algorithm. For each submodule, we identified the most significantly enriched pathway as shown on the

figure. C The expression values of these 200 genes used to construct the co-expression network. A clustering of the cancers using these features

with the WARD method is represented in the x-axis
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Fig. 6 Transfer learning to predict survival subtypes of certain cancers using the DeepProg models trained by different cancers. A Heatmap of the

Cox-PH log-rank p values for the subtypes inferred using each cancer as the training dataset. B Kaplan-Meier plot of predicted subtypes for

COAD, using the DeepProg model trained on STAD. C Kaplan-Meier plot of predicted subtypes for STAD, using the DeepProg model trained

on COAD

Poirion et al. Genome Medicine          (2021) 13:112 Page 12 of 15



miRNA and methylation levels (Fig. 5). We thus con-

structed additional models for COAD and EAD using

only RNA as features and were able to significantly im-

prove the mutual predictabilities between COAD and

READ (Additional File 4 Fig. S5).

Discussion
In this report, we present a novel and generic computa-

tional framework, named DeepProg, which processes

multiple types of omics data sets with a combination of

deep-learning (autoencoder) and machine-learning algo-

rithms, specifically for survival prediction. We have

demonstrated several characteristics of DeepProg, in-

cluding its superior predictive accuracy over other state-

of-the-art methods, its robustness at predicting other

HCC and BRCA population cohorts’ patient survival, as

well as its suitability as a transfer learning tool trained

from a relevant cancer to predict another cancer.

A few unique mechanistic features of DeepProg contrib-

ute to its accuracy. First, it uses boosting procedures that

increase the robustness of the final model, by agglomerat-

ing weaker models from different subsets of the original

samples. This design is well adapted to distributed com-

puting architectures and can be scaled-up easily. Secondly,

it employs a modularized design for each omic data type

and can be extended to other omics and data types. In its

default configuration, DeepProg first processes each omic

data set individually with autoencoders, and then merges

the hidden layer features under a unified Cox-PH fitting –

clustering – supervised classification workflow. The auto-

encoder structure transforms the initial input features of

various omics types into new features. Another key aspect

of DeepProg is the validation of the inferred labels using

either internal out-of-bag samples and/or external data-

sets. In this study, we demonstrated the value of DeepProg

in integrating 3 types of omics data: RNA-Seq,

microRNA-Seq, and DNA methylation. Other specialized

deep-learning models to handle mutation or pathology

image data can be developed as individual modules and

added to DeepProg. DeepProg performs significantly bet-

ter overall than unsupervised methods such as SNF at pre-

dicting patient survival. One major reason is that SNF

does not include survival information when performing

integration; rather, it only relies on the patterns from mul-

tiple types of genomics data. Moreover, unsupervised

methods such as SNF cannot predict the prognosis of new

sample(s) like DeepProg.

We further used DeepProg to identify global signa-

tures of tumor aggressiveness among 32 types of can-

cers. Although previously several pan-cancer studies

used one or different omic types to understand pan-

cancer molecular hallmarks [38, 45, 46], the report here

is the first of its kind to systematically characterize the

differences between survival subtypes in pan-cancer. We

identified the top survival features linked to the aggres-

sive subtypes and focused on RNA-Seq expression ana-

lysis. The pan-cancer gene regulatory network highlights

the top co-expressed genes in the most aggressive sub-

type of these cancers. Many of them are related to cell

proliferation, extracellular matrix (ECM) organization,

and immunoregulation, confirming earlier results in the

literature on cancer invasion [47, 48]. Such genes are

notably linked to the cell-division cycle [33], cytoskel-

eton structure [49], collagens [48], or cadherin families

[50]. We also found several genes linked to smooth

muscle contraction. For example, Calponin gene CNN1,

TAGLN, and TMP2 are co-expressed in different can-

cers (Fig. 4). Also, CNN1, TAGLN, and TMP2 were

already characterized as prognostic molecular markers

for bladder cancer with higher expression associated

with lower survival [51]. Interestingly, various transcrip-

tion factor families, such as Zinc finger genes are down-

regulated and HOX genes are hypermethylated

(Additional File 8: Table S6). Such observations are sup-

ported by previous reports, as multiple zinc-finger pro-

teins have been shown to act as tumor suppressor genes

[52], and dysregulation of HOX genes is frequent in can-

cer as many of them play important roles in cell differ-

entiation [53]. It will be of interest to follow up

experimentally to test their effects. Lastly, through com-

prehensive comparison among 32 cancers, the molecular

similarities that are clinically (survival) relevant are re-

vealed. For example, aggressive subgroups from COAD

and STAD, two gastroenteric cancers, present multiple

common patterns. We speculate that these relationships

can be exploited in the future to build more robust ana-

lyses [54] and help strategize treatment plans by lever-

aging patient profiles and cancer similarities.

Conclusions
DeepProg is a novel ensemble framework of deep-learning

and machine-learning approaches that robustly predicts

patient survival subtypes using multi-omics data. We an-

ticipate that DeepProg models are informative to predict

patient survival risks, in diseases such as cancers.

Availability and requirements
Project name: DeepProg

Project home page: https://github.com/lanagarmire/

DeepProg

Operating system(s): Linux, OSX, Windows, Docker

Programming language: Python, R

Other requirements: Python 3.8, Tensorflow, scikit-

learn, scikit-survival, lifelines, Keras

License: PolyForm Perimeter License 1.0.0

Any restrictions to use by non-academics: license

needed
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Additional file 1: Table S1. DeepProg performances when using a

number of models ranging from 1 to 30. The Cox-PH log-rank p value

(pval) and the C-index (CI) are calculated for two datasets: HCC and BRCA.

Two validation datasets are used for HCC: LIRI and GSE, and four datasets

for BRCA, named Anna, Patiwan, Miller, and Metabric datasets

respectively.

Additional file 2: Table S2. Summary of 32 TCGA cancer types.

Additional File 3: Table S3. Cox-PH log-rank p value, Silhouette score,

and clustering stability score obtained using DeepProg on the 32 cancers

and with a number of input clusters from 2 to 5.

Additional File 4: (Figure S1-S5): Additional information including

details of DeepProg model and its comparison with other methods.

Figure S1. Autoencoder hidden-layer features significantly associated

with survival for each omic data type and cancer type. Figure S2. Com-

pare the performance of DeepProg vs. a simple model based on stage

stratification (stage I + II vs. Stage III + IV) on 32 cancer types, on their dis-

tributions of the –log10(log-rank p value) of stratified survival curves dif-

ferences. And compare the performance of DeepProg vs. a simple model

based on late stage (Stage III / IV) STAD (B-C) and COAD (D-E): DeepProg

survival plots; (B, D): survival plots using stage stratification (C, E). Figure

S3. Kaplan-Meier plots for each cancer type, where the survival risk group

stratification is determined by SNF, with the same datasets used from the

DeepProg analysis in Figure 2A. Figure S4. DeepProg has significantly

better (more significant) log-rank p values compared to the baseline Cox-

PH model. Figure S5. COAD and READ mutual predictability analysis

using RNA as features. A) Subtypes inferred with DeepProg for COAD and

used to predict READ subtypes. B) READ subtypes inferred with DeepProg

and used to predict COAD subtypes.

Additional File 5: Table S4. Comparison of DeepProg results using the

same benchmark datasets as those obtained from the original SNF paper.

Additional File 6: Table S5. Significances of survival-clusters inferred

using MAUI, MOFA+, and PCA as alternatives to the autoencoder module

in DeepProg, on TCGA HCC and BRCA datasets.

Additional File 7. Additional analysis of microRNA and methylation

signatures between the worst survival subtype vs. the remaining samples

in each cancer.

Additional File 8: Table S6. Top 100 features significantly linked to the

lowest survival subtypes among the 32 cancers and ranked using their

individual Cox-PH p value in the different datasets. The features are sepa-

rated among RNA, MIR and METH features, by over- and under-expressed

features.
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