
DeepRacer: Autonomous Racing Platform for Experimentation with

Sim2Real Reinforcement Learning

Bharathan Balaji1∗, Sunil Mallya1∗, Sahika Genc1∗, Saurabh Gupta1, Leo Dirac1, Vineet Khare1, Gourav Roy1,

Tao Sun1, Yunzhe Tao1, Brian Townsend1, Eddie Calleja1, Sunil Muralidhara1, Dhanasekar Karuppasamy1

Abstract— DeepRacer is a platform for end-to-end experi-
mentation with RL and can be used to systematically investigate
the key challenges in developing intelligent control systems.
Using the platform, we demonstrate how a 1/18th scale car
can learn to drive autonomously using RL with a monocular
camera. It is trained in simulation with no additional tuning
in the physical world and demonstrates: 1) formulation and
solution of a robust reinforcement learning algorithm, 2) nar-
rowing the reality gap through joint perception and dynamics,
3) distributed on-demand compute architecture for training
optimal policies, and 4) a robust evaluation method to identify
when to stop training. It is the first successful large-scale
deployment of deep reinforcement learning on a robotic control
agent that uses only raw camera images as observations and a
model-free learning method to perform robust path planning.
We open source our code and video demo on GitHub2.

I. INTRODUCTION

Reinforcement Learning (RL) has been used to accomplish

diverse robotic tasks: manipulation [1], [2], [3], [4], locomo-

tion [5], [6], navigation [7], [8], [9], [10], flight [11], [12],

interaction [13], [14], motion planning [15], [16] and more.

Due to high sample complexity and safety requirements, it is

common to train the RL agent in simulation [1], [5], [17]. To

reduce training time and encourage exploration, the agent is

usually trained with distributed rollouts [18], [19], [20], [21].

For a successful transfer to the real world, researchers use

calibration [2], [22], domain randomization [23], [24], [25],

[12], fine tuning with real world data [9], and learn features

from a combination of simulation and real data [26], [27].

To experiment with robotic reinforcement learning, one

needs to have expertise in many areas, access to a physical

robot, an accurate robot model for simulations, a distributed

training mechanism and customizability of the training pro-

cedure such as modifying the neural network and the loss

function or introducing noise. For the uninitiated, dealing

with this complexity is daunting and dissuades adoption. As

a result, much of prior work is limited to a single robot [1],

[23], [28] or a few robots [16]. We reduce the learning curve

and alleviate development effort with DeepRacer.

DeepRacer supports state-of-the-art deep RL algo-

rithms [29], simulations with the OpenAI Gym [17] interface,

distributed rollouts and integration with cloud services. We

introduce a training mechanism that decouples RL policy

updates with the rollouts, which enables independent scaling

of the simulation cluster and supports popular simulators

1Authors are employees of Amazon Web Services. ∗ contributed equally.
Send all correspondence to: bhabalaj@amazon.com

2DeepRacer training source code: https://git.io/fjxoJ

like Gazebo [30]. The DeepRacer 1/18th scale car is one

realization of a physical robot in our platform that uses RL

for navigating a race track with a fisheye lens camera. The car

hardware includes a GPU for executing the neural network

policy locally, live streams the camera view over WiFi, the

compute battery supports ∼6 hours of development time and

retails at $400. We have a corresponding robot model in

simulation, along with rendering for multiple race tracks. We

can train the RL policy with different simulation parameters

and multiple tracks in parallel using distributed rollouts.

We learn an end-to-end policy for navigating a race track.

We use a single grayscale camera image as observation and

discretized throttle/steering as actions. We train in simula-

tion using the Proximal Policy Optimization (PPO) algo-

rithm [31], which can converge in <5 minutes and ∼5000

simulation steps. With no pre-processing, real world data

or expert labeling, the learned policy successfully transfers

from simulation to real tracks (sim2real [32]). The entire

process from training a policy to testing in the real car takes

<30 minutes. Multiple models can be trained in parallel

with on-demand compute and stored in the car. Thousands

of users have designed their own reward functions, trained

their models on our platform, and demonstrated real track

navigation. To the best of our knowledge, this is the first

demonstration of model-free RL based sim2real at scale.

DeepRacer serves as a testbed for many areas of

RL research such as reducing sample complexity [33],

sim2real [34] and generalizability [35]. The car can log

camera images, inertial sensor measurements, policy deci-

sions. Simulations can be randomized with different tracks,

lighting, sensor and actuator noise. The learned policy can

underfit/overfit to the simulation settings. We use a robust

evaluation method to identify when the learned policy will

generalize to the real world. We evaluate multiple check-

points of the saved policy with domain randomization such

as action noise and different starting points. Models that

give good results in robust evaluation generalize well to the

real world. Our policies trained with domain randomization

generalize to multiple cars, tracks and to variations in speed,

background, lighting, track shape, color and texture.

II. RELATED WORK

RL has been used in robotics for several decades [36],

[37], [38], [39]. Initial works used low dimensional state

spaces due to scalability challenges. RL concepts were

generalized to high dimensional problems with deep net-

works [40], [41], [42]. High variance, sample complexity

and replicability challenges [43] in deep RL algorithms led

to development of simulators [44], benchmarks [17], [45] and

libraries [46], [47]. We build upon these works to create a

platform for experimentation with simulation and real robots.

Distributed Rollouts: Algorithms that use distributed

rollouts, where multiple simulations are executed in paral-

lel to collect experience data, were introduced to reduce

training time [2], [20], [48]. OpenAI Baselines [47] uses

OpenMPI [49] to support distributed gradient algorithms,

where each worker computes gradients on data collected.

OpenAI Rapid [2] generalizes it to a distributed system for

the PPO algorithm and demonstrate sim2real transfer on

dextrous manipulation. Flex [19] extends the same distri-

bution mechanism to use GPUs for simulation and hence

can run 750 humanoid MuJoCo simulations with a single

GPU. Chebotar et al. [50] use Flex to demonstrate sim2real

transfer for manipulation. Surreal [18] uses a decoupled

rollout mechanism to support the experience replay algo-

rithms, where each worker stores the experience data in a

buffer and a separate training worker computes gradients.

Ray RLlib [21], [51] introduces a stateful actor framework to

support distributed rollouts. DeepRacer integrates with Intel

Coach library [29] that supports >20 deep RL algorithms

in an easy-to-use, modular interface. DeepRacer uses the

same rollout mechanism as Surreal, and extends support for

Gazebo. Similar to Rapid, DeepRacer can use different sim-

ulation settings for each worker and have separate evaluation

workers that validate the performance of the current policy.

Sim2Real: Training RL policies in the real world is

challenging due to high sample complexity and safety issues.

Simulations alleviate these concerns and serve as a testbed

to experiment with algorithms and debug software. However,

sim2real transfer is challenging because of differences in

dynamics, imagery and as simulated models are just ap-

proximations of the real world [23], [24], [34]. Domain

randomization, where simulation parameters are perturbed

during training, has been used for successful sim2real trans-

fer for various robotic tasks [2], [12], [50]. Methods include

adding noise in dynamics [23], [2] and imagery [12], [52],

learning model ensembles [53], [54], adding adversarial

noise [25], [55] and assessing simulation bias [24]. Domain

adaptation [56] has also been used for sim2real, particularly

to address the visual reality gap [26], [57], [58], [59].

DeepRacer serves as a platform to reproduce and experiment

with sim2real methods. We demonstrate various forms of

domain randomization in our experiments. Navigation with

the DeepRacer car can be structured from simple, low speed,

lane following to complex tasks such as high speed racing

or commuting in traffic.

Our distributed rollout mechanism facilitates iterative ex-

perimentation as policies converge faster and helps identify

underfitting/overfitting. Prior sim2real works use a fixed

number of simulation steps [2], [23], [60], [61]. We show

that policies can both underfit and overfit to the simulation

while training, as identified by prior works [24], [35], [62].

We use a separate robust evaluation to identify the policy

checkpoints that are likely to transfer well to the real world.

TABLE I: Comparison of DeepRacer with contemporary RL

and self-driving platforms. ★indicates partial support.

Platform S
im

u
la

ti
o

n

R
ig

id
B

o
d

y
D

y
n

am
ic

s

D
ee

p
R

L

D
is

tr
ib

u
te

d
R

o
ll

o
u

ts

P
h
y

si
ca

l
R

o
b

o
t

S
im

2
R

ea
l

D
em

o

G
P

U
o

n
R

o
b

o
t

R
o

b
o

t
C

o
st

(U
S

D
)

AutoRally [63] ✓ ✓ ✓ ✗ ✓ ✗ ✓ 10K
BARC [64] ✗ ✗ ✗ ✗ ✓ ✗ ✗ 500
Blue [65] ✗ ✗ ✗ ✗ ✓ ✗ ✗ 5K
CARLA [66] ✓ ★ ✓ ✓ ✗ ✓ ✓ ✗

DonkeyCar [67] ✓ ★ ✓ ✗ ✓ ✓ ✗ 200
Duckietown [68] ✓ ★ ✓ ✗ ✓ ✓ ✗ 150
F1/10 [69] ✗ ✗ ✗ ✗ ✓ ✗ ✓ 3600
Fetch [1], [23] ✓ ✓ ✓ ✓ ✓ ✓ ✗ 100K
Flex [19] ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗

RACECAR [70] ✓ ✓ ✗ ✗ ✗ ✗ ✓ 2600
MuSHR [71] ✓ ✗ ✗ ✗ ✓ ✓ ✓ 900
Poppy [72] ✓ ✓ ✓ ✓ ✓ ✓ ✗ 350
RLlib [21] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Surreal [18] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

DeepRacer ✓ ✓ ✓ ✓ ✓ ✓ ✓ 400

Sim2Real Navigation: Many works rely on simulators

only for testing and use methods such as state estimation,

motion planning and model predictive control (MPC) [68],

[73], [74] for navigation. Other works have used imitation

learning, where expert demonstrations are given either by

a person [67], [75] or with an MPC algorithm [76], [77].

Kahn et al. [10] directly learn the RL policy in the real

car, with a fixed maneuver when collision occurs. Domain

randomization and image segmentation in simulations have

been used to close the visual reality gap with a model based

controller [12], [66], [78]. Image pre-processing [79], learned

embeddings [9] and depth camera [80] have been used to

achieve sim2real transfer. Bharadhwaj et al. [27] demonstrate

sim2real transfer by mixing expert demonstrations with sim-

ulations. We observe that prior sim2real works rely on a

model based controller for high speed navigation [78], [81]

or achieve slow speeds because of poor transfer of dynam-

ics [79], [80]. With DeepRacer, we demonstrate speeds of

1.6m/s with a single grayscale monocular image as input

and discretized steering/throttle as output. We use simple,

non-recurrent networks for our policy and still demonstrate

robustness in the real world to multiple cars, tracks, and

variations in the environment. We also achieve slow speed

(0.5m/s) sim2real transfer with <5 minutes of training.

Table I compares DeepRacer with other platforms for RL,

sim2real and autonomous driving. The other simulation plat-

forms can also be used with DeepRacer. We provide an easy-

to-use, economical and flexible platform with support for

distributed RL, domain randomization and robust evaluation.

DeepRacer tools have enabled us to replicate sim2real RL

policy transfer with consistency and at scale.

III. AUTONOMOUS RACING WITH RL

In our formulation, the agent steers the car and the

environment is the race track. The track is marked by white

lanes, there is a single car on track with no obstacles and the

Fig. 1: Observation, action and reward for DeepRacer agent

car only moves forwards. The image from the car’s camera

is the observation, and actions are the throttle/steering of the

car. As the agent does not receive the full state such as the

the track layout, this is a partially observed Markov Decision

Process. An episode starts with the car somewhere on track

and finishes when the car goes off-track or finishes a lap.

The images from the camera are streamed at 15 fps, down-

sized to 160 x 120 pixels and converted to grayscale. We

discretize the actions to 10 values, with 2 levels for throttle

and 5 for steering. Users can customize this discretization,

which get mapped to low level controls. We use discrete

actions as the mapping to low level control is non-linear and

challenging to calibrate in the continuous space. We fix the

maximum throttle in simulation and set it manually in the

real car. We incentivize the agent to stay close to the center

line of the track. If the car is at the edge of the track, a small

deviation can off-road the car and the track is not visible in

the image. Staying close to the center of the track leads to

a stable policy. Users can customize this reward function.

Figure 1 illustrates our problem formulation.

A. Reinforcement Learning Algorithm

We use PPO, a state-of-the-art policy gradient algo-

rithm [31]. The algorithm uses two neural networks during

training – a policy network and a value network. The policy

network decides which action to take given an image as input

and the value network estimates the expected cumulative

discounted reward given the image. The agent initializes a

policy that takes random actions. The policy network is used

to interact with the simulation environment to collect data.

The resulting dataset is used to update the policy and value

networks as per the algorithm’s loss function. The updated

policy is used to interact with the environment to collect

more data and the training cycle continues until a time limit.

The policy loss function maximizes the actions that give

higher rewards on average as given by the generalized

advantage estimation algorithm [82] and applies a clipped

importance sampling weight as the policy that collects the

dataset is an older version of the policy being updated. The

value loss function uses the mean squared error between

the predicted value and the observed value. Only the policy

Fig. 2: Training the agent with DeepRacer distributed rollouts

network gets deployed in the real car. By default, we use

three convolutional layers and two fully connected layers

for both networks. We train a new policy every 20 episodes.

The full list of hyperparameters is given in our source code.

IV. DEEPRACER DESIGN AND IMPLEMENTATION

We decouple the simulation data collection from the policy

updates. We use RoboMaker [83] for our simulations with

Gazebo and SageMaker [84] to train our policy with the RL

Coach [29] library. Simulations help us train without manual

effort. The decoupled training allows us to use separate

machines which are specialized for simulations (e.g. license,

Mac/Windows OS) and neural network training (e.g. GPU,

large RAM) respectively. We also get the flexibility to launch

multiple simulations each with their own settings for domain

randomization as well as evaluate policies in parallel.

A. Training Workflow

Figure 2 shows the DeepRacer training workflow. The

training starts by initializing the policy/value network models

and hyper-parameters in SageMaker. The neural network

models are saved in S3 [85], an object store service. Robo-

Maker initializes the simulation, the agent and loads the

models from S3. The agent interacts with the simulation

over the OpenAI Gym interface. The agent takes actions a

(steering/throttle) based on the observation o (camera image).

The simulator updates the position of the car based on the

action and returns with the updated camera image and reward

r. The experiences collected in the form of 〈ot, at, rt, ot+1〉
are stored in Redis [86], an in-memory database. SageMaker

trains the neural networks with data collected in Redis and

saves the models in S3. RoboMaker copies the model from

S3 and creates more experience data. The cycle continues

until training stops. The models in S3 are continually eval-

uated in a separate simulation to assess convergence and

generalizability. Models in S3 can be deployed on the real

car. While we show our results with the PPO algorithm, our

architecture can be used for various experience replay based

algorithms such as DQN [40], DDPG [87] and SAC [88].

Robomaker can be replaced with other simulators that can

integrate with the Gym interface.

B. Training with Amazon SageMaker

SageMaker is a platform to train and deploy machine

learning models at scale using the Jupyter Notebook [89] as

interface. SageMaker integrates RL algorithms using Coach

(a) Simulation tracks

(b) Camera view of simulation tracks

(c) Camera view of real world tracks

Fig. 3: We train in multiple tracks and evaluate with a replica

track as well as a track made with duct tape.

and RLlib [21] libraries that build on top of existing deep

learning frameworks. SageMaker uses RL Coach to support

the decoupled simulation based training used in DeepRacer,

and RLlib for integrated simulation and training. The li-

braries are packaged in a Docker container [90] and training

can be launched in a cluster of machines with different

configurations (CPU/GPU/RAM). The training clusters are

created on-demand and billed per second, freeing users

from infrastructure maintenance. Metrics such as rewards per

episode, the policy entropy, cpu/memory use are visualized,

source code is saved and logs are recorded. Users can

launch experiments in parallel and search across experiment

metadata. In addition to autonomous racing, SageMaker

contains RL examples for HVAC control, robot locomotion,

portfolio management and more.

C. Simulation with AWS RoboMaker

RoboMaker is a cloud service to develop, test and deploy

robot software. It uses Gazebo for simulation. A robot model

describes each component of the DeepRacer car - the chassis,

wheels, camera, Ackermann steering - their dimensions, how

they link together, their properties such as mass and camera

angle. We create our tracks and background environment in

Blender, a 3D modeling software and import it into Gazebo.

We use the ODE physics engine that simulates the laws of

physics using the robot model and takes into account factors

like collision, friction, acceleration, etc. A rendering engine,

OGRE, visualizes the graphics. We use Gazebo plugins to

add the camera and light sources. We use ROS [91] for

communication between the agent and the simulation. The

agent uses ROS to place the car in the track at the beginning

of an episode, get images from the camera module, get the

Fig. 4: DeepRacer Hardware Specifications

car’s position, velocity, and send throttle, steering commands

to control the car. Users can customize the simulation in

Gazebo with their own robot models and environments.

D. Sim2Real Calibration

We have matched the URDF robot model to the measured

dimensions of the car. We compared images from the real

camera and calibrated the height, angle and the field of

view of the simulation camera to match the real images.

As DeepRacer camera can capture 15 fps, we match the

simulation environment to use the same frame rate and use

a producer-consumer mechanism to ensure one action per

image. We map the agent’s action space to the motor control

commands by measuring the steering angles and speed of the

car under different settings. We have created a real world

track that is identical in color, shape and dimensions with

one of the simulation tracks. We use barricades around this

track to reduce visual distractions. In addition, we have eight

other tracks with varying shapes, backgrounds and textures.

E. Calculating Rewards

We compute an ordered set of points along the middle of

the track, called waypoints, to estimate the relative position

of the car on track. The track and the background are

modeled as a polygon mesh. We separate the track mesh

from the background and identify the border edges as those

which belong to a single triangle. We get two boundaries cor-

responding to inner and outer part of the track by grouping

the border vertices. We construct a bipartite graph from the

two sets of vertices and compute the linear sum assignment

using the Euclidean distance as edge length. This gives us

border vertices parallel to each other on both sizes of the

track. The waypoints are the mean of the vertices connected

by each edge. The spline is the line joining the waypoints.

The car starts an episode at a waypoint. We flag the car as

off-track when it deviates from the spline by more than half

the track width. We measure the car’s progress by the relative

distance it covers compared to the length of the spline.

F. DeepRacer Hardware

Figure 4 gives an overview of DeepRacer hardware. We

have designed the car for experimentation while keeping the

cost nominal. The Intel Atom processor with a built-in GPU

can perform >15 inferences per second with our default

five layer neural network. The motors are equipped with

(a) Training with Track A and maximum
throttle of 1 m/s

(b) Training with Track A and maximum
throttle of 1.67 m/s

(c) Training with Track B and maximum
throttle of 1.67 m/s

Fig. 5: Training with multiple rollout workers. Progress on track is reported across two runs in a ml.p3.2xlarge instance in

SageMaker, which has one NVIDIA V100 GPU. Each rollout is a separate simulation job in RoboMaker.

electronic speed controllers. We can use the car as a regular

computer with a monitor, mouse and keyboard connected

via HDMI and USB. The camera connects over USB and

there are three USB ports for extensions. The 13600 mAh

compute battery lasts ∼6 hours. The 1100 mAh drive battery

lasts for ∼45 minutes in typical experiments. The WiFi chip

enables remote monitoring and programming. We built the

car software on top of ROS. We can load multiple trained

models over WiFi. We use Intel OpenVino to convert our

Tensorflow models to an optimized binary for fast inference.

The camera images are fed to the OpenVino inference engine

and a real-time video feed on a browser. There is a web

UI for calibrating steering and throttle. The model inference

results are converted to motor control commands based on

the calibration and action space mapping. In addition, the

browser has an interface for manual joystick like control.

V. EVALUATION

We evaluate our track navigation policies extensively

across multiple tracks, with domain randomization in both

simulation and real world. We have created a replica of Track

A with the track printed on carpet with the same dimensions

as in simulation. We place barriers around the track to reduce

distractions and evaluate performance both with and without

barriers as well as different speeds and lighting conditions.

We also made a custom “tape track” with 2 inch white duct

tape in our office corridor to test model robustness. The track

is roughly 24 inches wide, 12m in length, traverses both

carpet and concrete, has multiple turns and the car camera

is exposed to clutter and bright lights in the background.

A. Training with Multiple Rollouts

We train policies with three different conditions: on Track

A with a maximum throttle of 1 m/s, on Track A with throttle

1.67 m/s and on Track B with throttle 1.67 m/s. The task gets

harder at higher speeds. Track B is more difficult to navigate

because of background with buildings and higher number of

turns. Each episode starts with a different waypoint so that all

parts of the track are experienced by the policy. We use p3.2x

instance for training in SageMaker and run each experiment

twice for 2 hours. Figure 5 shows the progress on track

during training with different number of rollout workers.

As we expect, more rollout workers lead to faster conver-

gence. There is diminishing returns as we increase workers,

16 workers give a slightly faster convergence compared to

8. Somewhat surprisingly, the higher throttle of 1.67 m/s

helped speedup convergence in Track A. We hypothesize that

the agent collects more uniform experience with the faster

speed and this helps with convergence. Track B takes longer

to converge but follows similar trends as Track A.

B. Robust Evaluation

We test whether robust evaluation in simulation is in-

dicative of real world performance. If true, we can identify

when to stop training in simulation and avoid underfit-

ting/overfitting. We can tune our hyper-parameters entirely in

simulation and avoid extensive testing in the real world. We

train policies with increasing levels of domain randomization

and evaluate the policy in both simulation and real.

Our baseline case is trained on Track A with no domain

randomization and throttle of 1 m/s. For domain random-

ization, we train policies on Track A with (i) up to 10%

uniform random noise to steering and throttle (action noise),

(ii) reverse direction of travel each episode (reverse), (iii)

include both action noise and reverse, and (iv) train on Track

B with both action noise and reverse. For robust evaluation,

we add uniform random noise to actions, evaluate in multiple

starting positions and both directions of travel on Track A.

For naive evaluation, we evaluate on Track A with a fixed

starting point without randomization. Both evaluations test

each checkpoint 10 times in simulator. We pick six policies

during training from checkpoints 5 through 30, and test their

sim2real performance in the Track A replica with 3 trials

for each direction of travel. The model performance varies

with speed, but it is difficult to maintain a constant speed

due to changing battery levels and as the model switches

between throttle levels. For sim2real experiments we ensure

the model completes a lap in 18 to 22 seconds (0.8-1 m/s).

In simulation, the models complete the lap in ∼35 seconds,

so we test the policy at about double speed in the real track.

Figure 6 shows the experimental results. The model that

perform consistently well with robust evaluation also perform

well on the real track. The models are particularly robust

when a sequence of checkpoints perform well in simula-

tor. Reversing the direction of travel significantly improves

model performance. Action noise does not help by itself, but

improves performance when combined with reverse. Policies

trained on Track B do not perform well for checkpoints in

Fig. 6: Robust evaluation with domain randomization as a criteria to select policy checkpoints for sim2real transfer.

TABLE II: Sim2Real for policies trained with regularization and domain randomization. Results are out of 6 trials.

Training
Track

Type of
Training

Checkpoint #
(Progress %)

Training A Replica Tape Track
0.7-0.9 m/s

Total
0.5 m/s 1 m/s

Sunlight
0.8-1 m/s

No Barriers
0.8-1 m/s

B

Default

54 (100) 5 3 0 1 3 12
C 53 (99.7) 5 3 2 3 3 16
D 50 (100) 5 3 3 3 0 13

B

L2=2e-5 53 (100) 5 4 2 4 2 17
Dropout=0.3 49 (100) 6 3 5 5 4 23
BatchNorm 41 (100) 4 2 1 4 2 13

Throttle=0.33 m/s 21 (100) 2 0 0 0 2 4
Throttle=1.67 m/s 72 (91.1) 6 4 5 6 2 23
Throttle=2.33 m/s 79 (57.9) 6 5 5 6 2 24

B, D

Default 41 (100) 3 3 3 3 1 13
Color Aug. 49 (100) 6 5 6 6 3 26
Translation 37 (100) 6 5 5 3 3 22

Shadow 46 (100) 5 3 5 3 2 18
Sharpen 48 (89.5) 4 4 5 4 0 17
Pepper 53 (98.9) 6 3 4 2 1 16

All image aug 48 (100) 5 6 3 4 0 18

C
Best combo,

Throttle=2.33 m/s
67 (91.7) 6 6 6 5 4 27

Figure 6, but with more training start performing well in

both robust evaluation and real track, policy checkpoint 35

traversed the real track successfully 5 out of 6 trials.

The performance of the model changes dramatically at

slower speeds (35s lap, 0.5 m/s), even checkpoint 5 of the

policy trained on Track A with no randomization traverses

the real track. This model is trained in <5 minutes. All the

above policies were trained in <1 hour with 4 rollouts.

C. Robust Sim2Real

We test the robustness of sim2real by training on multiple

tracks, with multiple speeds, regularization and domain ran-

domization in actions and observations. By default, we train

on Track B with throttle of 1 m/s, with action noise and

reverse direction each episode. We pick model checkpoints

based on performance in robust evaluation and test the policy

on Track A replica in two speeds (0.5 m/s, 1 m/s), with bright

sunlight, with no barriers and on tape track.

Table II summarizes our results. Training on a different

track gives good sim2real results, but vary track to track.

For regularization, we used L2 norm, dropout, batch normal-

ization and an entropy bonus to the policy loss. We tested

the models that give best performance in robust evaluation.

Reducing the entropy bonus to 0.001 (it is 0.1 by default)

and dropout with probability 0.3 were particularly effective.

Larger throttle speeds in training increased the robustness of

the model dramatically but also increased convergence time

in the presence of action noise. Mixing multiple tracks during

training did not lead to improvement in performance. We

perturb the observation images with random color, horizontal

translation, shadow, and salt and pepper noise, each with

0.2 probability. For random color, we combine the effects

of random hue, saturation, brightness and contrast to create

variations in observation. Random color was the most effec-

tive method for sim2real transfer.

We combine the best of our parameters and train a model

on Track C with L2 regularlization, lower entropy bonus,

dropout, color randomization and a maximum throttle of

2.33 m/s. This model performed the best overall in our

experiments. The model consistently completed 11 second

laps (1.6 m/s) in our Track A replica.

VI. CONCLUSION

DeepRacer is an experimentation platform for sim2real

reinforcement learning. The platform integrates state-of-the-

art Deep RL algorithms, multiple simulation engines with

OpenAI Gym interface, provides on-demand compute, dis-

tributed rollouts that facilitates domain randomization and

robust evaluation in parallel. We demonstrate DeepRacer

platform features with a 1/18th scale car that navigates a

race track using reinforcement learning. We have created a

calibrated robot model for the car in Gazebo along with mul-

tiple race tracks. We demonstrate robust sim2real navigation

performance trained in DeepRacer with PPO algorithm in

both our real world replica track as well as a custom tape

track. We achieve sim2real in real track with <5 minutes

of training at slow speeds and achieve speeds of 1.6 m/s

using models trained with tuned parameters. Thousands of

users have replicated our model training and demonstrated

sim2real RL navigation.

REFERENCES

[1] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. P. Abbeel, and W. Zaremba, “Hindsight
experience replay,” in Advances in Neural Information Processing

Systems, 2017, pp. 5048–5058.
[2] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-

Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray
et al., “Learning dexterous in-hand manipulation,” arXiv preprint

arXiv:1808.00177, 2018.
[3] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-

ing for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation

(ICRA). IEEE, 2017, pp. 3389–3396.
[4] A. A. Rusu, M. Večerı́k, T. Rothörl, N. Heess, R. Pascanu,

and R. Hadsell, “Sim-to-real robot learning from pixels with
progressive nets,” in Proceedings of the 1st Annual Conference on

Robot Learning, ser. Proceedings of Machine Learning Research,
S. Levine, V. Vanhoucke, and K. Goldberg, Eds., vol. 78.
PMLR, 13–15 Nov 2017, pp. 262–270. [Online]. Available:
http://proceedings.mlr.press/v78/rusu17a.html

[5] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, 2019. [Online].
Available: https://robotics.sciencemag.org/content/4/26/eaau5872

[6] Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de Panne, “Feedback
control for cassie with deep reinforcement learning,” in 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 1241–1246.

[7] S.-H. Hsu, S.-H. Chan, P.-T. Wu, K. Xiao, and L.-C. Fu, “Distributed
deep reinforcement learning based indoor visual navigation,” in 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2018, pp. 2532–2537.
[8] J. Choi, K. Park, M. Kim, and S. Seok, “Deep reinforcement learning

of navigation in a complex and crowded environment with a limited
field of view,” in 2019 International Conference on Robotics and

Automation (ICRA). IEEE, 2019, pp. 5993–6000.
[9] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and

A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in 2017 IEEE international conference

on robotics and automation (ICRA). IEEE, 2017, pp. 3357–3364.
[10] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-

supervised deep reinforcement learning with generalized computation
graphs for robot navigation,” in 2018 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2018, pp. 1–8.
[11] H. J. Kim, M. I. Jordan, S. Sastry, and A. Y. Ng, “Autonomous

helicopter flight via reinforcement learning,” in Advances in neural

information processing systems, 2004, pp. 799–806.
[12] F. Sadeghi and S. Levine, “CAD2RL: Real single-image flight without

a single real image,” arXiv preprint arXiv:1611.04201, 2016.
[13] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:

Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” in 2019 International Conference on Robotics and

Automation (ICRA). IEEE, 2019, pp. 6015–6022.
[14] S. Christen, S. Stevsic, and O. Hilliges, “Guided deep reinforcement

learning of control policies for dexterous human-robot interaction,”
arXiv preprint arXiv:1906.11695, 2019.

[15] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 2018, pp. 3052–3059.
[16] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. S. Kumar, S. Koenig,

and H. Choset, “Primal: Pathfinding via reinforcement and imitation
multi-agent learning,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 2378–2385, 2019.

[17] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv preprint

arXiv:1606.01540, 2016.
[18] L. Fan, Y. Zhu, J. Zhu, Z. Liu, O. Zeng, A. Gupta, J. Creus-Costa,

S. Savarese, and L. Fei-Fei, “Surreal: Open-source reinforcement
learning framework and robot manipulation benchmark,” in Confer-

ence on Robot Learning, 2018, pp. 767–782.
[19] J. Liang, V. Makoviychuk, A. Handa, N. Chentanez, M. Macklin,

and D. Fox, “Gpu-accelerated robotic simulation for distributed
reinforcement learning,” in Proceedings of The 2nd Conference on

Robot Learning, ser. Proceedings of Machine Learning Research,

A. Billard, A. Dragan, J. Peters, and J. Morimoto, Eds., vol. 87.
PMLR, 29–31 Oct 2018, pp. 270–282. [Online]. Available:
http://proceedings.mlr.press/v87/liang18a.html

[20] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih,
T. Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg,
and K. Kavukcuoglu, “IMPALA: Scalable distributed deep-RL with
importance weighted actor-learner architectures,” in Proceedings

of the 35th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, J. Dy and
A. Krause, Eds., vol. 80. Stockholmsmässan, Stockholm Sweden:
PMLR, 10–15 Jul 2018, pp. 1407–1416. [Online]. Available:
http://proceedings.mlr.press/v80/espeholt18a.html

[21] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and I. Stoica, “RLlib: Abstractions for
distributed reinforcement learning,” in Proceedings of the 35th

International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.
Stockholmsmässan, Stockholm Sweden: PMLR, 10–15 Jul 2018,
pp. 3053–3062. [Online]. Available: http://proceedings.mlr.press/v80/
liang18b.html

[22] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” in Proceedings of Robotics: Science and Systems,
Pittsburgh, Pennsylvania, June 2018.

[23] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018

IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 1–8.

[24] F. Muratore, F. Treede, M. Gienger, and J. Peters, “Domain random-
ization for simulation-based policy optimization with transferability
assessment,” in Conference on Robot Learning, 2018, pp. 700–713.

[25] A. Mandlekar, Y. Zhu, A. Garg, L. Fei-Fei, and S. Savarese, “Ad-
versarially robust policy learning: Active construction of physically-
plausible perturbations,” in 2017 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 3932–
3939.

[26] I. Higgins, A. Pal, A. Rusu, L. Matthey, C. Burgess, A. Pritzel,
M. Botvinick, C. Blundell, and A. Lerchner, “Darla: Improving zero-
shot transfer in reinforcement learning,” in Proceedings of the 34th

International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 1480–1490.

[27] H. Bharadhwaj, Z. Wang, Y. Bengio, and L. Paull, “A data-efficient
framework for training and sim-to-real transfer of navigation policies,”
in 2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 782–788.

[28] K. Hightower, B. Burns, and J. Beda, Kubernetes: Up and Running

Dive into the Future of Infrastructure, 1st ed. O’Reilly Media, Inc.,
2017.

[29] I. Caspi, G. Leibovich, G. Novik, and S. Endrawis, “Reinforcement
Learning Coach,” Dec. 2017. [Online]. Available: https://doi.org/10.
5281/zenodo.1134899

[30] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, Sendai, Japan, Sep
2004, pp. 2149–2154.

[31] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint

arXiv:1707.06347, 2017.
[32] F. Sadeghi, A. Toshev, E. Jang, and S. Levine, “Sim2real viewpoint

invariant visual servoing by recurrent control,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 4691–4699.

[33] S. M. Kakade et al., “On the sample complexity of reinforcement
learning,” Ph.D. dissertation, University of London London, England,
2003.

[34] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The
use of simulation in evolutionary robotics,” in European Conference

on Artificial Life. Springer, 1995, pp. 704–720.
[35] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman,

“Quantifying generalization in reinforcement learning,” in Proceedings

of the 36th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. Long Beach, California, USA:
PMLR, 09–15 Jun 2019, pp. 1282–1289. [Online]. Available:
http://proceedings.mlr.press/v97/cobbe19a.html

[36] M. J. Matarić, “Reinforcement learning in the multi-robot domain,” in
Robot colonies. Springer, 1997, pp. 73–83.

[37] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda, “Purposive
behavior acquisition for a real robot by vision-based reinforcement
learning,” Machine learning, vol. 23, no. 2-3, pp. 279–303, 1996.

[38] V. Gullapalli, J. A. Franklin, and H. Benbrahim, “Acquiring robot
skills via reinforcement learning,” IEEE Control Systems Magazine,
vol. 14, no. 1, pp. 13–24, 1994.

[39] S. Mahadevan and J. Connell, “Automatic programming of behavior-
based robots using reinforcement learning,” Artificial intelligence,
vol. 55, no. 2-3, pp. 311–365, 1992.

[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[41] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis, “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, pp. 484–503,
2016. [Online]. Available: http://www.nature.com/nature/journal/v529/
n7587/full/nature16961.html

[42] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine

learning, 2015, pp. 1889–1897.

[43] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and
D. Meger, “Deep reinforcement learning that matters,” in Thirty-

Second AAAI Conference on Artificial Intelligence, 2018.

[44] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[45] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas,
D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq et al., “Deepmind
control suite,” arXiv preprint arXiv:1801.00690, 2018.

[46] O. S. Oguz, “Setting up a benchmark environment for deep reinforce-
ment learning.”

[47] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines,”
GitHub, GitHub repository, 2017.

[48] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[49] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings, 11th European PVM/MPI Users’ Group Meeting,
Budapest, Hungary, September 2004, pp. 97–104.

[50] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac,
N. Ratliff, and D. Fox, “Closing the sim-to-real loop: Adapting simula-
tion randomization with real world experience,” in 2019 International

Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
8973–8979.

[51] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed
framework for emerging {AI} applications,” in 13th {USENIX} Sym-

posium on Operating Systems Design and Implementation ({OSDI}
18), 2018, pp. 561–577.

[52] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.
23–30.

[53] I. Mordatch, K. Lowrey, and E. Todorov, “Ensemble-cio: Full-body
dynamic motion planning that transfers to physical humanoids,” in
2015 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 2015, pp. 5307–5314.

[54] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine, “Epopt:
Learning robust neural network policies using model ensembles,”
arXiv preprint arXiv:1610.01283, 2016.

[55] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversar-
ial reinforcement learning,” in Proceedings of the 34th International

Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
2817–2826.

[56] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual domain
adaptation: A survey of recent advances,” IEEE signal processing

magazine, vol. 32, no. 3, pp. 53–69, 2015.

[57] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrish-
nan, L. Downs, J. Ibarz, P. Pastor, K. Konolige et al., “Using simulation
and domain adaptation to improve efficiency of deep robotic grasping,”
in 2018 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2018, pp. 4243–4250.

[58] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via sim-
to-sim: Data-efficient robotic grasping via randomized-to-canonical
adaptation networks,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2019, pp. 12 627–12 637.

[59] G. J. Stein and N. Roy, “Genesis-rt: Generating synthetic images
for training secondary real-world tasks,” in 2018 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
7151–7158.

[60] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv:1804.10332, 2018.

[61] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement
learning for deformable object manipulation,” in Proceedings of The

2nd Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, A. Billard, A. Dragan, J. Peters, and J. Morimoto,
Eds., vol. 87. PMLR, 29–31 Oct 2018, pp. 734–743. [Online].
Available: http://proceedings.mlr.press/v87/matas18a.html

[62] S. Whiteson, B. Tanner, M. E. Taylor, and P. Stone, “Protecting
against evaluation overfitting in empirical reinforcement learning,”
in 2011 IEEE Symposium on Adaptive Dynamic Programming and

Reinforcement Learning (ADPRL). IEEE, 2011, pp. 120–127.

[63] B. Goldfain, P. Drews, C. You, M. Barulic, O. Velev, P. Tsiotras, and
J. M. Rehg, “Autorally: An open platform for aggressive autonomous
driving,” IEEE Control Systems Magazine, vol. 39, no. 1, pp. 26–55,
2019.

[64] J. Gonzales, F. Zhang, K. Li, and F. Borrelli, “Autonomous drifting
with onboard sensors,” in Advanced Vehicle Control: Proceedings

of the 13th International Symposium on Advanced Vehicle Control

(AVEC’16), September 13-16, 2016, Munich, Germany, 2016, p. 133.

[65] D. V. Gealy, S. McKinley, B. Yi, P. Wu, P. R. Downey, G. Balke,
A. Zhao, M. Guo, R. Thomasson, A. Sinclair et al., “Quasi-direct
drive for low-cost compliant robotic manipulation,” arXiv preprint

arXiv:1904.03815, 2019.

[66] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st

Annual Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, S. Levine, V. Vanhoucke, and K. Goldberg, Eds.,
vol. 78. PMLR, 13–15 Nov 2017, pp. 1–16. [Online]. Available:
http://proceedings.mlr.press/v78/dosovitskiy17a.html

[67] W. Roscoe, “Donkey car: An opensource DIY self driving platform
for small scale cars,” http://donkeycar.com, 2019.

[68] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap,
Y. F. Chen, C. Choi, J. Dusek, Y. Fang et al., “Duckietown: an
open, inexpensive and flexible platform for autonomy education and
research,” in 2017 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2017, pp. 1497–1504.

[69] M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant,
R. Mangharam, D. Agarwal, M. Behl, P. Burgio et al., “F1/10:
An open-source autonomous cyber-physical platform,” arXiv preprint

arXiv:1901.08567, 2019.

[70] S. Karaman, A. Anders, M. Boulet, J. Connor, K. Gregson, W. Guerra,
O. Guldner, M. Mohamoud, B. Plancher, R. Shin et al., “Project-
based, collaborative, algorithmic robotics for high school students:
Programming self-driving race cars at mit,” in 2017 IEEE Integrated

STEM Education Conference (ISEC). IEEE, 2017, pp. 195–203.

[71] S. S. Srinivasa, P. Lancaster, J. Michalove, M. Schmittle, C. S. M.
Rockett, J. R. Smith, S. Choudhury, C. Mavrogiannis, and F. Sadeghi,
“Mushr: A low-cost, open-source robotic racecar for education and
research,” arXiv preprint arXiv:1908.08031, 2019.

[72] M. Lapeyre, P. Rouanet, J. Grizou, S. Nguyen, F. Depraetre, A. Le Fal-
her, and P.-Y. Oudeyer, “Poppy project: open-source fabrication of 3d
printed humanoid robot for science, education and art,” 2014.

[73] N. Wagener, C. an Cheng, J. Sacks, and B. Boots, “An online learning

approach to model predictive control,” in Proceedings of Robotics:

Science and Systems, FreiburgimBreisgau, Germany, June 2019.
[74] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,

and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in 2017 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 2017, pp. 1714–1721.
[75] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,

P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[76] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and
B. Boots, “Agile autonomous driving using end-to-end deep imitation
learning,” in Robotics: science and systems, 2018.

[77] M. Mueller, A. Dosovitskiy, B. Ghanem, and V. Koltun, “Driving
policy transfer via modularity and abstraction,” in Conference on Robot

Learning, 2018, pp. 1–15.
[78] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and

D. Scaramuzza, “Deep drone racing: From simulation to reality with
domain randomization,” arXiv preprint arXiv:1905.09727, 2019.

[79] Q. Zhang and T. Du, “Self-driving scale car trained by deep reinforce-
ment learning,” arXiv preprint arXiv:1909.03467, 2019.

[80] K. Wu, M. Abolfazli Esfahani, S. Yuan, and H. Wang, “Learn to steer
through deep reinforcement learning,” Sensors, vol. 18, no. 11, p. 3650,
2018.

[81] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg,
“Vision-based high-speed driving with a deep dynamic observer,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1564–1571,
2019.

[82] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” in Proceedings of the International Conference on Learning

Representations (ICLR), 2016.
[83] “AWS RoboMaker,” https://aws.amazon.com/robomaker/, 2019.
[84] “Amazon SageMaker,” https://aws.amazon.com/sagemaker/, 2019.
[85] “Amazon S3,” https://aws.amazon.com/s3/, 2019.
[86] “Redis,” https://redis.io, 2019.
[87] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,

Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with
deep reinforcement learning,” in 4th International Conference on

Learning Representations, ICLR 2016, San Juan, Puerto Rico, May

2-4, 2016, Conference Track Proceedings, 2016. [Online]. Available:
http://arxiv.org/abs/1509.02971

[88] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in Proceedings of the 35th International Conference

on Machine Learning, ser. Proceedings of Machine Learning
Research, J. Dy and A. Krause, Eds., vol. 80. Stockholmsmässan,
Stockholm Sweden: PMLR, 10–15 Jul 2018, pp. 1861–1870. [Online].
Available: http://proceedings.mlr.press/v80/haarnoja18b.html

[89] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay et al.,
“Jupyter notebooks-a publishing format for reproducible computa-
tional workflows.” in ELPUB, 2016, pp. 87–90.

[90] D. Merkel, “Docker: lightweight linux containers for consistent de-
velopment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2,
2014.

[91] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

