
DeepRing: Protecting Deep Neural Network with Blockchain

Akhil Goel∗, Akshay Agarwal∗, Mayank Vatsa∗, Richa Singh∗, and Nalini Ratha!

∗IIIT Delhi and !IBM Research, NY, USA
∗{akhil15126, akshaya, mayank, rsingh}@iiitd.ac.in, !ratha@us.ibm.com

Abstract

Several computer vision applications such as object de-

tection and face recognition have started to completely rely

on deep learning based architectures. These architectures,

when paired with appropriate loss functions and optimizers,

produce state-of-the-art results in a myriad of problems. On

the other hand, with the advent of “blockchain”, the cyber-

security industry has developed a new sense of trust which

was earlier missing from both the technical and commer-

cial perspectives. Employment of cryptographic hash, as

well as symmetric/asymmetric encryption and decryption

algorithms, ensure security without any human intervention

(i.e., centralized authority). In this research, we present the

synergy between the best of both these worlds. We first pro-

pose a model which uses the learned parameters of a typical

deep neural network and is secured from external adver-

saries by cryptography and blockchain technology. As the

second contribution of the proposed research, a new param-

eter tampering attack is proposed to properly justify the role

of blockchain in machine learning.

1. Introduction

The current era of artificial intelligence and machine

learning is converting several dreams to reality. AI sys-

tems are getting implemented for making recommendations

in social media and e-commerce sites to assisting medical

professionals in medical diagnosis and robotic surgeries,

and defending personnel with technologies such as drone

surveillance. Such a wide spectrum usage of these tech-

nologies requires that the algorithms are secure.

A lot of this success can be attributed to deep learning ar-

chitectures such as Convolutional Neural Networks (CNN)

[13, 14]. CNNs contain blocks where each block can be

referred to either as a convolutional layer or a combination

of the convolutional, pooling, and non-linearity layers. The

first layer which is an input layer passes the input samples

to the first block of CNN, and this way information passes

through the network to the last layer which makes the deci-

sion. For secure and correct use of these AI systems, fault-

Figure 1. Vulnerabilities of artificial intelligence network and in-

corporation of blockchain for security.

less authentication of each block is a necessity. In other

words, the accountability of each block which is missing in

the original CNN models might be provided with the com-

bination of the blockchain. Blockchain with its feature of

data privacy, transparency, security, and authentication can

help in the secure deployment of AI systems in the public

domain. The data privacy in an AI system can be referred

to as some information which is hidden from the general

public which can be decrypted only using the private key of

the authenticated owner of the system. On the other hand,

the security aspect can be thought of as a guard who checks

whether there has been any manipulation in the network ar-

chitecture or not. The authentication feature can be referred

to the property that the decision made by a particular block

of the AI model would require the validation of other blocks

connected with the block in concern.

Figure 1 shows the vulnerabilities of a typical artificial

intelligence system. The attack on an AI system can be

performed at an input level, architecture level, and deci-

sion level [17]. With the correct deployment of blockchain

technology, attacks at the architecture and the decision

levels can be avoided. For example, a recent algorithm,

Increase Security

Through cryptography

Reduce Fraud

Ledger across the
network

Reduce Failure

Avoiding Tampering at
any point

Increase Auditability

Changes require proper
authentication

Increase Effectiveness

Secure Sharing

Why do we require blockchain in AI?

Figure 2. Advantages of incorporation of blockchain in AI systems.

DeepChain, is proposed which is a collaborative training in

a distributed, secure and decentralized environment [22]. It

ensures the auditability of the training process and privacy

of local gradients.

Blockchain is secure and powerful because of the fol-

lowing properties:

• Transitive Hash

• Cryptographic encryption at each step

• Decentralized nature

With the help of transitive hash and cryptography, the ma-

nipulation in any component of the network, i.e., features

extraction and matching can no longer be performed. The

alteration in any element will raise the alarm and inform

the system that the operation implemented at a particular

block is malicious, and the system can be restored at the pre-

vious checkpoint. Decentralization property, on the other

hand, ensures that the entire control is not in the hands of

a single entity. Just like how an unscrupulous chief exec-

utive officer of a company may present an inflated version

of the company’s assets to attract prospective shareholder’s

attention, an unethical model owner may use unfair means

to boast about the model’s performance. Decentralization

makes sure that no foul play like this deceives the public.

These properties mentioned above are required to deliver

a safe and secure Deep Neural Network(DNN) model, and

hence this makes blockchain an appropriate candidate for

the job. Figure 2 summarizes the advantages of blockchain

mechanism which can be provided to the AI system when

successfully combined.

In this research, we have proposed the ‘DeepRing’ ar-

chitecture which combines CNN architecture with some

features of the blockchain technology. Each block of Deep-

Ring contains the following information which helps in au-

thentication of the block against tampering:

• Hash of the current and previous block

• Public keys of the neighborhood layers

• Encryption keys of the current block

• Parameters of the current and the next layer

The DeepRing is able to detect any attack performed ei-

ther at the parameter level or input level of each block (i.e.,

the network level attack). CNN models without blockchain

have shown vulnerability against tampering. Whereas, as

shown in Figure 1 the incorporation of blockchain in CNN

(i.e., DeepRing) is successfully able to remove network

level attack on CNN.

2. Components of the Proposed Solution

This section briefly explains the basic building blocks of

both the technologies i.e., (i) blockchain and (ii) Asymmet-

ric and Symmetric Key Cryptography.

2.1. Blockchain and Smart Contracts

Blockchain is a decentralized and a distributed ledger

that records transactions between different parties. The

recorded transactions are permanent and can be easily ver-

ified. Blockchain forms the basic building blocks of var-

ious crypto-currencies. Not directly relevant to the com-

bination of CNN and blockchain, however, some recent

work shows the potential of blockchain in various other

fields such as smart energy and grids [2, 15], health-care

[8, 16], and smart devices [20]. Recently, Delgado-Mohatar

et al. [6] have presented their view about the combination of

blockchain and biometrics to benefit both the technologies.

Smart Contracts [21] are pieces of codes that guaran-

tee secure and credible transactions. One big advantage of

smart contracts is that they eliminate the need for any third

party altogether.

2.2. Asymmetric and Symmetric Key Cryptography

Asymmetric key cryptography [18] is a class of encryp-

tion algorithms that uses two keys instead of one for encryp-

tion and decryption purposes. One of these keys is the pub-

lic key which is openly distributed and other is the private

key which is kept exclusive. With asymmetric key cryptog-

raphy, anyone can encrypt a message using the receiver’s

public key. This message can now only be decrypted using

his private key. Asymmetric key cryptography enhances se-

curity but comes at a cost of reduced speed. Symmetric key

cryptography uses only a single key to encrypt and decrypt

data. These algorithms are generally faster than asymmetric

HASHj­1

Pubi, Privi
Pubi­1, Pubi+1

AESi

wi, bi, acti

HASHj

Blockj

wi+1, bi+1, acti+1

Figure 3. Depiction of layer i of a DNN represented as block j of

the DeepRing

key algorithms but pose a challenge of securely transmitting

the keys between parties.

3. DeepRing: Proposed Combination of CNN

and BlockChain

In this section, an amalgamation of both important tech-

nologies i.e., CNN and blockchain is described through the

proposed model referred to as DeepRing.

3.1. Notation

Here we define the notations used in Figure 3 and

throughout the paper.

• HASHj: Hash of jth block;

• Pubi: Public key of ith layer;

• Privi: Private key of ith layer;

• AESi: AES key of ith layer;

• wi, bi, acti: weight, bias, and activation function of

the ith layer;

• wi+1, bi+1, acti+1: weight, bias, and activation

function of the layer next to the ith layer;

• Blockj: It is used to represent the block number for

possible identification. It has no significance in current

research.

3.2. Architecture

Figure 4 shows the transformation of a model from DNN

architecture to a DeepRing architecture. The architecture of

DeepRing is inspired by that of a blockchain. A blockchain

is a linked list of ever-growing blocks with transaction

records. DeepRing, on the other hand, is a closed chain of a

finite number of blocks. Each block (except the ouroboros

block) represents a layer of the deep neural network. Unlike

a typical block in a blockchain, blocks of DeepRing serve

the following purposes:

• Store the parameters of the layer

• Compute the output of the layer

• Update the ledger after output computation.

• Validate the output of the next layer

Figure 3 represents a block of the DeepRing. It com-

prises of the hashes of the current and previous block, public

and private keys of the current layer, public keys of the lay-

ers appearing immediately before and after the current layer

and AES key and model parameters of the current and the

next layer. Just like blocks in a blockchain, blocks in Deep-

Ring have a shared common ledger which stores the state of

the model. The hash associated with a block is a function

of the hash of the previous block and the parameters of the

current and next layer parameters. Hash of a block j which

corresponds to layer i in the DNN architecture is given by:

HASHj = Φ(HASHj−1, paramsi, paramsi+1) (1)

Here, Φ is any suitable hash function such as SHA256.

After successful setup of the model in the DeepRing frame-

work, hashes of all the blocks are stored by the ouroboros

block. This is later used to track the compromised block

in case of any tampering attack. One thing to note is that

blocks in the ring do not follow any chronological order.

They are arranged randomly. Even the blocks themselves

are not aware of the sequential index of the layer whose

purpose they serve.

3.3. Ouroboros Block

Ouroboros block is the start and end point of any DNN

query. It is named after the greek symbol of a serpent eating

its own tail called the ouroboros. It is the only known block

of the ring. The weight matrix of the ouroboros block is the

identity matrix, the bias is a zero vector and activation func-

tion is the identity function. Hence, output of an ouroboros

block is the input itself. Ouroboros block stores the original

value of the hash of the block preceding (origHASHprev)

it and has an extra parameter called as the authenticity pa-

rameter.

authenticity ← origHASHprev == HASHprev

Ouroboros block works in two modes:

• Query Mode (authenticity = TRUE): This is the nor-

mal mode which takes in the input and sends back the

output.

• Tracking Mode (authenticity = FALSE): This mode

is triggered when block parameters of any block in the

network changes. Any change in any parameter is car-

ried on to the hash of the last block. In this mode, the

block suspends the general query business and tries to

figure out the compromised block.

HASH4
Pub3, Priv3
Pub2, Pub1

AES3
w3, b3, act3
HASH5

Block5

Layer 3

HASH3
PubFL, PrivFL
Pub4, Pubg
AESFL

wFL, bFL, actFL
HASH4

Block4

Final Layer

HASH1
Pub4, Priv4
Pub3, PubFL

AES4
w4, b4, act4
HASH2

Block2

Layer 4

HASH2
Pub2, Priv2
Pub1, Pub3

AES2
w2, b2, act2
HASH3

Block3

Layer 2

HASH5

Pubg, Privg
PubFL, Pub1

AESg
wg, bg, actg
HASHg

Block0

OUROBOROS
BLOCK

HASHg
Pub1, Priv1
Pubg, Pub2

AES1
w1, b1, act1
HASH1

Block1

Layer 1

Ledger

Layer 1 Layer 2 Layer 3 Layer 4 Final Layer

w3, b3, act3 wFL, bFL, actFL

w2, b2, act2

w1, b1, act1
w4, b4, act4

wg, bg, actg

Authenticity
origHASH5

Figure 4. Transformation a typical DNN architecture to a DeepRing architecture

Hash of the ouroboros block is a function of only the

layer parameters:

HASHouroboros = Φ(paramsouroboros, params1) (2)

Since the ouroboros block has special responsibilities,

this role should be taken by someone trusted, like the owner

of the model.

3.4. Working of DeepRing

Working of the proposed framework is divided into var-

ious phases each of which is described below.

3.4.1 Query Phase

The querent encrypts the query with the public key of the

only known block in the ring i.e., the ouroboros block. The

encrypted query and the public key of the querent are up-

dated on the ledger. DeepRing acknowledges a new query

cycle with the ledger update by the querent. Updated ledger:

(encryptPubO (query), PubQ) (3)

Here, PubO is the public key of the ouroboros block and

PubQ is the public key of the querent.

3.4.2 Processing Phase

After processing the input to a block, each block updates

the ledger with the following four items:

• Layer output encrypted by its AES key

• AES key encrypted by the public key of the next layer

• Signature of the layer

• Hash of the output of the next layer

After each ledger update, all the blocks check whether

the update is signed by the layer that immediately precedes

them. The signature here refers a message encrypted by the

signer’s private key.

For a layer i, let Si be its signature, Ki be its encrypted

AES key, Xi be its encrypted layer output and Hi be the

hash of the next layer’s output.

Si = Φ(encryptPrivi(message)) (4)

Ki = encryptPubi+1
(AESi) (5)

Oi = φi(wi ∗ xi + bi) (6)

Here, φi is the activation function, xi is the layer input and

wi and bi are learned layer parameters of layer i.

Xi = encryptAESi
(Oi) (7)

Hi = Φ(φi+1(wi+1 ∗Oi + bi+1)) (8)

Here, φi+1 is the activation function, and wi+1 and bi+1 are

learned layer parameters of layer i+1. Suppose this layer i

updates the ledger with Si, Ki, Xi and Hi, then at any layer

j:

assert(Φ(message) == decryptPubj−1
(Si)) (9)

This assertion is true only when j − 1 equals i. In other

words, the assertion is true for the (i + 1)th layer. After

signature verification, Ki is decrypted to retrieve the AES

key of the previous layer.

key = decryptPvti+1
(Ki) (10)

This key is the required key to decrypt the input to (i+1)th

layer.

xi+1 = decryptkey(Xi) (11)

Layer i+1 updates the ledger with Si+1, Ki+1, Xi+1 and

Hi+1 and the cycle goes on till the control falls back to the

ouroboros block. This two-step authentication guarantees

the following security concerns:

• Signature verification ensures that a layer listens to

only authorized senders;

• AES key decryption ensures that only the intended

layer gets to see the layer output.

3.4.3 Delivery Phase

The processing cycle completes when the control falls back

to the ouroboros block. When the block verifies that the last

ledger update has been made by the final layer of the model,

it follows the above procedure to retrieve the model output

(x ouroboros). This output is encrypted using the public

key of the querent (PubQ). This ensures that no one but the

querent can access the model output results. After success-

ful completion of a query, the ordering of the blocks along

with the AES keys of the layers is changed to maintain ran-

domness in the network.

model output = encryptPubQ(x ouroboros) (12)

3.4.4 Tracking Phase

This phase is triggered when a change in any model param-

eters leads to a change in the hash of the containing block

and subsequently a change in the hash of the last block. In

this phase, the ouroboros block tries to find the first block

whose hash does not match with the hash in the records and

forces it to restore back to the state in which it previously

(at the time of framework setup) matched. This process is

repeated until the hash of the last block is restored to the

original value and authenticity signal again turns back on.

3.5. Validation and Consensus

Validation Principle: We define the output validation prin-

ciple for any layer i as follows:

assert(Hi−1 == Φ(φi(wi ∗ xi + bi))) (13)

xi-1

oi-1

oi

xi

oi

oi+1

xi+1

oi+1

oi+2

VALIDATE VALIDATE

LAYER i-1 LAYER i LAYER i+1

Figure 5. Validation of layer outputs. Here xi and oi refer to input

and output of layer i respectively.

Proposition 1. Layer i is compromised if and only if the

validation principle for layer i is violated.

Proof. First, we prove the necessary condition (→)

Let us assume that layer i is compromised. Any layer is

considered to be compromised if the input that it operates

on is actually perturbed. If xi is perturbed then from Figure

5 we have:

oi−1 6= xi

oi|layer i−1 6= oi|layer i

Hence by the property of hash algorithms that hash of non-

equal elements is unequal, we conclude that the validation

principle does not hold.

We now present the sufficient condition (←). Let layer

i be the first encountered layer (after the ouroboros block)

for which the validation principle does not hold. Hence we

have,

Hi−1 6= Φ(φi(wi ∗ xi + bi))

oi|layer i−1 6= oi|layer i

Therefore, either oi|layer i−1 is not genuine which implies

that layer i − 1 is compromised or oi|layer i is not genuine

which implies layer i is compromised.

oi|layer i−1 has to be genuine because layer i − 1 being

compromised implies that the validation principle failed for

(i− 1)th layer which contradicts the initial assumption that

i is the first layer for which the validation principle does not

hold. Hence proved that layer i is compromised.

This concludes the proof of Proposition 1.

Apart from producing the layer output, blocks in Deep-

Ring perform another major task and that is to validate the

output of the block that follows. Any layer i updates the

ledger with Si, Ki, Xi and Hi. After extracting xi+1 from

Xi as explained above, layer i+1 performs the assertion of

the validation principle. By Proposition 1, we can conclude

that consensus on successful computation of layer i output

is achieved only when this assertion holds true.

4. Adversarial Attack and Security Analysis

This research aims to defend the DNN models against

adversaries who either aims to perturb the learned parame-

ters of the model or leverage the model information to craft

adversarial samples in a white-box framework1. The section

defines the proposed attack which tries to manipulate the

network parameter for possible malfunctioning of the net-

work. The section further presents security analysis of the

proposed DeepRing architecture with respect to two thread

models, i.e. perturbing the layer parameters and perturbing

the input of the block.

4.1. Adversarial Parameter Tampering

As shown in Figure 1, an adversary can attack the

deep learning model at multiple levels such as by attack-

ing the input or tampering the network parameters. While

a lot of work has happened in attacking at the input level

[1, 3, 7, 9, 10], very limited research has focused on ad-

versarial attack on network parameters. In this section, we

present a parameter altering (attack) algorithm which per-

turbs parameters with the largest consequences to the net-

work. The proposed attack in a true sense justifies the role

of blockchain in deep CNN models and shows it’s effec-

tiveness in curbing the attack on network level (as shown in

Figure 1).

Recently, Keshari et al. [11] propose to reduce the num-

ber of parameters of CNNs by introducing a strength param-

eter for filter weights. We follow a similar approach and use

the strength of weights/kernel matrix as a measure to decide

whether it should be perturbed or not. Since the goal is to

achieve maximum deviation with a minimum level of dis-

tortion, we only perturb the parameters which are the most

important. Keeping the trained parameters of the network

fixed, we associate each layer with a logistic importance

parameter p, and train the network again to compute the

importance of each layer weights. Larger the value of p,

more important are the weights of the layer in reaching the

final decision. We perturb the weights of the most impor-

tant layer (largest p value) with Gaussian noise and monitor

the network performance. Naturally, since the parameters

are perturbed, the performance of the model is negatively

affected. The level of deviation depends on the quantity of

noise added.

Algorithm 1 presents the pseudo-code of the proposed

attack. ⊙ operation refers to the Hadamard product be-

tween the weights matrix and strength parameter, ∗ oper-

ation refers to convolution operation in the context of con-

volutional layers and matrix multiplication operation in the

context of dense layers. Method Noise(µ, σ, shape) re-

turns a Gaussian matrix of specified shape with mean µ and

1white-box framework is defined as a framework where the attacker

has complete access to the network information such as parameters and

gradient.

Algorithm 1 Proposed Parameter Tampering Attack

1: procedure ATTACK(model, img, labels, µ, σ)

2: i← 0
3: n← num(model.layers)
4: while i < n do

5: parametersi.trainable = False

6: Wi, bi = parametersi
7: initialize pi
8: outputi ← φ((Wi⊙sigmoid(pi))∗inputi+bi)
9: i← i+ 1

10: end while

11: model.train(img, labels)
12: P = pj s.t. {∀i ∈ n | ∃j ∈ n : pj ≥ pi}
13: noise = Noise(µ, σ, weightsj .shape)
14: weightsj ← weightsj + noise

15: end procedure

standard deviation σ and method sigmoid refers to the lo-

gistic Sigmoid function.

4.2. Security Analysis

In this section, we analyze the robustness of the proposed

DeepRing architecture in various threat model scenarios.

An adversary or a compromised block can conspire against

the network in following two ways (and their security anal-

ysis thereof):

• Perturb the layer parameters of the block: Hash of

any block is a function of the parameters of the layer

it represents. Any change in the values of these pa-

rameters would correspond a change in the hash of the

block. Since the recomputed hash is a parameter for

the hash of the next block, the hash of the next block

changes too. This goes on until the hash of the last

block is changed. This change triggers the authentic-

ity signal of the ouroboros block to turn off and ac-

tivates its tracking mode. Normal query phase is re-

sumed once the parameters of the compromised blocks

are restored.

• Perturb the input to the block: Changing the input of

a layer does not affect the hash of that layer. However,

it affects the validation assertion explained previously.

Consider a block j representing layer i of the DNN

model. Assuming it is under the influence of an adver-

sary and is compromised, it tries to perturb or change

its input to produce the wrong output. Proposition 1

explains that in such a case, validation fails and hence

consensus can not be achieved. Since, a violation of

validation principle at any layer i indicates that it has

been compromised, in case of an actual violation, the

output from the previous layer is sent back to the cur-

rent layer.

Table 1. Number of layers (n) vs probability of guessing the correct

sequence of layers.

n Probability (%)

2 50

3 16.66

5 0.83

7 0.019

10 2.7x10−5

Table 2. Object recognition performance of a VGG-19 [19] before

(i.e., original) and after the parameter tampering and input pertur-

bation attacks.

Type Model MNIST CIFAR-10 Tiny-ImageNet

Original DNN 99.07 83.89 76.12

Parameter

Tampering

DNN 51.20 63.18 41.96

DeepRing 99.07 83.89 76.12

Input

Perturbation

DNN 81.54 74.88 58.21

DeepRing 99.07 83.89 76.12

Table 3. Object recognition performance of the described neural

network (NN) before (i.e., original) and after the parameter tam-

pering and input perturbation attacks.

Type Model MNIST CIFAR-10

Original NN 98.10 62.35

Parameter

Tampering

NN 64.29 50.11

DeepRing 98.10 62.35

Input

Perturbation

NN 77.89 44.37

DeepRing 98.10 62.35

White-box attack strategies such as C&W L2 [4] and

EAD [5] depend on model properties such as gradients to

craft adversarial samples. Due to complete random and en-

crypted nature of DeepRing, the simplest properties of the

model such as the route of information flow between blocks

is hidden from the external world. Anticipating the next

block which proceeds with the computation will entirely be

based on a random guess. The probability to guess the cor-

rect sequence of events decreases dramatically with an in-

crease in the number of layers. For the DeepRing architec-

ture:

Prob(guess the correct sequence) =
1

n!
(14)

Table 1 shows that the probability of guessing the correct

sequence order drastically decreases with an increase in the

number of model layers. Therefore, it is difficult to attack

the DeepRing network by leveraging gradient flow in the

model as proposed in most of the existing adversarial attack

algorithms.

5. Experimental Results

In this section, we describe the experiments conducted

to evaluate the validity and robustness of the proposed ap-

proach. We modeled VGG-19 architecture [19] trained on

MNIST2, CIFAR-10 [12], and Tiny-ImageNet3 in a Deep-

Ring framework. We also considered a neural network with

five dense layers with the following properties:

• Number of nodes in each layer [900, 600, 300 , 100,

number of classes]

• ReLU activation for all layers except the output layer.

Softmax activation is used for the output layer.

We trained this network on MNIST and CIFAR-10 datasets.

Further, we experimented with the following two cases:

• Attacking the model using the tampering attack:

We applied the parameter tampering attack on DNN

architecture and the DeepRing architecture. For the

case of DeepRing, tampering the parameters alerts the

ouroboros block and activates its tracking mode. The

parameters of the affected blocks are restored from the

last stable checkpoint.

• Compromising a block by changing its input: In or-

der to monitor the behavior of the DeepRing architec-

ture on input perturbations, we perturb the third convo-

lutional layer input of the VGG19 model and the third

dense layer input of the neural network architecture de-

scribed above. Perturbing the inputs leads to the failure

of the validation clause which indicates compromise.

Table 2 shows the performance of VGG-19 with and

without blockchain for the object recognition task on

MNIST, CIFAR-10, and Tiny ImageNet databases. Ta-

ble 3 shows the performance of the defined neural net-

work with and without blockchain for the object recogni-

tion task on MNIST and CIFAR-10. The networks are at-

tacked using the methods listed above. When the original

model is used for recognition, the VGG 19 model yields

99.07%, 83.89%, and 76.12% object recognition accuracy

on MNIST, CIFAR-10, and Tiny ImageNet databases, re-

spectively. However, because of no security mechanism de-

ployed in the individual block of a typical model, it shows

vulnerability towards attacks and performance suffers a sig-

nificant drop. The performance on CIFAR-10 drops by

20.71%, whereas, on MNIST and Tiny ImageNet datasets,

drop of more than 47% and 34%, respectively is observed.

However, as described in section 3, the proposed DeepRing

model is fault free because of multiple authentication blocks

such as validation/consensus and Hash functions. There-

fore, we do not observe any reduction in performance for

the proposed DeepRing. In case of compromising a block

by changing its input, DeepRing model will also trigger a

2http://yann.lecun.com/exdb/mnist/
3https://tiny-imagenet.herokuapp.com/

violation and therefore, it can inherently provide adversar-

ial attack detection mechanism. In our experiments, we ob-

serve that the proposed DeepRing yields 100% accuracy for

detecting perturbations of input to a block.

6. Conclusion

In this research, we have shown that the synergy between

the power of DNN models and security of blockchain can

create tamper-proof models. The characteristic properties

of blockchain such as security and accountability are pro-

vided to the CNN models by employing cryptographic tech-

niques and by decentralizing layer operations. The blocks

of CNN models are placed in a random order where the

neighborhood blocks contain the information of the next le-

gitimate block. Hiding the network architecture and param-

eters from an adversary prevents the threat of any white-box

adversarial attack. Tampering in any block changes the hash

of the current and the subsequent blocks thereby highlight-

ing the performed attack. In this way, the transparency be-

tween the blocks and the entire network is increased. How-

ever, this enhanced version of security comes at a price of

increased computational complexity of performing expen-

sive cryptographic functions and protocols. In this research,

through experiments, we have shown that the network is

protected against adversarial tampering and layer perturba-

tion attacks. In the future, we will extend the approach to

make it efficient in terms of computational complexity and

defend models against input image perturbation.

References

[1] A. Agarwal, R. Singh, M. Vatsa, and N. Ratha. Are imageag-

nostic universal adversarial perturbations for face recogni-

tion difficult to detect. IEEE International Conference on

Biometrics: Theory, Applications and Systems, 2018. 6

[2] S. Aggarwal, R. Chaudhary, G. S Aujla, A. Jindal, A. Dua,

and N. Kumar. Energychain: Enabling energy trading for

smart homes using blockchains in smart grid ecosystem. In

ACM MobiHoc Workshop on Networking and Cybersecurity

for Smart Cities, page 1, 2018. 2

[3] N. Akhtar and A. Mian. Threat of adversarial attacks on

deep learning in computer vision: A survey. IEEE Access,

6:14410–14430, 2018. 6

[4] N. Carlini and D. Wagner. Towards evaluating the robustness

of neural networks. In IEEE Symposium on Security and

Privacy, pages 39–57, 2017. 7

[5] P. Chen, Y. Sharma, H. Zhang, J. Yi, and C. Hsieh. Ead:

elastic-net attacks to deep neural networks via adversarial

examples. In Thirty-Second AAAI Conference on Artificial

Intelligence, 2018. 7

[6] O. Delgado-Mohatar, J. Fierrez, R. Tolosana, and R.

Vera-Rodriguez. Blockchain and biometrics: A first

look into opportunities and challenges. arXiv preprint

arXiv:1903.05496, 2019. 2

[7] A. Goel, A. Singh, A. Agarwal, M. Vatsa, and R. Singh.

Smartbox: Benchmarking adversarial detection and mitiga-

tion algorithms for face recognition. IEEE International

Conference on Biometrics: Theory, Applications and Sys-

tems, 2018. 6

[8] W. J Gordon and C. Catalini. Blockchain technology for

healthcare: facilitating the transition to patient-driven in-

teroperability. Computational and structural biotechnology

journal, 16:224–230, 2018. 2

[9] G. Goswami, A. Agarwal, N. Ratha, R. Singh, and M. Vatsa.

Detecting and mitigating adversarial perturbations for robust

face recognition. International Journal of Computer Vision,

2019. doi: 10.1007/s11263-019-01160-w. 6

[10] G. Goswami, N. Ratha, A. Agarwal, R. Singh, and M. Vatsa.

Unravelling robustness of deep learning based face recogni-

tion against adversarial attacks. Association for the Advance-

ment of Artificial Intelligence, pages 6829–6836, 2018. 6

[11] R. Keshari, M. Vatsa, R. Singh, and A. Noore. Learning

structure and strength of cnn filters for small sample size

training. In IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 9349–9358, 2018. 6

[12] A. Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, Citeseer, 2009. 7

[13] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,

521(7553):436, 2015. 1

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 1

[15] A. Magnani, L. Calderoni, and P. Palmieri. Feather forking

as a positive force: incentivising green energy production in

a blockchain-based smart grid. In ACM Workshop on Cryp-

tocurrencies and Blockchains for Distributed Systems, pages

99–104, 2018. 2

[16] M Mettler. Blockchain technology in healthcare: The rev-

olution starts here. In IEEE International Conference on e-

Health Networking, Applications and Services, pages 1–3,

2016. 2

[17] N. K. Ratha, J. H. Connell, and R. M. Bolle. Enhancing secu-

rity and privacy in biometrics-based authentication systems.

IBM systems Journal, 40(3):614–634, 2001. 1

[18] G. J Simmons. Symmetric and asymmetric encryption. ACM

Computing Surveys, 11(4):305–330, 1979. 2

[19] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 7

[20] Q. Stokkink and J. Pouwelse. Deployment of a

blockchain-based self-sovereign identity. arXiv preprint

arXiv:1806.01926, 2018. 2

[21] N. Szabo. Smart contracts: building blocks for digi-

tal markets. EXTROPY: The Journal of Transhumanist

Thought,(16), 18, 1996. 2

[22] J Weng, Jian Weng, J Zhang, M Li, Y Zhang, and W Luo.

Deepchain: Auditable and privacy-preserving deep learning

with blockchain-based incentive. Cryptology ePrint Archive,

Report 2018/679, 2018. 2

