
DEEPScreen: high performance drug–target
interaction prediction with convolutional neural
networks using 2-D structural compound
representations†

Ahmet Sureyya Rifaioglu, abc Esra Nalbat, c Volkan Atalay, *ac

Maria Jesus Martin, d Rengul Cetin-Atalay ce and Tunca Doğan *fg

The identification of physical interactions between drug candidate compounds and target biomolecules is

an important process in drug discovery. Since conventional screening procedures are expensive and time

consuming, computational approaches are employed to provide aid by automatically predicting novel

drug–target interactions (DTIs). In this study, we propose a large-scale DTI prediction system,

DEEPScreen, for early stage drug discovery, using deep convolutional neural networks. One of the main

advantages of DEEPScreen is employing readily available 2-D structural representations of compounds at

the input level instead of conventional descriptors that display limited performance. DEEPScreen learns

complex features inherently from the 2-D representations, thus producing highly accurate predictions.

The DEEPScreen system was trained for 704 target proteins (using curated bioactivity data) and finalized

with rigorous hyper-parameter optimization tests. We compared the performance of DEEPScreen

against the state-of-the-art on multiple benchmark datasets to indicate the effectiveness of the

proposed approach and verified selected novel predictions through molecular docking analysis and

literature-based validation. Finally, JAK proteins that were predicted by DEEPScreen as new targets of

a well-known drug cladribine were experimentally demonstrated in vitro on cancer cells through STAT3

phosphorylation, which is the downstream effector protein. The DEEPScreen system can be exploited in

the fields of drug discovery and repurposing for in silico screening of the chemogenomic space, to

provide novel DTIs which can be experimentally pursued. The source code, trained "ready-to-use"

prediction models, all datasets and the results of this study are available at https://github.com/cansyl/

DEEPscreen.

1. Introduction

One of the initial steps of drug discovery is the identication of

novel drug-like compounds that interact with the predened

target proteins. In vitro/in vivo and high-throughput screening

experiments are performed to detect novel compounds with the

desired interactive properties. However, high costs and

temporal requirements make it infeasible to scanmassive target

and compound spaces.1 Due to this reason, the rate of the

identication of novel drugs has substantially been decreased.2

Currently, there are more than 90 million drug candidate

compound records in compound and bioactivity databases such

as ChEMBL3 and PubChem4 (combined), whereas the size esti-

mation for the whole “drug-like” chemical space is around

1060.5 On the other hand, the current number of drugs (FDA

approved or at the experimental stage) is around 10 000,

according to DrugBank.6 In addition, out of the 20 000 proteins

in the human proteome, less than 3000 of them are targeted by

known drugs.7,8 As the statistics indicates, the current knowl-

edge about the drug–target space is limited, and novel

approaches are required to widen our knowledge. Information

about the automated prediction of drug–target interactions

(DTI), descriptors and feature engineering in machine learning

(ML) based DTI prediction, and novel deep learning (DL) based
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DTI prediction approaches proposed lately in the literature are

provided in the ESI, sections 1.1, 1.2 and 1.3,† respectively.

The studies published so far have indicated that DTI

prediction is an open problem, where not only novel ML algo-

rithms but also new data representation approaches are

required to shed light on the un-charted parts of the DTI

space9–21 and for other related tasks such as reaction22 and

reactivity predictions23 and de novo molecular design.24,25 This

effort comprises the identication of novel drug candidate

compounds, as well as the repurposing of the existing drugs on

the market.26 Additionally, in order for the DTI prediction

methods to be useful in real-world drug discovery and devel-

opment research, they should be made available to the research

community as tools and/or services via open access repositories.

Some examples to the available deep learning based frame-

works and tools in the literature for various purposes in

computational chemistry based drug discovery are given as

follows: gnina, a DL framework for molecular docking (reposi-

tory: https://github.com/gnina/gnina);27–30 Chainer Chemistry,

a DL framework for chemical property prediction, based on

Chainer (repository: https://github.com/chainer/chainer-

chemistry);31 DeepChem, a comprehensive open-source tool-

chain for DL in drug discovery (repository: https://github.com/

deepchem/deepchem);32 MoleculeNet, a benchmarking system

for molecular machine learning, which builds on DeepChem

(repository: http://moleculenet.ai/);13 and SELFIES, a sequence-

based representation of semantically constrained graphs,

which is applicable to represent chemical compound structures

as graphs (repository: https://github.com/aspuru-guzik-group/

seles).33

In this study, we propose DEEPScreen, a deep convolutional

neural network (DCNN) based a DTI prediction system that

utilizes readily available 2-D structural compound representa-

tions as input features, instead of using conventional descrip-

tors such as themolecular ngerprints.34 Themain advantage of

DEEPScreen is increasing the DTI prediction performances with

the use of 2-D compound images, that is assumed to have

a higher coverage in terms of compound features, compared to

the conventional featurization approaches (e.g., ngerprints),

which have issues related to generalization over the whole DTI

space.11,35 DEEPScreen system's high-performance DCNNs

inherently learn these complex features from the 2-D structural

drawings to produce highly accurate novel DTI predictions at

a large scale. Image-based representations of drugs and drug

candidate compounds reect the natural molecular state of

these small molecules (i.e., atoms and bonds), which also

contain the features/properties determining their physical

interactions with the intended targets. Recently, image-based or

similar structural representations of compounds have been

incorporated as the input for predictive tasks under different

contexts (e.g., toxicity, solubility, and other selected biochem-

ical and physical properties) in the general eld of drug

discovery and development,35–38 but have not been investigated

in terms of the binary prediction of physical interactions

between target proteins and drug candidate compounds, which

is one of the fundamental steps in early drug discovery. In this

work, we aimed to provide such an investigation, and as the

output, we propose a highly optimised and practical DTI

prediction system that covers a signicant portion of the known

bio-interaction space, with a performance that surpasses the

state-of-the-art.

The proposed system, DEEPScreen, is composed of 704

predictive models; each one is independently optimized to

accurately predict interacting small molecule ligands for

a unique target protein. DEEPScreen has been validated and

tested using various benchmarking datasets, and compared

with the state-of-the-art DTI predictors using both conventional

and deep ML models. Additionally, DEEPScreen target models

were run on more than a million compound records in the

ChEMBL database to produce large-scale novel DTIs. We also

validated selected novel predictions using three different

approaches: (i) from the literature, in terms of drug repurpos-

ing, (ii) with computational structural docking analysis, and (iii)

via in vitro wet-lab experiments. Finally, we constructed DEEP-

Screen as a ready to use collection of predictive models and

made it available through an open access repository together

with all of the datasets and the results of the study at https://

github.com/cansyl/DEEPScreen.

2. Results
2.1 Drug–target interaction prediction with DEEPScreen

In this study, we approached DTI prediction as a binary classi-

cation problem. DEEPScreen is a collection of DCNNs, each of

which is an individual predictor for a target protein. The system

takes drugs or drug candidate compounds in the form of

SMILES representations as query, generates 200-by-200 pixel 2-

D structural/molecular images using SMILES, runs the predic-

tive DCNN models on the input 2-D images, and generates

binary predictions as active (i.e., interacting) or inactive (i.e.,

non-interacting) for the corresponding target protein (Fig. 1). In

order to train the target specic predictive models of DEEP-

Screen with a reliable learning set, manually curated bio-

interaction data points were obtained from the ChEMBL

bioactivity database and extensively ltered (Fig. 2). The tech-

nical details regarding both the methodology and the data are

given in the Methods section. Following the preparation of

datasets, we extracted target protein based statistics, in terms of

amino acid sequences,7 domains,39,40 functions, interacting

compounds and disease indications.41,42 The results of this

analysis can be found in ESI document section 2.1 and Fig. S1.†

We also carried out several tests to examine the robustness of

the DEEPScreen system against input image transformations,

since this is a critical topic for CNN architectures that process 2-

D images. The results of this analysis can be found in ESI

document section 2.2,† together with its discussion.

2.2 Sources of dataset bias in model evaluation

Labelled ground-truth data are split into training/validation/test

partitions in order to train, optimize and evaluate predictive

models. There are two basic strategies in the eld of virtual

screening (or DTI prediction) in terms of dataset split. The rst

and the most basic one is the random-split, where the data

2532 | Chem. Sci., 2020, 11, 2531–2557 This journal is © The Royal Society of Chemistry 2020
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points are separated randomly without any particular consid-

eration. Evaluations using random-split datasets are good

indicators of what would be the model performance in pre-

dicting new binders that are structurally similar (e.g., contain-

ing the same scaffolds) to the compounds in the training

dataset. The second widely used data split strategy in DTI

prediction is the similarity-based (or non-random) split, where

data points are divided according to similarities between

compounds/targets/bioactivities, according to the assumed

modelling approach. Here, the aim is to prevent very similar

data points from ending up both in training and test sets. In

ligand-based prediction approaches (such as DEEPScreen), the

input samples are compounds, and as a result, datasets are split

according to molecular similarities between compounds. This

can be done by checking the shared scaffolds in these

compounds and applying a scaffold-based split or by calculating

pairwise structural similarities and clustering the compounds

based on this.

There are critical points and risks in constructing training

and test datasets for developing a virtual screening system and

analysing its predictive performance. The rst risk would be the

introduction of chemical bias into the tests, where structurally

similar compounds end up both in training and test datasets.

This oen makes the task of accurate prediction a somewhat

trivial task, since structurally similar compounds usually have

similar (or the same) targets. Random-split datasets usually

suffer from this problem. Another risk is the negative selection

bias, where negative samples (i.e., inactive or non-binder

compounds) in the training and/or test datasets are structur-

ally similar to each other in a way, which is completely unre-

lated to their binding related properties.43 So, a machine

learning classier can easily exploit this feature to successfully

separate them from the positives. Both of these cases would

result in an overestimation of the model performance during

benchmarks, especially when the tests are made to infer to

performance of the models in predicting completely novel

binders to the modelled target proteins. It was reported that

a widely used benchmark dataset DUD-E44 suffers from the

negative selection bias problem, even though the chemical bias

issue was properly addressed during the construction of this

benchmark. In DUD-E, most of the property matched decoys

(i.e., negatives) were found to be highly biased, as the models

trained on specic targets were highly successful in identifying

the negatives of completely different targets.43 In other words,

most of the decoys shared features that make them non-binders

to nearly all target proteins, and care should be taken while

evaluating predictive models on this benchmark. In this study,

we evaluated the performance of DEEPScreen on 5 different

datasets (e.g., large-scale random-split dataset, both chemical

and negative selection bias free representative target dataset,

ChEMBL temporal/time split dataset, MUV and DUD-E) in order

to observe the behaviour of the system and its comparison with

the state-of-the-art on benchmarks with differing strengths and

weaknesses. The content and properties of these datasets are

explained in the Methods section.

2.3 Analysis of the DEEPScreen dataset in terms of negative

selection bias

To examine the DEEPScreen source dataset in terms of negative

selection bias, we compared the average molecular similarities

among the member compounds of each target specic negative

training dataset; also, we make a cross comparison of average

molecular similarity of the compounds in the positive training

dataset a target against the compounds in the negative training

dataset of the same target, to uncover if there is a statistically

signicant structural difference between positives and nega-

tives. For this, we employed Morgan ngerprints (ECFP4) and

the pairwise Tanimoto similarity calculation between all

Fig. 1 Illustration of the deep convolutional neural network structure of DEEPScreen, where the sole input is the 2-D structural images of the

drugs and drug candidate compounds (generated from the SMILES representations as a data pre-processing step). Each target protein has an

individual prediction model with specifically optimized hyper-parameters (please refer to the Methods section). For each query compound, the

model produces a binary output either as active or inactive, considering the interaction with the corresponding target.

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 2531–2557 | 2533
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compound pair combinations. According to the results of this

analysis of the datasets of 704 target proteins, there was no

target where the inactive training dataset compounds are more

similar to each other compared to the inter group similarities

between the active and inactive dataset compounds of that

target protein model, with statistical signicance according to t-

test (at 95% condence interval). Actually, mean active to

inactive similarity was higher than the similarity among the

inactives for 211 targets, indicating that inactives do not share

a global similarity that separates them from actives, which

would otherwise make it easy to distinguish them, and intro-

duce a bias into the performance analysis. These results are

displayed in ESI Document Fig. S2† as target based mean

pairwise compound similarity curves for intra-group (among

inactives) and inter-group (actives to inactives) similarities with

error bands. The most probable reason behind the observation

of no signicant difference was that we directly used the

experimental bioassay results reported in the ChEMBL database

to construct our negative datasets by setting an activity

threshold (i.e., #10 mM), instead of manually constructing

decoy datasets. Thus, the compounds in our negative datasets

are able to interact with the intended targets, with very low

affinities. The results indicated that the negative selection bias

is not an issue for the DEEPScreen source dataset.

2.4 Performance evaluation of DEEPScreen and comparison

with other methods

2.4.1 Large-scale performance evaluation and comparison

with the random-split dataset. According to our basic perfor-

mance tests, for 613 of the target protein models (out of 704),

Fig. 2 Data filtering and processing steps to create the training dataset of each target protein model. Predictive models were trained for 704

target proteins, each of which has at least 100 known active ligands in the ChEMBL database.

2534 | Chem. Sci., 2020, 11, 2531–2557 This journal is © The Royal Society of Chemistry 2020
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DEEPScreen scored an accuracy $0.8, with an overall average

accuracy of 0.87, an F1-score of 0.87 and a Matthews correlation

coefficient (MCC) of 0.74. Additionally, high-level target protein

family based average model performances indicated that

DEEPScreen performs sufficiently well on all target families

(average MCC for enzymes: 0.71, GPCR: 0.80, ion channels: 0.76,

nuclear receptors: 0.76, others: 0.69). All performance evalua-

tion metrics used in this study are explained in the Methods

section.

Following the calculation of DEEPScreen's performance, we

compared it against conventional DTI prediction approaches

(classiers: random forest – RF, support vector machines – SVM

and logistic regression – LR) using the exact same random-split

training/test sets under two different settings. In the rst

setting, conventional classiers were trained with circular

ngerprints (i.e., ECFP4 (ref. 34)) of the compounds, which

represents the current state-of-the-art in DTI prediction. The

model parameters of the conventional classiers were opti-

mized on the validation dataset and the nalized performances

were measured using the independent test dataset, similar to

the evaluation of DEEPScreen. In the second setting, the same

feature type (i.e., 2-D molecular representations) is employed.

These conventional classiers normally accept 1-D (column-

type) feature vectors; therefore, we attened our 200-by-200

images to be used as the input. Thus, the performance

comparison solely reects the gain of employing DCNNs as

opposed to conventional/shallow classication techniques. It is

possible to argue that conventional classiers such as LR, RF

and SVM may not directly learn from the raw image features,

and thus, sophisticated image pre-processing applications,

such as constructing and using histograms of oriented gradi-

ents,45 are required to train proper image feature based

predictive models. Here, our aim was to identify the most

prominent factor behind the performance increase yielded by

DEEPScreen (i.e., is it only the use of DNNs, mostly independent

from the featurization approach, or is it the use of image-based

features together with the employment of DNNs to classify

them), without a possible effect from a third-party data pro-

cessing application. As a result, we directly used the raw image

features. Fig. 3a displays the overall ranked target based

predictive performance curves, in MCC, accuracy and F1-score,

respectively. We did not include RF-Image and SVM-Image

performance in Fig. 3 since RF models performed very similar

to the LR models on nearly all models, and SVM models were

unable to learn the hidden features in most of the cases and

provided a very low performance. It is possible to observe the

results of RF-Image and SVM-Image in the performance tables

provided in the repository of this study. DEEPScreen performed

better compared to all conventional classiers employed in the

test according to both mean and median performance

measures. Especially, the performance difference was signi-

cant when the MCC was used, which is considered to be a good

descriptor of DTI prediction performance. For all performance

measures, among the best 200 target models for each method,

LR-ECFP and RF-ECFP models have higher performance

compared to DEEPScreen; however, DEEPScreen takes over

aer the 200th model and displayed a much better performance

aerwards. Overall, DEEPScreen performed 12% and 23%

better in terms of mean and median performances respectively,

compared to its closest competitors (i.e., LR-ECFP and RF-ECFP)

in terms of the MCC. According to our results, the best classier

was DEEPScreen for 356 targets (LR-ECFP for 250, RF-ECFP for

141, SVM-ECFP for 24 targets). The results indicate that DEEP-

Screen's performance is stable over the whole target set. On the

other hand, state-of-the-art classiers perform very well for

some targets but quite bad at others, pointing out the issues

related to generalization of conventional ngerprints.

Fig. 3b shows the target protein based predictive perfor-

mance (in terms of the MCC) z-score heatmap for DEEPScreen

and conventional classiers, where each horizontal block

corresponds to a target family. As displayed in Fig. 3b, DEEP-

Screen performed signicantly better for all families (solid red

blocks); LR-ECFP and RF-ECFP came second, LR-Image took the

third place, and SVM-ECFP came in last place. An interesting

observation here is that image-based (i.e., DEEPScreen and LR-

Image) and ngerprint-based classiers display opposite trends

in predictive performance for all families, indicating that the

image-based approach complements the ngerprint approach.

Also, LR-ECFP and LR-Image performances were mostly oppo-

site, indicating a pronounced difference between the informa-

tion obtained from ngerprints and images. Although LR-

Image's overall performance was lower compared to LR-ECFP, it

was still higher compared to SVM-ECFP, implying that LR-

Image managed to learn at least some of the relevant hidden

features. There was no signicant difference between the

protein families in terms of the classier rankings; however,

DEEPScreen's domination was slightly more pronounced on the

families of GPCR, ion channels, and nuclear receptors.

In order to compare the performance of DEEPScreen with

the conventional classiers on a statistical basis, we carried out

10 fold cross-validation on the fundamental random-split

datasets of the same 17 representative target proteins (i.e.,

gene names: MAPK14, JAK1, REN, DPP4, LTA4H, CYP3A4,

CAMK2D, ADORA2A, ADRB1, NPY2R, CXCR4, KCNA5, GRIK1,

ESR1, RARB, XIAP, and NET) that were employed for the

construction of a chemical and negative selection bias free

scaffold-split benchmark dataset (please see Methods section

for information about the selection procedure for these target

proteins). We applied Bonferroni corrected t-tests to compare

the performance distribution of each method on each target

independently (10 measurements from each 10-fold cross-

validation experiment constitute a distribution). The statis-

tical tests were conducted on the MCC performance metric due

to its stability under varying dataset size partitions. Fig. 3c

displays the MCC performance results as box plots, for 17

targets. Each box represents a classier's 10 MCC measures on

10 different folds of a target's training dataset, in the cross-

validation. In these plots, the top and bottom borders of the

box indicate the 75th and 25th percentiles, the whiskers show the

extension of the most extreme data points that are not outliers,

and plus symbols indicate outliers. The number written under

the gene names of the respective targets indicates the size of the

training datasets (actives). According to results, there was no

observable relation between dataset sizes and a classier's

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 2531–2557 | 2535
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Fig. 3 (a) Overall predictive performance comparison of DEEPScreen vs. state-of-the-art classifiers. Each point in the horizontal axis represents

a target protein model: the vertical axis represents performance in the MCC, accuracy and F1-score, respectively. For each classifier, targets are

ranked in a descending performance order. Average performance values (mean and median) are given inside the plots. (b) Target-based

maximum predictive performance (MCC-based) heatmap for DEEPScreen and conventional classifiers (columns) (LR: logistic regression, RF:

random forest, SVM: support vector machine; ECFP: fingerprint-based models, and image: 2-D structural representation-based models). For

each target protein (row), classifier performances are shown in shades of red (i.e., high performance) and blue (i.e., low performance) colours

according to Z-scores (Z-scores are calculated individually for each target). Rows are arranged in blocks according to target families. The height

of a block is proportional to the number of targets in its corresponding family (enzymes: 374, GPCRs: 212, ion channels: 33, nuclear receptors: 27,

and others: 58). Within each block, targets are arranged according to descending performance from top downwith respect to DEEPScreen. Grey

colour signifies the cases, where learning was not possible. (c) MCC performance box plots in the 10-fold cross-validation experiment, to

compare DEEPScreen with the state-of-the-art DTI predictors.
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performance. According to the results of the multiple pairwise

comparison test (Bonferroni corrected t-tests), DEEPScreen

performed signicantly better (compared to the best conven-

tional classier for each target) for 9 of the 17 representative

targets (i.e., genes MAPK14, REN, DPP4, LTA4H, CYP3A4,

ADRB1, NPY2R, ESR1, and XIAP), which constitutes 71%, 50%,

50% and 50% of enzymes, GPCRs, nuclear receptors and

‘others’ families, respectively (p-value < 0.001). Whereas, the

best conventional classier managed to signicantly beat

DEEPScreen only for 2 representative targets (i.e., genes JAK1

and RARB), which constitute 14% and 25% of enzymes and

GPCRs, respectively (p-value < 0.001). For the rest of the repre-

sentatives (6 targets), there was no statistically signicant

difference between DEEPScreen and the conventional classi-

ers. The results indicate that DEEPScreen's dominance is

mostly statistically signicant.

To examine the test results in relation to potential perfor-

mance affecting factors, we rst checked the correlation

between the performances of different classiers to observe the

overlap and the complementarity between different ML algo-

rithms and featurization approaches. Spearman rank correla-

tion between the performance (MCC) distribution of

DEEPScreen and the state-of-the-art (i.e., LR, RF and SVM with

ngerprint-based features) was around 0.25 (against LR-ECFP

and RF-ECFP) and 0.51 (against SVM-ECFP), indicating only

a slight relation and thus, a potential complementarity (as also

indicated in Fig. 3B). However, the rank correlation between LR-

ECFP and RF-ECFP was 0.97 indicating a high amount of

overlap and possibly no complementarity. The correlation

between LR-ECFP (or RF-ECFP) and SVM-ECFP was around 0.62,

just slightly higher than DEEPScreen vs. SVM-ECFP. It was

interesting to observe that DEEPScreen's performance rank was

more similar to that of SVM-ECFP than LR-ECFP or RF-ECFP. To

check if the difference between DEEPScreen and LR/RF is due to

the employed algorithmic approach or due to the featurization

approach, we checked the correlation between DEEPScreen and

LR that used image features (i.e., LR-Image), which resulted in

a correlation value of 0.68, whereas the rank correlation

between LR-ECFP and LR-Image was only 0.21. These results

demonstrated that the low correlation between DEEPScreen

and LR-ECFP (or RF-ECFP) was mainly due to the difference in

featurization, and there is possibly a complementarity between

the featurization approaches of using molecular structure

ngerprints and 2-D images of compounds. Also, the observed

high performance of DEEPScreen indicated that deep convolu-

tional neural networks are successful in extracting knowledge

directly from the 2-D compound images. A pairwise all-against-

all Spearman rank correlation matrix is given in the ESI Table

S5.†

Aer that, we checked if there is a relation between training

dataset sizes and the performance of the models, since deep

learning-based methods are oen reported to work well with

large training sets. For this, we calculated the Spearman rank

correlation between DEEPScreen performance (MCC) and the

dataset sizes of 704 target proteins, and the resulting value was

�0.02, indicating no correlation. The results were similar when

LR and RF were tested against the dataset sizes (�0.08 and

�0.02, respectively). However, the result for SVM was 0.20,

indicating a slight correlation. Finally, we checked the average

dataset size of 356 target proteins, on which DEEPScreen per-

formed better (MCC) compared to all conventional classiers

and found the mean value as 629 active compounds; we also

calculated the average dataset size of the models where the

state-of-the-art approaches performed better compared to

DEEPScreen and found the mean value as 542 active

compounds. The difference in the mean dataset sizes indicates

that DEEPScreen performs generally better on larger datasets.

Next, we applied a statistical test to observe if there are

signicantly enriched compound scaffolds in the training

datasets of target proteins, where DEEPScreen performed better

compared to the state-of-the-art approaches. For this, we rst

extracted Murcko scaffolds46 of both active and inactive

compounds of 704 DEEPScreen targets, using the RDkit scaffold

module. Scaffold extraction resulted in a total of 114 269 unique

Murcko scaffolds for 294 191 compounds. Then, we divided

each scaffold's statistics into four groups: (i) the number of

occurrences in the active compound datasets of targets where

DEEPScreen performed better, (ii) the number of occurrences in

the active compound datasets of targets where the state-of-the-

art classiers performed better, (iii) the number of occurrences

in the inactive compound datasets of targets where DEEPScreen

performed better, and (iv) the number of occurrences in the

inactive compound datasets of targets where state-of-the-art

classiers performed better. Using these four groups, we

calculated the Fisher's exact test signicance (p-value) for the

decision on the null hypothesis that there are no non-random

associations between the occurrence of the corresponding

scaffold in the DEEPScreen dominated target models and the

state-of-the-art classier dominated models. With a p-value

threshold of 1 � 10�5, we identied 140 scaffolds, 61 of which

were enriched in the DEEPScreen dominated target models.

With the aim of reducing the extremely high number of unique

scaffolds, we repeated the exact same procedure by using the

generalized versions of the identied scaffolds. The general-

ization procedure (using RDkit) reduced the number of unique

scaffolds to 55 813. The statistical test resulted in a total of 211

signicant generalized scaffolds, 101 of which were enriched in

the DEEPScreen dominated target models. Although we

managed to identify several signicant scaffolds, most of them

were presented in the datasets of only a few targets. The most

probable reason behind this was the high diversity of

compounds in the DEEPScreen training datasets. SMILES

representations of signicant scaffolds and signicant gener-

alized scaffolds are given together with their respective p-values

in tabular format, in the repository of DEEPScreen.

As a specic prediction example, ESI Fig. S3† displays the

structural representation of Tretinoin–RXRBeta interaction, an

actual approved medication, which was correctly identied by

DEEPScreen during the performance tests. None of the

conventional classiers were able to predict this interaction.

Tretinoin (all-trans-retinoic acid) is an anti-cancer drug used for

the treatment of acute promyelocytic leukaemia (APL), among

other uses. Tretinoin binds retinoic acid receptor (RAR) family

proteins (agonist) to regulate multiple biological processes.47,48

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 2531–2557 | 2537
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2.4.2 Performance evaluation and comparison of

similarity-based split datasets. We compared the results of

DEEPScreen with multiple state-of-the-art methods and highly

novel DL-based DTI prediction approaches (please see the ESI,

Section 1.3,† for more information about these methods) by

employing four non-random split datasets (i.e., representative

targets benchmark, temporal/time split dataset, MUV and DUD-

E).

2.4.2.1 Comparison with the state-of-the-art using our scaffold

split dataset. In order to test DEEPScreen free from chemical

and negative selection biases and to identify its potential to

predict completely novel interacting drug candidate

compounds for the intended target proteins, we carefully con-

structed target specic active/inactive compound datasets with

a structural train-test split and collectively named it the repre-

sentative target benchmark dataset (please see the Methods

section for more information on this dataset). The newly con-

structed representative target benchmark dataset was used to

train and test DEEPScreen along with the same state-of-the-art

approaches used in virtual screening (i.e., LR, RF and SVM

with ngerprint-based features). Fig. 4a displays the perfor-

mance results (MCC) on different representative targets. As

observed, on average, DEEPScreen was the best performer with

amedianMCC of 0.71, whereas the best state-of-the-art method,

LR, scored a median MCC of 0.6. RF performed similarly to LR

on average and on most of the targets individually, and SVM

could not manage to learn from the challenging datasets of 4

targets, where it scored MCC ¼ 0. Out of the 17 representative

targets, DEEPScreen was the best performer for 13 of them,

where the combined performance of the state-of-the-art

methods managed to beat DEEPScreen on 4 targets. Consid-

ering the target protein families, DEEPScreen was the best

performer for 71% of the enzymes, 100% of GPCRs and ion

channels, and 50% of the nuclear receptors and 'others' fami-

lies. The results indicate the effectiveness of the proposed

approach in terms of producing interacting compound predic-

tions with completely different scaffolds compared to the scaf-

folds present in the training datasets. Chemical and negative

bias eliminated representative target benchmark datasets are

shared in the repository of DEEPScreen.

To benchmark DEEPScreen on an additional structural train-

test split dataset and to compare it with the state-of-the-art, we

employed the Maximum Unbiased Validation (MUV) dataset.

Since MUV is a standard reference dataset that is frequently

used to test virtual screening methods, our results are also

comparable with other studies that employed the MUV

Fig. 4 Predictive performance evaluation and comparison of DEEPScreen against the state-of-the-art DTI prediction approaches, on scaffold-

split benchmarks: (a) bar plots of MCC values on representative targets dataset; (b) bar plots of MCC values on the MUV dataset.
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benchmark. We trained DEEPScreen prediction models for 17

MUV targets using the given training split and calculated

performance on the test split. We repeated the procedure using

the conventional classiers LR and RF that use ngerprint

feature vectors. We le SVM out of this analysis based on its

signicantly inferior performance in the previous tests. The

MUV performance results are shown in Fig. 4b with MCC bar

plots for DEEPScreen, LR and RF. As observed from this gure,

DEEPScreen had a higher performance on 15 out 17 targets,

DEEPScreen and RF had the same performance on 1 target and

there was a performance draw on the remaining target. Out of

the 15 targets that DEEPScreen performed better on, the

performance difference was highly pronounced on 14 of them.

The mean MCC for DEEPScreen, LR and RF was 0.81, 0.43 and

0.63, respectively, indicating a clear performance difference on

a bias free benchmark dataset.

2.4.2.2 Comparison with novel DL-based DTI prediction

methods using multiple benchmarks. For the DL-based DTI

prediction method comparison analysis, we employed three

benchmarks: temporal split, MUV and DUD-E (please refer to

the Methods section for more information on these benchmark

sets). We re-trained and tested DEEPScreen using the exact

same experimental settings and evaluation metrics that were

described in the respective articles.11,18–20,49 Two of these data-

sets (i.e., MUV and DUD-E) are frequently employed in DTI

prediction studies and the performance results of DEEPScreen

on these datasets will also be comparable with future studies,

where the same benchmark sets (together with the same train/

test methodology) are employed. The results of this analysis

reect both the benets of using 2-D images of compounds as

the input and the constructed DCNN-based architecture. It is

important to mention that in each of these benchmark tests,

DEEPScreen was trained with only the training portion of the

corresponding benchmark dataset (i.e., MUV, DUD-E or

ChEMBL temporal split set); in other words, our fundamental

training dataset (Fig. 2) was not used at all. As a result, the

number of training instances was signicantly lower, which

resulted in lower performances compared to what could have

been achieved by using the regular predictive models of

DEEPScreen.

Table 1 shows the results of DEEPScreen along with the

performances reported in the respective articles (including both

novel DL-based methods and the state-of-the-art approaches).

As shown, DEEPScreen performed signicantly better compared

to all methods on the ChEMBL temporal split dataset. Lenselink

et al. employed Morgan ngerprints (i.e., ECFPs34) at the input

level as the compound feature, which currently is the most

widely used (state-of-the-art) ligand feature type for DTI

prediction. On their temporal split test dataset, DEEPScreen

performed 36% better compared to the best model in the study

by Lenselink et al. (i.e., multi-task DNN PCM – proteochemo-

metics, also a deep learning based classier), indicating the

effectiveness of employing 2-D image-based representations as

input features.

DEEPScreen was the best performer on the MUV dataset

(Table 1), by a small margin, compared to the graph convolu-

tional neural network (GCNN) architecture proposed by Kearnes

et al.11 It is interesting to compare DEEPScreen with GCNN

models since both methods directly utilize the ligand atoms

and their bonding information at the input level, with different

technical featurization strategies. Nevertheless, the classica-

tion performance of both methods on the MUV dataset was

extremely high and more challenging benchmark datasets are

required to analyse their differences comprehensively. The

performance difference between DEEPScreen (or GCNN) and

most of the DL-based methods with conventional features such

as the molecular ngerprints (as employed in Ramsundar

et al.49) indicate the improvement yielded by novel featurization

approaches. It is also important to note that the performance

results given for LR and RF on the MUV results section of Table

Table 1 The average predictive performance comparison between DEEPScreen and various novel DL-based and conventional DTI predictors

Dataset Reference Method/architecture Performance (metric)

ChEMBL
temporal-split dataset

DEEPScreen: DCNN with 2-D images 0.45 (MCC)

Lenselink et al.18 Feed-forward DNN PCM (best model) 0.33 (MCC)
Feed-forward DNN 0.30 (MCC)
SVM 0.29 (MCC)
LR 0.26 (MCC)
RF 0.26 (MCC)
Näıve Bayes 0.10 (MCC)

Maximum unbiased
validation (MUV) dataset

DEEPScreen: DCNN with 2-D images 0.88 (AUROC)

Kearnes et al.11 Graph convolution NNs (W2N2) 0.85 (AUROC)

Ramsundar et al.49 Pyramidal multitask neural net (PMTNN) 0.84 (AUROC)
Multitask neural net (MTNN) 0.80 (AUROC)
Single-task neural net (STNN) 0.73 (AUROC)
RF 0.77 (AUROC)
LR 0.75 (AUROC)

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 2531–2557 | 2539
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1 were calculated by Ramsundar et al.; however, LR and RFMUV

benchmark results that we provided in Fig. 4b were calculated

by us.

We also tested DEEPScreen on the DUD-E dataset and ob-

tained a mean performance of 0.85 area under receiver oper-

ating characteristic curve (AUROC). DTI prediction methods

utilizing 3-D structural information such as AtomNet19 and

those reported by Gonczarek et al.20 and Ragoza et al.28 also

employed this dataset and achieved similar predictive perfor-

mances. However, their results are not directly comparable with

DEEPScreen since these methods utilize both target and ligand

information at the input level and reserved some of the targets

(along with their ligand information) for the test split during

the performance analysis. Also, structure-based methods are

usually benchmarked by their success in ranking several dock-

ing poses and/or success in minimizing the atomic distances

from native binding poses, instead of providing binary predic-

tions as active/inactive. It is important to note that the methods

employing 3-D structural features of the target proteins may

provide better representations to model DTIs at the molecular

level; however, they are highly computationally intensive. Also,

3-D structural information (especially the target–ligand

complexes) is only available for a small portion of the DTI space;

as a result, their coverage is comparably low and they generally

are not suitable for large-scale DTI prediction. It is also

important to note that the DUD-E benchmark dataset is re-

ported to suffer from negative selection bias problem,43 and

thus, the results based on this dataset may not be conclusive.

Next, we demonstrated the predictive potential of DEEP-

Screen by two case studies through in vitro experimentation and

molecular docking case studies.

2.5 In vitro validation of JAK proteins as DEEPScreen

predicted cladribine targets

Cladribine (2-chlorodeoxyadenosine (2-CDA)) is a well-known

purine nucleoside analog which is approved as an anti-

neoplastic agent in some of forms of lymphoma, leukemia

and immunosuppressive drug in multiple sclerosis.50,51 In this

analysis, we predicted a set of protein targets for cladribine with

the DEEPScreen system, as a case study. JAK1, JAK2 and JAK3

were on the prediction list (Table S4†), none of which were

previously reported to be the target of cladribine, to the best of

our knowledge albeit there are studies indicating the involve-

ment STAT protein phosphorylation with cladribine treatment

in multiple myeloma cells.52,53 Since JAK/STAT signaling was

involved in both lymphoblastic diseases and immune response

and since it has been previously reported that it might be

involved in cladribine action, we pursued to validate cladribine

and JAK/STAT DEEPScreen prediction in vitro.

The Janus kinase/signaling transducers and activators of the

transcription (JAK/STAT) pathway, activated by cytokines and

growth factors, play important roles in the immune system, cell

survival, cell proliferation and cell death, and tumor develop-

ment.54 The signal transducer and activator of transcription 3

(STAT3) is one of the downstream effectors of JAK proteins.

Upon JAK stimulation, STAT3 is phosphorylated and acts as the

transcription activator. Initially cytotoxic activities of cladribine

were assessed on hepatocellular carcinoma cell lines, Huh7,

HepG2, and Mahlavu, which were reported to have adequate

JAK signaling.55 IC50 values of cladribine on HCC cells (3 mM, 0.1

mM, and 0.4 mM for Huh7, HepG2, and Mahlavu cells, respec-

tively) demonstrated that cladribine displays cytotoxic bioac-

tivities on these cells (Table S3†). We then tested the effect of

cladribine on the phosphorylation of the downstream effector

protein STAT3, in order to validate our interaction prediction.

Our data with cladribine treated HCC cells clearly demonstrated

an alteration in phosphorylation of the STAT3 complex associ-

ated signal in ow cytometry (14.5%, 52%, and 17% in Huh7,

Mahlavu and HepG2, respectively), when compared to DMSO

controls (Fig. 5c). The changes of protein levels of STAT3 were

also controlled with protein electrophoresis (Fig. 5f). It is a well-

known fact for immune cells that the activation of STAT3

induces the expression of proapoptotic genes such as caspase

and induces apoptosis.56 Also, there are studies stating that

activation of JAK/STAT3 signaling through cytokines induce

programmed cell death.57 We also demonstrated that cladribine

treatment leads to apoptotic cell death with G1/S phase cell

cycle arrest (Fig. 5d and e) and nally, a direct STAT3 phos-

phorylation at tyrosine 705 upon cladribine treatment. DEEP-

Screen predictions for cladribine identied JAK proteins as

candidate targets of this well-known drug, and our experimental

data validated that cladribine acts on JAK/STAT3 signaling and

induces apoptosis in HCC cells.

2.6 DEEPScreen predicts new small molecules potentially

acting on renin protein

To further indicate that DEEPScreen is able to identify new

potential inhibitors for the modelled target proteins, we con-

ducted a molecular docking-based case study on human renin

protein. Renin is an enzyme that generates angiotensin I from

angiotensinogen in the plasma, as a part of the renin–angio-

tensin–aldosterone hormonal system (RAAS).58 Renin is tar-

geted using small molecule inhibitors, with the aim of

regulating arterial blood pressure (e.g., Aliskiren, an approved

drug licensed to treat hypertension).59,60 Studies suggest the

requirement of novel renin inhibitors due to reported cases of

hyperkalaemia and acute kidney injury in both mono and

combination therapies of the approved/investigational renin

and other RAAS system members' inhibitors.61 In order to

propose new potential renin inhibitors, we run the DEEPScreen

human renin protein model on nearly 10 000 approved/

investigational small molecule drugs recorded in the Drug-

Bank database, 795 of which have been predicted as interacting.

For docking, we randomly selected drugs from this prediction

set as cortivazol (glucocorticoid, investigational drug), miso-

prostol (prostaglandin, approved drug), lasofoxifene (estrogen

receptor modulator, approved drug) and sulprostone (prosta-

glandin, investigational drug). As far as we are aware, the pre-

dicted drug molecules have never been screened against renin

via in silico, in vitro or in vivo assays. We also docked two

molecules with known crystal complex structures with renin,

which were aliskiren and remikiren, as reference for the

2540 | Chem. Sci., 2020, 11, 2531–2557 This journal is © The Royal Society of Chemistry 2020
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Fig. 5 JAK downstream effector alteration in the presence of cladribine. (a) Live cell images for cladribine treated cells before (0H) and after 72

hours of treatment (72H). (b) Flow cytometry histogram of the phosphorylated STAT3 protein complex in Mahlavu, Huh7 and HepG2 cells. (c)

STAT3 protein complex levels in Mahlavu, Huh7 and HepG2 cells detected and assessed with Phospho-Tyr705 antibodies. (d) Cell cycle analysis:

(e) apoptotic cells characterized by annexin V assay. (f) Changes in protein expression levels of STAT3 related to cladribine treatment. Bar graphs

represent normalized STAT3 and phospho-STAT3 compared to calnexin. DMSO was used as the vehicle control.

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 2531–2557 | 2541
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Fig. 6 A case study for the evaluation of DEEPScreen predictions. (a) 3-D structure of the human renin protein (obtained from PDB id: 2REN), together

with the 2-D representations of selected active (connected by green arrows) and inactive (connected by red arrows) ligand predictions in the predictive

performance tests (the true experimental screening assay activities – IC50 – are shown under the corresponding images). Also, 2-D images of selected

truly novel predicted inhibitors of renin (i.e., cortivazol, lasofoxifene and sulprostone) are displayed (connected by blue arrows) together with the estimated

docking Kd values. (b) Renin–aliskiren crystal structure (PDB id: 2V0Z, aliskiren is displayed in red color) and the best poses in the automated molecular

docking of DEEPScreen predicted inhibitors of renin: cortivazol (blue), lasofoxifene (green) and sulprostone (violet), to the structurally knownbinding site of

renin (gold color), displaying hydrogen bonds with light blue lines. The docking process produced sufficiently low binding free energies for the novel

inhibitors, around the levels of the structurally characterized ligands of renin, aliskiren and remikiren, indicating high potency.

2542 | Chem. Sci., 2020, 11, 2531–2557 This journal is © The Royal Society of Chemistry 2020
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binding energy comparison with the predicted molecule dock-

ings. The binding free energies (DG) of aliskiren and remikiren

were estimated to be �13.9 and �10.5 kcal mol�1 (Kd z 0.06

and 19 nM) at their best pose, respectively. The DG values of

cortivazol, lasofoxifene, misoprostol and sulprostone were

estimated to be �11.4, �10.5, �9.1 and �12.1 kcal mol�1 (Kdz

4.1, 18.9, 202 and 1.3 nM), respectively. In Fig. 6, active/inactive

test dataset predictions and selected completely novel inhibitor

predictions (i.e., cortivazol, lasofoxifene and sulprostone) for

human renin protein are shown along with the best poses in

their docking with the renin binding site.

In order to further validate the selected new prediction

results, we randomly selected 4 drug molecules from the set of

inactive (i.e., non-interacting) predictions of the renin target

protein model and carried out molecular docking analysis using

the exact same procedure applied for the active predictions of

renin. The molecules randomly selected for docking were ace-

tylsalicylic acid – aspirin (cyclooxygenase inhibitor, approved

drug), calcifediol (vitamin D receptor agonist, approved drug),

diuprednate (glucocorticoid receptor agonist, approved drug)

and mivacurium (muscle-type nicotinic acetylcholine receptor

antagonist, approved drug). The docking binding free energies

(DG) were found to be �5.8, �9.5, �8.9 and �6.7 kcal mol�1 for

acetylsalicylic acid, calcifediol, diuprednate and mivacurium,

respectively. As indicated by the high binding free energy

measurements for acetylsalicylic acid, diuprednate and miva-

curium, the negative predictions are validated in three out of

four cases. For calcifediol, it was not possible to reach a clear

conclusion since the resulting binding free energy was close to

a generally accepted rough threshold to assume a potential

activity (i.e.,�10 kcal mol�1). The results of the docking analysis

indicate that DEEPScreen has the potential to predict novel

inhibitors for renin with predicted potencies around the levels

of its approved/investigational drug ligands (in 3 out of 4

selected cases). However, extensive further investigation is

required to verify these results and to indicate that these pre-

dicted small molecules can actually bind renin, since docking

analysis alone cannot reliably represent binding.

2.7 Large-scale production of the novel DTI predictions with

DEEPScreen

The DEEPScreen system was applied to more than a million

small molecule compound records in the ChEMBL database

(v24) for the large-scale production of novel DTI predictions. As

a result of this run, a total of 21 481 909 DTIs were produced

(i.e., active bio-interaction predictions) between 1 339 697

compounds and 532 targets. Out of these, 21 151 185 DTIs

between 1 308 543 compounds and 532 targets were completely

new data points, meaning that they are not recorded in

ChEMBL v24 (the prediction results are available in the repos-

itory of DEEPScreen). Apart from this, newly designed

compounds that are yet to be recorded in the ChEMBL database

can also be queried against themodelled targets using the stand

alone DEEPScreen models available in the same repository.

We carried out a statistical analysis in order to gain an

insight into the properties of the compounds predicted for the

members of the high level protein families in the large-scale DTI

prediction set. For this, an ontology based enrichment test was

conducted (i.e., drug/compound set enrichment) to observe the

common properties of the predicted compounds. In the

enrichment analysis, over-represented annotations (in terms of

ontology terms) are identied for a query set and ranked in

terms of statistical signicance.62 The enrichment tests was

done for ChEBI structure and role denitions,63 chemical

structure classications and ATC (Anatomical Therapeutic

Chemical Classication System) codes,64 together with experi-

mentally known target protein and protein family information

of the predicted compounds (source: ChEMBL, PubChem and

DrugBank), functions of these experimentally known target

protein and families (Gene Ontology65), and disease indications

of these experimentally known target protein and families

(MESH terms66 and Disease Ontology67). Multiple online tools

have been used for this analysis: CSgator,62 BiNChE68 and

DrugPattern.69

Since the compounds in the query sets have to be annotated

with the abovementioned ontology based property dening

terms, we were able to conduct this analysis on a subset of the

compounds in the DTI prediction set (i.e., nearly 30 000

ChEMBL compounds for ChEBI ontology and 10 000 small

molecule drugs from DrugBank v5.1.1 for the rest of the

ontology types, with a signicant amount of overlap between

these two). The overall prediction set used in the enrichment

analysis was composed of 377 250 predictions between these

31 928 annotated compounds and 531 target proteins. It was

not possible to carry out an individual enrichment analysis for

the predicted ligand set of each target protein due to a high

number of targets (i.e., 704). Instead, we analyzed the ligand set

predicted for each target protein family (i.e., enzymes, GPCRs,

nuclear receptors, ion channels and others) together with an

individual protein case study considering the renin protein. For

each protein family, the most frequently predicted 100

compounds, each of which has been predicted as active for

more than 10% of the individual members of the respective

target family, are selected and given as input to the enrichment

analysis (i.e., a compound should be annotated to at least 38

enzymes in order to be included in the enrichment analysis set

of the enzymes, since there are 374 enzymes in total). The

reason behind not using all predicted compounds was that

there were a high number of compounds predicted for only 1 or

2 members of a target family, which add noise to the analysis

when included. ChEMBL ids of the compounds predicted for

each target family are given in the repository of the study

together with their prediction frequencies.

The results of the enrichment analysis are shown in Table 2,

where rows correspond to target protein families and columns

correspond to different ontology types. For each protein family –

ontology type combination, selected examples from the most

enriched terms are given considering p-values, which are

calculated as described in the respective papers of CSgator,

BiNChE and DrugPattern tools. In the cases of numerous

enriched terms existing, representative terms were selected

from a group of closely related enriched ontological terms, as

shown in Table 2. The rst observation from Table 2 is the high

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 2531–2557 | 2543
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correspondence between the predicted and experimentally

identied known target families, which indicates that there is

a small amount of cross protein family target transfer in

DEEPScreen predictions. Compared to the rest of the target

families, the enriched experimentally identied known targets

of the predicted drug set of the “others” family have high vari-

ance, since the proteins in this family are coming frommultiple

protein families of small sizes. The structure classes are mostly

distinct for the compound sets predicted for different target

families, which can be observed from the columns entitled

“ChEBI structure classication” and “Chemical structure clas-

sication”. Being a member of the enzyme family (i.e., an

aspartic protease), renin's predicted interacting compounds'

enriched properties are similar to that of enzymes'. One inter-

esting observation here is that the enriched experimentally

identied known target families for the predicted drug set of

renin include sub-families of kinases, which indicates a transfer

of kinase inhibitors to proteases that can be utilized for drug

repurposing. Disease indication columns show the enriched

disease records that are associated with the experimentally

identied known targets of the predicted drug sets. Considering

renin's drug set predictions' enriched diseases, two of them are

“cardiovascular diseases” and “vascular diseases”, two generic

disease groups, where one of the members is hypertension. This

nding indirectly validates the predictions since renin is tar-

geted to treat hypertension.70 The other enriched disease groups

Table 3 Literature verified selected DTI predictions of DEEPScreen

Ligand (drug/compound) Target protein
DEEPScreen
prediction

Experimental
bioactivity Reference

Fedratinib Bromodomain-containing protein 4 – BRD4
(O60885)

Active IC50: 290 nM 71

Hydralazine Myeloperoxidase – MPO (P05164) Active IC50: 900 nM 72

Varlitinib Receptor protein-tyrosine kinase erbB-2
(P04626)

Active IC50: 2 nM 73

Armodanil D(2) dopamine receptor – DRD2 (P14416) Active IC50: 2.1 nM 74
D(3) dopamine receptor – DRD3 (P35462) Inactive IC50: 39 000 nM

Copanlisib Phosphatidylinositol 4,5-bisphosphate 3-
kinase
catalytic subunit beta isoform – PIK3CB
(P42338)

Active IC50: 3.7 nM 75

Dacomitinib Tyrosine-protein kinase Lck (P06239) Active IC50: 94 nM 76

Encorafenib Serine/threonine-protein kinase B-raf (P15056) Active IC50: 0.3 nM 77

Prednisolone Progesterone receptor – PGR (P06401) Active IC50: 2080 nM 78

Apratastat Stromelysin-1/matrix metalloproteinase 3
(P08254)

Active IC50: 10 nM 79 and 80

Collagenase/matrix metalloproteinase 9
(P14780)

Active IC50: 82 nM

CEP-37440 (CHEMBL3951811) ALK tyrosine kinase receptor (Q9UM73) Active IC50: 3.1 nM 81
Insulin receptor (P06213) Active IC50: 65 nM
Focal adhesion kinase 1 – PTK2 (Q05397) Active IC50: 2 nM

Ketotifen Histamine H4 receptor – HRH4 (Q9H3N8) Inactive IC50: 21 000 nM 82 and 83

INH14 (N-(4-ethyl phenyl)-N0-phenyl urea) Inhibitor of nuclear factor kappa-B kinase
subunit
beta – IKBKB (O14920)

Active IC50: 3590 nM 84

2-Allyl-7-chloro-1H-indole-3-carbonitrile Dual specicity protein kinase CLK4 (Q9HAZ1) Active IC50: 533 nM 85

7-Bromo-2-phenyl-1H-indole-3-carbonitrile Dual-specicity tyrosine-phosphorylation
regulated kinase 1A – DYRK1A (Q13627)

Active IC50: 25 nM

7-Iodo-2-(3-methoxyphenyl)-1H-indole-3-
carbonitrile

Dual-specicity tyrosine-phosphorylation
regulated kinase 2 – DYRK2 (Q92630)

Inactive IC50 > 10 000 nM

2546 | Chem. Sci., 2020, 11, 2531–2557 This journal is © The Royal Society of Chemistry 2020
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indicate that some of the drugs currently used as medication for

cancers, digestive system diseases and urinary system diseases

may have a potential to be repurposed to target renin.

2.8 Literature based validation of novel DTI predictions

towards drug repurposing

With the aim of evaluating novel predictions, we conducted

a literature-based search to nd evidence on selected predicted

DTIs. In this analysis, we focused on the recently discovered

human target protein interactions of already approved (or

investigational) drugs to show that DEEPScreen can be utilized

towards drug repurposing. Table 3 displays the literature-

validated DTI predictions together with the source publication

for each interaction. In Table 3, a few inactive (i.e., non-

interacting) predictions are given along with many active

ones. The reason behind the imbalance between active and

inactive cases is that the inactive/negative results are usually not

reported in the literature. We also included (at the end of Table

3) 4 correct prediction cases, where completely new compounds

are tested against selected targets. All of the bio-interactions

shown in Table 3 are released (either in ChEMBL v24 or in the

literature) at least 6 months aer the training of DEEPScreen. As

a result, they were completely unknown and novel according to

the DEEPScreen models. Nevertheless, they were correctly

predicted.

3. Discussion

In this study, we proposed DEEPScreen, a novel deep learning

based drug/compound-target prediction system. The major

contributions of DEEPScreen to the literature can be listed as

follows:

(i) the idea of using compound images for predicting the

interactions with target proteins and employing established

convolutional neural network architectures that showed high

performance in image recognition/analysis tasks;

(ii) constructing (and open access sharing) a reliable exper-

imental DTI dataset to be used as training/test sets, both in this

study and in other future studies. The existing reference DTI

datasets are usually small-scale; thus, there is a requirement for

high quality large-scale datasets especially for deep learning

based model training;

(iii) generating highly optimized, high performance predic-

tive models for 704 different target proteins, each of which was

independently trained and optimized with rigorous tests. This

approach gave way to a signicant performance improvement

over the state-of-the-art;

(iv) conducting a high number of experiments and data

analysis processes in terms of benchmarks/performance tests

and comparisons with the state of the art to understand the

model/system behavior under different conditions.

(v) publishing the method as an open access tool. DEEP-

Screen is practical to use since it is composed of independent

modules (i.e., each target protein model), where only the model

of the target of interest should be downloaded and run to

produce predictions;

(vi) executing a systematic large-scale DTI prediction run

between 704 targets and 1.3 million drug candidate compounds

recorded in the ChEMBL database. Selected examples from the

novel predictions have been tested and validated by molecular

docking analysis and in vitro experiments on cancer cells for

potential future drug discovery and repurposing applications.

The main reason why DEEPScreen works better compared to

the state-of-the-art DTI prediction approach is that molecular

descriptors such as ngerprints make assumptions regarding

what parts in a molecule are important for target binding and

generate feature vectors for storing the information of the

presence or absence of these groups (i.e., feature engineering);

thus, the information that is deemed unimportant for binding

is eliminated. As such, the ML predictor is provided only with

a limited piece of information to work with. Besides, it is not

possible to generalize these assumptions to the whole DTI

space, which is indicated by the limited predictive performance

obtained with the conventional approach. By employing 2-D

structures generated from SMILES, the system does not make

any prior assumptions and just provides a vector displaying the

entire molecule with a representation similar to its state in

nature, to let the DCNN identify the parts necessary for the

interaction with the corresponding target protein. Provided

with a sufficient number and structural variety of active data

points, DEEPScreen was able to learn the relevant interactive

properties and provided accurate DTI predictions. Based on the

performance results obtained in this study, it is possible to state

that the performance improvement of DEEPScreen comes from

both using image features and a deep learning approach that is

suitable to extract information from images. It is possible that

adding the 3-D representations of molecules (i.e., conforma-

tional information) to the system would provide a more accu-

rate modelling; however, DCNNs that employ 3-D convolutions

are computationally highly intensive, which prevents practical

applications at a large scale.

In DEEPScreen, we modelled the interactive properties of

each target protein independently in a separate DCNN. This

allowed the learning of target specic binding properties during

the training process (i.e., the optimization of hyper-parameters

and the regular model parameters). In most of the ML method

development studies, hyper-parameters are arbitrarily pre-

selected without further optimization (especially when there

are a high number of models as in the case of DEEPScreen), due

to extremely high computational burden. However, hyper-

parameters are an important part of the model architecture

and signicantly contribute to the predictive performance. In

this study, we evaluated hundreds to thousands of models for

each target, resulting in more than 100 000 model training and

evaluation jobs in total (considering the hyper-parameter value

options in Table S1† and their combinations with each other).

As a result, a strong computing cluster and extensive levels of

parallelization were required to practically run the computa-

tional jobs. Whereas, themain advantage of this approach is the

elevated predictive performance, which was indicated by the

results of the performance tests.

An important concern in ML method development is the

problem of overtting. We employed the neuron drop-out

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 2531–2557 | 2547
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technique, a widely accepted approach for DCNN training, in

order to prevent this issue. The results of the independent tests

and benchmarking experiments conrmed that overtting was

not a problem for DEEPScreen. Further discussion about the

DEEPScreen system has been provided in the ESI, Section 2.†

One direction in which DEEPScreen can be improved would

be the incorporation of target proteins with only a few known

small molecule interactions and the ones without any (i.e.,

target discovery). DEEPScreen only takes the features of

compounds at the input level and treats the target proteins as

labels, which allowed ligand predictions for only 704 highly-

studied proteins (i.e., the major limitation of DEEPScreen).

Within a multi-task modelling approach, targets with only a few

known interactions can be incorporated together with the well-

studied targets. In this scheme, data augmentation techniques

can be incorporated such as generative adversarial networks to

balance the training datasets. To be able to provide predictions

for proteins without known interactions, target descriptors may

be incorporated at the input level along with compound

features, within a chemogenomic modelling approach. Image

or graph based structural representations of proteins can be

used for this purpose.

4. Methods
4.1 Generation of the fundamental training dataset

The ChEMBL database (v23) was employed to create the training

dataset of DEEPScreen. There are 14 675 320 data points (i.e.,

DTIs) in ChEMBL v23. We applied several ltering and pre-

processing steps to these data to create a reliable training

dataset. First of all, data points were ltered with respect to

“target type” (i.e., single protein), “taxonomy” (i.e., human and

selected model organisms), “assay type” (i.e., binding and

functional assays) and “standard type” (i.e., IC50, EC50, AC50, Ki,

Kd and Potency) attributes, which reduced the set to 3 919 275

data points. We observed that there were duplicate measure-

ments inside this dataset that are coming from different

bioassays (i.e., 879 848 of the bioactivity data points belonged to

374 024 unique drug–target pairs). To handle these cases, we

identied the median bioactivity value for each pair and

assigned this value as the sole bioactivity measurement. At the

end of this application, 3 413 451 bioactivity measurements

were le. This dataset contained data points from both binding

and functional assays. In order to further eliminate a potential

ambiguity considering the physical binding of the compounds

to their targets, we discarded the functional assays and kept the

binding assays with an additional ltering on “assay type”.

Finally, we removed the bioactivity measurements without

a pChEMBL value, which is used to obtain comparable

measures of half-maximal response on a negative logarithmic

scale in ChEMBL. The presence of a pChEMBL value for a data

point indicates that the corresponding record has been curated

and, thus, reliable. Aer the abovementioned processing steps,

the number of bioactivity points was 769 935.

Subsequently, we constructed positive (active) and negative

(inactive) training datasets as follows: for each target,

compounds with bioactivity values #10 mM were selected as

positive training samples and compounds with bioactivity

values $20 mM were selected as negative samples. In DEEP-

Screen, only the target proteins with at least 100 active ligands

were modelled, in order to not lose the statistical power. This

application provided models for 704 target proteins from

multiple highly studied organisms. These organisms, together

with the distribution of target proteins for each organism are as

follows: Homo sapiens (human): 523, Rattus norvegicus (rat): 88,

Mus musculus (mouse): 34, Bos taurus (bovine): 22, Cavia por-

cellus (guinea pig): 13, Sus scrofa (pig): 9, Oryctolagus cuniculus

(rabbit): 5, Canis familiaris (dog): 3, Equus caballus (horse): 2,

Ovis aries (sheep): 2, Cricetulus griseus (Chinese hamster): 1,

Mesocricetus auratus (golden hamster): 1 and Macaca mulatta

(rhesus macaque): 1. The UniProt accessions, encoding gene

names, ChEMBL ids and taxonomic information of these

proteins are given in the repository of DEEPScreen. Each target's

training set contained a mixture of activity measurements with

roughly comparable standard types (e.g., IC50, EC50, AC50, Ki, Kd

and potency).

The selection procedure explained above generated positive

and negative training datasets with varying sizes for each target.

In order to balance the positive and negative datasets, we

selected negative samples equal to the number of positive

instances. However, for many targets, the number of negative

points was lower than the positives. In these cases, we applied

a target similarity-based inactive dataset enrichment method to

populate the negative training sets (instead of randomly

selecting compounds), using the idea that similar targets have

similar actives and inactives. For this, we rst calculated pair-

wise similarities between all target proteins within a BLAST

search. For each target having an insufficient number of inac-

tive compounds, we sorted all remaining target proteins with

descending sequence similarity. Then, starting from the top of

the list, we populated the inactive dataset of the corresponding

target using the known inactive compounds of similar targets,

until the active and inactive datasets are balanced. We applied

20% sequence similarity threshold, meaning that we did not

consider the inactives of targets, whose sequence similarity to

the query protein is less than 20%. The nalized training

dataset for 704 target proteins contained 412 347 active data

points (#10 mM) and 377 090 inactive data points ($20 mM).

Before the negative dataset enrichment procedure, the total

number of inactive instances for 704 targets was only 35 567.

Both the pre-processed ChEMBL dataset (769 935 data points)

and the nalized active and inactive training datasets for 704

targets are provided in the repository of DEEPScreen. We believe

that the resulting bioactivity dataset is reliable and it can be

used as standard training/test sets in future DTI prediction

studies. The training data ltering and pre-processing opera-

tions are shown in Fig. 2.

4.2 Representation of input samples and the generation of

feature vectors

In the DEEPScreen system, each compound is represented by

a 200-by-200 pixel 2-D image displaying the molecular structure

(i.e., skeletal formula). Although 2-D compound images are

2548 | Chem. Sci., 2020, 11, 2531–2557 This journal is © The Royal Society of Chemistry 2020
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readily available in different chemical and bioactivity databases,

there is no standardization in terms of the representation of

atoms/bonds, functional groups and stereochemistry. Due to

this reason, we employed SMILES strings of compounds to

generate the 2-D structural images, since SMILES is a standard

representation that can be found in open access bioactivity data

repositories, which contain the whole information required to

generate the 2-D images. We employed the RDkit tool Python

package (v2016.09.4) for image generation.86 A few examples

from the generated images are shown in Fig. 1.

2-D images generated by RDkit are reported to have a stan-

dard and unique representation, which is achieved by applying

a canonical orientation in all cases.87 There are special cases,

which are not handled well, such as stereochemistry. However,

this problem is not related to the generation of 2-D images by

RDkit, but to the SMILES representations being non-

stereospecic. In this study, we omitted stereochemistry since

the cases correspond to an insignicant portion of the whole

ChEMBL database.88

We carried out a small scale analysis to determine the input

image size of the DEEPScreen system. We selected 100-by-100,

200-by-200 and 400-by-400 pixel image sizes for the test (sizes

smaller than 100-by-100 were inadequate to drawmolecules and

sizes larger than 400-by-400 were too large to train the system

with due to increased complexity). We generated the training

and test compound images with the selected sizes for 3 target

proteins: muscarinic acetylcholine receptor M5 (CHRM5) –

CHEMBL2035, carbonic anhydrase VB (CA5B) – CHEMBL3969

and renin – CHEMBL286. Aer that, we trained 9 models (3

targets for 3 different images sizes) and optimized the hyper-

parameters with grid-search. The nalized models were sub-

jected to performance analysis by querying the test dataset

compounds. We also recorded the average computational

parameters in terms of run time andmemory (the same amount

of CPU power has been used for each model train/test run). The

test results are given in ESI Table S2.† As shown in Table S2,†

the average predictive performance (in terms of the MCC)

signicantly increased by 17% when the input image size is

changed from 100-by-100 to 200-by-200. A similar performance

increase was not observed when the input image size is changed

from 200-by-200 to 400-by-400. Considering the run times, there

was a signicant increase both between 100-by-100 and 200-by-

200, and 200-by-200 and 400-by-400. The run times for DCNN

models were acceptable; however, it was not possible to train

the Inception model with 400-by-400 due to extremely long run

times. Considering the performance results along with the

computational requirements, 400-by-400 was found to be non-

feasible. Finally, for memory requirements, again the results

were reasonable for DCNN models and for Inception models

when the image sizes are either 100-by-100 or 200-by-200. These

results indicated that the best performances were achieved with

200-by-200 image sizes, with reasonable computational

requirements. As a result, 200-by-200 image size was chosen as

default for the DEEPScreen system. Moreover, we observed in

several cases that the size 100-by-100 was not sufficient to

express large compounds properly. The whole image size anal-

ysis results are given in the repository of the study.

4.3 Neural network architecture of DEEPScreen

Deep convolutional neural networks are a specialized group of

articial neural networks consisting of alternating, convolu-

tion and pooling layers, which extracts features automati-

cally.89,90 DCNNs have been dominating the image processing

area in the last few years, achieving signicantly higher

performances compared to the state-of-the-art of the

time.89,91,92 DCNNs run a small window over the input feature

vector at both training and test phases as a feature detector

and learn various features from the input regardless of their

absolute position within the input feature vector. Convolution

layers compute the dot product between the entries of the lter

and the input, producing an activation map of that lter.

Suppose that the size of the layer, on which the convolution

operation is to be performed (layer #: l � 1) is NxN and the

following convolutional layer has layer # l. Then, the value of

the unit xij in the lth layer, xlij, is calculated by the convolution

operation (assuming no padding and stride of 1) using the

following equation:

xl
ij ¼

X

f�1

a¼0

X

f�1

b¼0

waby
l�1
ðiþaÞðjþbÞ (1)

In the equation above, f stands for lter size, w stands for fxf

lter and yl�1
ij stands for the value of the ith row and jth column in

the (l � 1)th layer. Subsequently, a non-linear function s such as

the rectied linear unit (ReLU) is applied to xlij:

ylij ¼ s(xlij) (2)

At the end of the convolution operation, the size of the lth

layer becomes (N � f + 1)x(N � f + 1). The parameters of the

networks are optimized during the backpropagation step, by

minimizing the following cross-entropy loss function:

L ðŷ; yÞ ¼ �
1

K

X

K

i

½yi log ŷi þ ð1� yiÞlogð1� ŷiÞ� (3)

In the equation above, ŷ stands for prediction score, y

stands for actual label and K stands for the number of exam-

ples in mini batches. Although the most standard form of

DCNNs employ 2-D convolutions, 1-D or 3-D convolutions are

possible.

Pooling layers combine the output of neuron clusters in one

layer into a single neuron in the subsequent layer (i.e., down-

sampling) with the aim of reducing the number of parameters

and the computational work and to prevent overtting. A max

pooling layer is commonly used in DCNNs and it works by

running a window sequentially and taking the maximum of the

region covered by the window, where each maximum value

becomes a unit in the next layer. One of the most popular and

widely used regularization techniques is dropout.93 This

method randomly deactivates some of the neurons in various

layers along with their connections at every epoch during the

training procedure. By this, the system prevents overtting;

thus, the constructed models are more generalized.

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 2531–2557 | 2549
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In this study, we considered the DTI prediction as a binary

classication problem, where the output can either be positive

(i.e., active, interacting or “1”) or negative (i.e., inactive, non-

interacting or “0”), referring to the relation between the query

compound and the modelled target protein. For this purpose,

an individual model was created for each target protein (i.e., the

single task approach). In terms of the employed DCNN archi-

tectures, we initially chose 3 options: Inception,91 AlexNET,92

and an in-house built DCNN architecture. The AlexNET archi-

tecture is a DCNN with stacked convolutional layers. It contains

5 convolutional and 3 fully connected layers. Inception is

a highly specialized DCNN architecture. In standard DCNNs,

lters with a uniform size are used in each level of convolutional

layers, whereas in Inception, multiple lters with different sizes

are combined in the same level (i.e., Inception modules), to be

able capture highly complex features. Various combinations of

Inception modules are designed to create extremely deep and

wide networks to achieve high predictive performance in prac-

tical training run times. Detailed information about the

Inception network can be found in Szegedy et al.91 Both AlexNET

and Inception displayed top performances in image classica-

tion tasks.91,92 For our in-house designed DCNN models, we

used a simpler architecture (compared to Inception), which is

composed of 5 convolutional + pooling and 1 fully connected

layer preceding the output layer. Each convolutional layer was

followed by a ReLU activation function and max pooling layers.

The last convolutional layer is attened and connected to a fully

connected layer, followed by the output layer. We used the

Somax activation function in the output layer. A generic

representation of the constructed DCNN models is given in

Fig. 1. TFLearn framework version 0.3.2, cairosvg 2.1.2, and

rdkit 2016.09.4 were employed for the construction of the

DEEPScreen system.94

4.4 System training and test procedures

For each target protein model, 80% of the training samples

(from both the positives and the negatives datasets) were

randomly selected as the training/validation dataset and the

remaining 20% was reserved for later use in the independent

performance test procedure. Also, 80% of the training/

validation dataset was employed for system training and 20%

of this dataset was used for validation, during which the hyper-

parameters of the models were optimized.

With the purpose of selecting the architecture(s) to be used

in DEEPScreen, we initially trained and tested models for

a small number of target proteins using a wide range of hyper-

parameters. At the end of these initial tests, we eliminated the

AlexNET architecture since its performance was inferior to the

performances of the other two architectures. Aer this point, we

continued our tests with Inception and our in-house DCNN

architecture. We created and trained one model for each hyper-

parameter selection, for each target, and for each architecture.

The list of the hyper-parameters and the value selections are

given in Table S1.† The models were run on the validation

datasets during training to obtain the predictive performance

(i.e., accuracy, precision, recall, F1-score and MCC), which

indicates the effectiveness of the pre-selected hyper-parameter

values. At the end of the validation procedure, the best per-

forming model (in terms of the MCC) was selected for each

target. At the end of this analysis, our in-house DCNN archi-

tecture was selected for 397 of the target proteins and the

Inception architecture was selected for the remaining 307 target

proteins (out of the total of 704 targets). As a result, the nalized

DEEPScreen system is composed of both Inception and in-

house designed DCNN architectures. Next, test performances

were calculated by running the nalized models on their cor-

responding independent test datasets, which have never been

used before this point (i.e., performances reported in the

Results section). All of the training, test and prediction runs

described in this study were carried out in parallel at the EMBL-

EBI large-scale CPU cluster.

In order to investigate the possible reasons behind the

performance differences between the Inception and the in-

house DCNN architectures in DEEPScreen, we conducted

a target protein family based comparison over our pre-trained

704 target protein models to observe if there is a performance

difference between the two architectures for a specic protein

family (i.e., for howmanymembers of a target protein family the

Inception model was the best performer and for how many of

them the in-house DCNN was the best). We found out that the

architectures performed nearly the same for nuclear receptors.

Considering the rest of the families, the DCNN architecture

performed better between 28% and 50%, compared to the

Inception models. We believe the only reason behind observing

this performance difference is that the Inception architecture is

signicantly more complex and computationally more

demanding compared to the in-house DCNN architecture, and

as a result, the hyper-parameter space that we were able to scan

during the grid search analysis was smaller for Inception. The

computational requirement difference between Inception and

the in-house DCNN is also given in ESI Table S2,† calculated for

three target proteins. A grid search with the same hyper-

parameter space size for Inception models would probably

result in predictive performances greater than or equal to the

performance of the DCNN models. However, a grid search of

this magnitude would require a very long time to nish even on

a strong computing resource. To test this idea, we analyzed the

Inception and in-house DCNN performances over 114 target

proteins, all of which were difficult to model, as pointed out by

the low predictive performances in our initial tests. For these

114 targets, we trained our predictive models and searched

large hyper-parameter spaces for both the Inception and in-

house DCNN models, and selected the best Inception and the

best in-house DCNN for each of the 114 targets by checking the

highest test performance in terms of the MCC measure. Aer

that, we compared the best Inception model with the best in-

house DCNN model, for each target (i.e., 114 comparisons in

total). We found that in-house DCNN models performed better

for 42 of the targets and the Inception model performed better

for 35 of them (the performance was exactly the same for the

remaining 37 targets). We also calculated the actual perfor-

mance differences between the best in-house DCNN and the

best Inception models for each target, and found that the

2550 | Chem. Sci., 2020, 11, 2531–2557 This journal is © The Royal Society of Chemistry 2020
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average performance difference was the same when we

compared two groups: (1) targets on which the DCNN per-

formed better and (2) targets on which Inception performed

better. These results indicated that there is no signicant

performance difference between Inception and the in-house

DCNN, when similar hyper-parameter spaces are searched

during the model optimization step. The results of the Incep-

tion vs. in-house DCNN performance analysis have been

provided in the repository of the study.

4.5 Benchmark datasets for the predictive performance

comparison

All of the four non-random split datasets used in the perfor-

mance analyses are constructed by considering scaffold/

structure/temporal train-test sample divisions; as a result,

they accurately simulate real-case prediction scenarios, where

the predictive systems are queried with completely new

compounds with different features (e.g., never-seen-before

scaffolds).

First of all, we aimed to generate our own bias free bench-

mark dataset using our fundamental ChEMBL training set. For

this, we rst focused on further eliminating the negative

selection bias, even though we previously showed that similarity

among negative samples was around the same level as the

similarity between negative (inactive) samples, in our funda-

mental datasets (please see the Results section), mainly due to

the fact that we only included compounds with real experi-

mental bioactivity measurements (coming from binding assays)

against the intended target. For further elimination of negative

selection bias, we identied the negative dataset compounds,

whose all activity data points (against all targets) in the ChEMBL

database are in the inactives range (i.e., $20 mM �C50) and

discarded them. The compounds which have at least one data

point in the actives range (for any target) were kept in the

negative datasets. Considering the rigorous ltering operations

applied to generate our source/fundamental bioactivity dataset

(explained in the Methods section in detail), we assumed that

even one active data point (i.e., #10 mM �C50) would be suffi-

cient to accept that the corresponding molecule does not

possess features that make it an all-inactive/invalid compound.

To eliminate chemical bias from our datasets, we applied the

Murcko scaffold46 detection and train-test split (based on the

detected scaffolds) module in the RDKit package. This way, for

each target, all compounds with a distinct scaffold either ended

up in the training set or in the test set; in other words, the

compounds with the same scaffold were not distributed to both

training and test. Following these rules, we carefully con-

structed train and test datasets for 17 representative targets

spanning the main target families of enzymes, GPCRs, ion

channels, nuclear receptors and others, with dataset sizes

ranging from 143 to 5229. The total number of data points in

the nalized dataset was 21 200. The targets were selected

mostly based on the representative drug targets list given in

another study.44 We selected 10 targets from the list given by

Mysinger et al. (many of the remaining targets listed in this

article were not among the 704 DEEPScreen targets, so they

could not be covered); we additionally included renin and JAK1

(since these two targets were also selected as use cases for

further validation) and 5 additional randomly selected targets

proteins (from different families), to reect the target protein

family distribution for 704 DEEPScreen targets. The gene names

of the selected 17 targets are MAPK14, JAK1, REN, DPP4,

LTA4H, CYP3A4, CAMK2D, ADORA2A, ADRB1, NPY2R, CXCR4,

KCNA5, GRIK1, ESR1, RARB, XIAP, and NET, summing into 7

enzymes (taking the distribution of the enzyme sub-families

into account as well), 4 GPCRs, 2 ion channels, 2 nuclear

receptors and 2 others. We named this set the representative

target benchmark dataset.

The second benchmark dataset we used in our study was

directly obtained from the study by Lenselink et al.18 In this

study, the authors created a high quality ChEMBL (v20) bioac-

tivity dataset that includes 314 767 bioactivity measurements

corresponding to target proteins with at least 30 bioactivity data

points. They used pChEMBL ¼ 6.5 (roughly 300 nM) bioactivity

value threshold to create active and inactive compound datasets

for each target. The authors evaluated their method with a test

dataset created by a temporal split, where for each target

protein, all of the bioactivity data points reported in the litera-

ture prior to 2013 were used in the training, and the newer data

points were gathered for the test dataset. This test dataset is

more challenging for ML classiers compared to any random-

split dataset.

The third dataset we used was Maximum Unbiased Valida-

tion (MUV), another widely-used benchmark set, composed of

active and inactive (decoy) compounds for 17 targets.95 The

MUV dataset was generated from the PubChem Bioassay data-

base. The active compounds in this dataset were selected to be

structurally different from each other. Therefore, it is a chal-

lenging benchmark dataset, which avoids the bias rooting from

highly similar compounds ending up in both training and test

splits (i.e., chemical bias). There are 17 targets in the MUV

dataset, together with 30 actives and 15 000 decoys for each

target.

The fourth benchmarking dataset employed in this study

was DUD-E, a well-known set for DTI prediction, which

includes curated active and inactive compounds for 102

targets. The active compounds for each target were selected by

rst clustering all active compounds based on the scaffold

similarity and selecting representative actives from each

cluster. The inactive compounds were selected to be similar to

the active compounds in terms of the physicochemical

descriptors, but dissimilar considering the 2-D ngerprints.44

The benchmark dataset consists of 102 targets, 22 886 actives

(an average of 224 actives per target) and 50 property-matched

decoys for each active, which were obtained from the ZINC

database.44 It is also important to note that the DUD-E

benchmark dataset is reported to suffer from negative selec-

tion bias problem; as a result, we did not conclude our results

on the performance on the DUD-E dataset. We just used the

DUD-E dataset to make a highly generic performance

comparison with the literature, since DUD-E is a widely used

benchmark dataset.

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 2531–2557 | 2551
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4.6 In vitro validation of JAK signalling as a new target for

cladribine

Cytotoxicity assays were performed on well differentiated Huh7

(2500) and HepG2 (3000) and poorly differentiated Mahlavu

(1000) primary liver cancer cells that were plated and cultured in

96-well cell culture plates in Dulbecco's modied Eagle medium

(DMEM) supplemented with 10% fetal bovine serum (Gibco,

Invitrogen), 1% non-essential amino acids (Gibco, Invitrogen)

and 100 units per ml penicillin/streptomycin (Gibco, Invi-

trogen) at 37 �C under 5% CO2 for 24 hours. Cells were then

treated with 2-chloro-20-deoxyadenosine (cladribine) (Santa

Cruz, # sc-202399) in DMSO (Sigma) in a concentration gradient

(40, 20, 10, 5, 2.5, 1.25, 0.625, and 0.3 mM in triplicate). At 72

hours, NCI-SRB assay was performed and IC50 values were

calculated (R2
$ 0.9) (Table S3†).93 JAK downstream effector

STAT3 associated cellular phosphorylation alteration was

assessed by ow cytometry. Huh7 (500.000), Mahlavu (250.000),

and HepG2 (750.000) cells were grown in 10 cm plates for 24

hours, and then Huh7 and Mahlavu cells were treated for 72

hours with 1 mM and HepG2 cells were treated with 3 mM cla-

dribine. Cells were then collected and stained with Alexa Fluor®

647 Anti-STAT3(p-Y607) (BD Biosciences, #557815) according to

the manufacturer's protocol and were analysed using an ACEA

Novocyte ow cytometer.

Huh7 (500.000), Mahlavu (250.000), and HepG2 (750.000)

cells were plated in 100 mm culture dishes for 24 hours. HepG2

and Mahlavu cells were then treated with 2 mM or 1 mM and

Huh7 cells were treated with 6 mM or 3 mM Huh7 cladribine for

48 or 72 hours. Aer 48 or 72 hours of incubation, cells were

xed with ice-cold 70% ethanol for 3 hours at �20 �C. Cell cycle

analysis was then carried out with a PI (propidium iodide)

Muse™ cell cycle kit (Millipore, MCH1000106) and apoptosis

was demonstrated with annexin V assay (Roche, #11 858 777

001) by ow cytometry. Cellular STAT3 and p-STAT3 protein

levels were examined on western blot using STAT3 (CST #9139S)

and phospho-STAT3 (CST, #9145S) antibodies. Calnexin (CST,

#2679) was used for equal loading control. Proteins were visu-

alized using an Odyssey CLx-LICOR imaging system. DMSO was

used as the vehicle control in all experiments.

4.7 Literature based validation of novel DTI predictions

DEEPScreen produced 21.2 million completely novel DTI

predictions. As a result, it was not possible to manually check

the literature if a research group has already studied these

specic drug/compound-target interactions for validation.

Instead we assumed a more directed approach, where the vali-

dation cases were determined from a newer version of ChEMBL

and from the literature rst, and then, DEEPScreen's novel

prediction results were searched to observe if these interactions

were identied by DEEPScreen as well. The selected cases are

composed of two types of data points. The rst one concerns the

already approved drugs (or the ones in the experimental

development phases), where the given target interactions are

novel (i.e., not part of the already approved or experimental

treatment for these drugs) and thus, serve the purposes of drug

repositioning. For this, we found the cases where the

corresponding drug has bioactivity data points for new targets

in ChEMBL v24, which were not part of v23 (ChEMBL v23 was

used for the training of DEEPScreen). As such, these cases

correspond to the recently curated data. Using this set, we only

selected the cases where the corresponding targets were among

the 704 target proteins of DEEPScreen, and the source publi-

cations of the reported bioactivities were novel (i.e., from 2016

and 2017). It was not possible to nd any case with 2018

publications since these articles are not curated in ChEMBL yet.

We then searched DEEPScreen large-scale prediction results to

nd if these cases were predicted. The results only display a few

of the coinciding data points with the most novel source

publications. The second type of data points consists of

completely novel bio-interactions that have not entered

ChEMBL or any other bioactivity database yet. Since these

compounds are not incorporated into ChEMBL, our large-scale

prediction results did not include them. To observe if DEEP-

Screen can predict the reported activities given in 2 selected

drug design and development publications from 2018,84,85 we

generated the SMILES representations and the 2-D structural

images of the documented compounds using their molecular

formula as reported in the corresponding publications. Aer

that, we run the query compounds against their newly identied

targets (which were reported in the respective articles) to see if

DEEPScreen can predict these highly novel interactions. For the

literature-based validation analysis, the approved and experi-

mental drug information was obtained from the DrugBank

database.6

4.8 Molecular docking experiments

For renin docking experiments, the crystal complex structure of

human renin protein, bound to its approved drug aliskiren, was

employed (PDB id: 2V0Z). To prepare the structure for docking,

rst of all, the O chain was deleted from the 2-chain homodimer

structure (only the C chain was kept) since the known binding

pocket lies within each chain and not on the interface between

the chains. Second, all of the ligand atoms and water molecules

have been removed, except two water molecules that were re-

ported to mediate the hydrogen bonding with aliskiren (#184

and 250).60,96 The modied protein structure was given as input

to the MTiAutoDock service97 together with the sdf format

ligand structure les (i.e., aliskiren, remikiren, cortivazol,

misoprostol, lasofoxifene, sulprostone, acetylsalicylic acid, cal-

cifediol, diuprednate and mivacurium) obtained from the

ZiNC (v15) database.98 A binding pocket was also created at the

input level using the known binding sites in the crystal struc-

ture;99 this way, all molecules were docked into the corre-

sponding pocket. MTiAutoDock service has automatically

added the hydrogen atoms to the crystal structure and executed

the docking procedure using AutoDock 4.2.6.100 We also repli-

cated the exact same experiment using the SwissDock web

service.101 We used the same processed pdb le for the receptor

structure and employed ligand structures in mol2 format,

downloaded from the ZiNC database. We dened the region of

interest for the local docking by calculating the mean coordi-

nates of the reported interacting atoms (x: 11.04, y: 46.86, z:

2552 | Chem. Sci., 2020, 11, 2531–2557 This journal is © The Royal Society of Chemistry 2020
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69.53) in the renin–aliskiren complex structure (PDB id: 2V0Z)

and we dened a grid size of 20 � 20 � 20 Å. Hydrogen atoms

and missing side chains were automatically added to the

structure. For both MTiAutoDock and SwissDock dockings, the

best poses were evaluated via binding free energy calculations

and the one with the lowest energy was selected as the nalized

result in each docking run.

For the RXRbeta docking experiment, the crystal complex

structure of human LXRalfa-RXRbeta ligand-binding domain

heterodimer, bound to metoprenic acid, was used (PDB id:

1UHL). In order to prepare the structure for docking, chain A

was extracted from the PDB le. The tretinoin (i.e., all-trans

retinoic acid) molecule le was downloaded from the ZiNC

(v15) database in mol2 and sdf formats (id: ZINC12358651). The

applied docking procedure was the same as that described

above for renin dockings. UCSF Chimera (v.1.13.1) soware102

was used for the visualization of docking results.

4.9 Performance evaluation metrics

We mainly used 3 evaluation metrics, F1-score, Matthews

correlation coefficient (MCC) and area under receiver operating

characteristic curve (AUROC), to evaluate the predictive

performance of DEEPScreen and to compare its results with

other DTI predictionmethods. The formulae of these evaluation

metrics are given below together with precision and recall that

make up the F1-score:

Precision ¼
TP

TPþ FP
Range½0; 1� (4)

Recall ¼
TP

TPþ FN
Range½0; 1� (5)

F1-score ¼
2� precision� recall

precisionþ recall
Range½0; 1� (6)

MCC ¼
TP� TN� FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ
p

Range½�1; 1� (7)

In the equations above, TP (i.e., true positive) represents the

number of correctly predicted interacting drug/compound-

target pairs and FN (i.e., false negative) represents the number

of interacting drug/compound-target pairs that are predicted as

non-interacting (i.e., inactive). TN (i.e., true negative) denotes

the number of correctly predicted non-interacting drug/

compound-target pairs, whereas FP (i.e., false positive) repre-

sents the number of non-interacting drug/compound-target

pairs, which are predicted as interacting.
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