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Abstract—Drug failures due to unforeseen adverse effects at clinical trials pose health risks for the participants and lead to substantial

financial losses. Side effect prediction algorithms have the potential to guide the drug design process. LINCS L1000 dataset provides a vast

resource of cell line gene expression data perturbed by different drugs and creates a knowledge base for context specific features. The

state-of-the-art approach that aims at using context specific information relies on only the high-quality experiments in LINCS L1000 and

discards a large portion of the experiments. In this study, our goal is to boost the prediction performance by utilizing this data to its full extent.

We experiment with 5 deep learning architectures.We find that amulti-modal architecture produces the best predictive performance among

multi-layer perceptron-based architectureswhen drug chemical structure (CS), and the full set of drug perturbed gene expression profiles

(GEX) are used asmodalities. Overall, we observe that the CS ismore informative than theGEX. A convolutional neural network-based

model that uses only SMILES string representation of the drugs achieves the best results and provides 13:0% macro-AUC and 3:1%

micro-AUC improvements over the state-of-the-art. We also show that themodel is able to predict side effect-drug pairs that are reported

in the literature but wasmissing in the ground truth side effect dataset. DeepSide is available at http://github.com/OnurUner/DeepSide.

Index Terms—Drug side effect prediction, deep learning, LINCS

Ç

1 INTRODUCTION

COMPUTATIONAL methods hold great promise for mitigat-
ing the health and financial risks of drug development

by predicting possible side effects before entering into the
clinical trials. Several learning basedmethods have been pro-
posed for predicting the side effects of drugs based on vari-
ous features such as: chemical structures of drugs [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], drug-protein interactions [4],
[5], [6], [7], [9], [12], [13], [14], [15], [16], protein-protein inter-
actions (PPI) [4], [8], activity in metabolic networks [17], [18],
pathways, phenotype information and gene annotations [4].
In parallel to the above mentioned approaches, recently,
deep learning models have been employed to predict side
effects: (i) [19] uses biological, chemical and semantic infor-
mation on drugs in addition to clinical notes and case reports
to train a fully connected multi-layered perceptron, and (ii)

[20] uses chemical fingerprints and learns to predict side
effects using a convolutional neural network architecture.

While these methods have proven useful for predicting
adverse drug reactions (ADRs - used interchangeably with
drug side effects), the features they use are solely based on
external knowledge about the drugs (i.e., drug-protein interac-
tions, etc.) and are not cell or condition (i.e., dosage) specific. To
address this issue, Wang et al. (2016) utilize the data from the
LINCS L1000 project [21]. This project profiles gene expression
changes in numerous human cell lines after treating themwith
a large number of drugs and small-molecule compounds. By
using the gene expression profiles of the treated cells, [21] pro-
vides the first comprehensive, unbiased, and cost-effective pre-
diction of ADRs. The paper formulates the problem as a multi-
label classification task. Authors train an Extra Trees classifier
for this purpose. This is a tree-based ensemble method that
strongly randomizes the feature and cut-point choices while
constructing the trees [22]. Their results suggest that the gene
expression profiles provide context-dependent information for
the side-effect prediction task. While the LINCS dataset con-
tains a total of 473,647 experiments for 20,338 compounds, their
method utilizes only the highest quality experiment for each
drug tominimize noise. Thismeans thatmost of the expression
data are left unused, suggesting a potential room for improve-
ment in the prediction performance. Moreover, their frame-
work performs feature engineering by transforming gene
expression features to enrichment vectors of biological terms.
In this work, we investigate whether the incorporation of gene
expressiondata alongwith the drug structure data can be lever-
aged better in a deep learning setting,which is potentiallymore
complex and does not require feature engineering.

In this study, we propose a deep learning based approach,
DeepSide, for ADR prediction. DeepSide uses only (i) in vitro
gene expression profiling experiments (GEX) and their experi-
mental meta data (i.e., cell line and dosage - META), and (ii)
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the chemical structure of the compounds (CS). Our models
train on the full LINCS L1000 dataset and use the SIDER
dataset as the ground truth for drug - ADR pair labels
[23]. We experiment with five architectures: (i) a multi-
layer perceptron (MLP), (ii) MLP with residual connec-
tions (ResMLP), (iii) multi-modal neural networks
(MMNN.Concat and MMNN.Sum), (iv) multi-task neural
network (MTNN), and finally, (v) SMILES convolutional
neural network (SMILESConv). Please see Section 2.3 for
details about the possible advantages of these approaches.

We present an extensive evaluation of the above-men-
tioned architectures and investigate the contribution of
different features. Our experiments show that CS is a
robust predictor of side effects. The base MLP model,
which uses CS features as input, produces �11% macro-
AUC and �2% micro-AUC improvement over the state-of-
the-art results provided in [21], which uses both GEX
(high quality) and CS features. The multi-modal neural
network model, which uses CS, GEX and META features
and uses summation in the fusion layer (MMNN.Sum),
achieves 0.79 macro-AUC and 0.877 micro-AUC which is
the best result among MLP based approaches. We also
find out that when the chemical structure features are fully
utilized in a complex model like ours, it overpowers the
information that is obtained from the GEX dataset. The
convolutional neural network that only uses the SMILES
string representation of the drug structures achieves the
best result among all the proposed architectures with pro-
vides 13:0%macro-AUC and 3:1%micro-AUC improvement
over the state-of-the-art algorithm. Finally, inspecting the
confident false positives predictions reveal side effects that
are not reported in the ground truth dataset, but are indeed
reported in the literature.

Our study has several novel aspects and our contribu-
tions can be summarized as follows. First, this is the first
study to employ rich deep learning models on large scale
experimental gene expression data along with drug struc-
ture information to predict drug side effects. While many
studies in the literature opt to utilize various other data
sources such as drug-drug or drug-protein interactions,
this information is not available for many compounds.
This minimal feature requirement enables our model to
work with under-studied compounds with little or no
background information. Second, we develop deep learn-
ing models that use state-of-the-art neural network archi-
tectural blocks for the first time to solve the drug side
effect prediction problem. These models include multi-
task learning, multi-modal learning, residual networks
and convolutional neural networks. The most successful
model uses 1D convolution operation on SMILES strings
of the drugs. In contrast to the common approach in the
literature which is using a small number of fixed-sized fil-
ters, we find that using many and highly-varying-sized
filters to learn the relation between local (short) / global
(long) structural motives is highly effective for the predic-
tion of the side effects. Finally, we find that once utilized
with a complex model like convolutional neural networks,
drug structure (SMILES representations) is the most infor-
mative source of information for this task. DeepSide is imple-
mented and released at http://github.com/OnurUner/
DeepSide.

2 METHODOLOGY

2.1 Problem Formulation

The problem of side effect prediction is modelled as a multi-
label classification task. For a given drug i, the target label is
a binary vector, yi ¼ ½yi;1; yi;2; . . . ; yi;d�, where d is the num-
ber of side effects and yi;j ¼ 1 indicates that the drug i has
side effect j; yi;j ¼ 0 indicates otherwise. Our dataset con-
tains n samples (drugs), each represented by a pair of drug
feature vector xi and an accompanying side effect vector
(classes) yi: ðxi; yiÞni¼1.

2.2 Datasets

The LINCS L1000 dataset (GSE92742) contains the GEX pro-
files of 76 cell lines, treated with 20,413 small-molecule com-
pounds [24]. There are 473,647 signature experiments that
differ by the dosage, timing, and cell line (Level 5 data). In
each experiment, the expression levels of 978 landmark
genes are recorded. The study has two development phases:
Phase 1 and Phase 2. Phase 1 contains approved drugs,
whereas Phase 2 contains drugs that are at an experimental
stage. To be able to compare our results with those in [21],
we use Phase 1 data and process the dataset in the same
manner. The authors report that their best result is obtained
with the feature set that is a combination of gene ontology
(GO) transformed gene expression profiles and chemical
structures (CS). Their set of drugs with this feature set (GO
+ CS) contains 791 compounds. We use these 791 drugs to
build our models. In total, there are 18,832 experiments for
these 791 drugs in the LINCS L1000 dataset.

TheMETA information for each of the 18,832 experiments
from the LINCS project is also used as features. META infor-
mation contains (i) the cell line on which the experiment is
conducted on, (ii) the timing of the experiment, and (iii) dos-
age information. Themeta information exists for 70 cell lines,
20 dosage levels and 3 time points (i.e., 6h, 24h, 48h). Note
that for a given drug, the experiments do not cover all possi-
ble combinations of these conditions. META data is repre-
sented as one-hot encoding vectors. The corresponding
feature vector has a length of 93. The total length of the
concatenated GEX and META feature vectors is 1071. For all
models, whenever META data is used, it is concatenated
with the 978 landmark GEX features.

We obtain the drug side effect information (labels) from
the SIDER Database [23] (downloaded on Feb 5, 2018). The
side effects that are observed with fewer than ten drugs are
excluded as also done in [21]. This filtering stage leaves us
with 1052 side effects in total. In order to group side effects,
we utilize the ADR ontology database (ADReCS), which
provides a hierarchical classification of side effects in a
four-level tree [25].

The CS features are encoded with OpenBabel Chemistry
Toolbox [26] to create a 166-bit MACCS chemical fingerprint
matrix for each drug (a binary vector of length 166). A
SMILES string is an alternative representation for the 2D
molecular graph of a drug/small molecule as a 1D string.
The SMILES strings are downloaded from PubChem [27].
These are used to create the chemical fingerprints of the
drugs for the 1D convolution used in SMILESConv model.
RDKit Cheminformatics toolbox is used to extract extended
SMILES Strings of the drugs [28]. The extended SMILES
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strings contain all the primary chemical bonds as well as the
hydrogen bonding information explicitly. Zero-padding is
used to have a uniform representation among all drugs. The
alphabet contains 33 unique characters, including the end of
sequence character. We further generate a pruned drug
dataset to compare SMILESConv model with others. We fil-
ter out drugs with SMILES representation that have less
than 100 characters and more than 400 characters. 615 out of
791 drugs pass this filtering step. For these drugs, we apply
the additional filtering for removing side effects with less
than ten drugs. In the end, 615 drugs and 1042 side effects
pairs remain in this pruned dataset. Finally, we remove the
characters that occur only once in all SMILES strings from
the character vocabulary and replace them with underscore
symbol.

2.3 The DeepSide Architectures

We propose the following deep learning architectures for
ADR prediction: (i) a simple multi-layer perceptron, (ii) its
residual variant, (iii) multi-modal network architectures
that pre-transform inputs from each domain separately, (iv)
multi-task neural network, and finally, (v) a convolutional
neural network based approach for incorporating SMILES
representation.

2.3.1 Multi-Layer Perceptron (MLP)

OurMLP [29] model takes the concatenation of all input vec-
tors and applies a series of fully-connected (FC) layers. Each
FC layer is followed by a batch normalization layer [30]. We
use ReLU activation [31], and dropout regularization [32]

with a drop probability of 0.2. The sigmoid activation func-
tion is applied to the final layer outputs, which yields the
ADR prediction probabilities. The loss function is defined as
the sum of negative log-probabilities over ADR classes (i.e.,
the multi-label binary cross-entropy loss (BCE)). An illustra-
tion of the architecture for CS and GEX features is given in
Fig. 1.

2.3.2 Residual Multi-Layer Perceptron (ResMLP)

The residual multi-layer perceptron (ResMLP) architecture
is very similar to MLP, except that it uses residual-connec-
tions across the fully-connected layers. More specifically,
the input of each intermediate layer is element-wise added
to its output, before getting processed by the next layer.
Such residual connections have been shown to reduce the
vanishing gradient problem to a large extend [33]. This
effectively allows deeper architectures, therefore, poten-
tially learning more complex and parameter-efficient fea-
ture extractors.

2.3.3 Multi-Modal Neural Networks (MMNN)

The multi-modal neural network approach contains distinct
MLP sub-networks where each one extract features from one
data modality only. The outputs of these sub-networks are
then fused and fed to the classification block. For feature
fusion, we consider two strategies: concatenation and sum-
mation. While the former one concatenates the domain-spe-
cific feature vectors to a larger one, the latter one performs
element-wise summation. By definition, for summation based
fusion, the domain-specific feature extraction sub-networks
have to be designed to produce vectors of equivalent sizes.
We refer to the concatenation and summation based MMNN
networks as MMNN.Concat and MMNN.Sum, respectively.
TheMMNN.Concat approach is illustrated in Fig. 2.

2.3.4 Multi-Task Neural Network (MTNN)

Our multitask learning (MTL) based architecture aims to take
the side effect groups obtained from the taxonomy of
ADReCS into account. For this purpose, the approach defines

Fig. 1. Our multi-Layer perceptron (MLP) architecture, which takes the
concatenation of GEX and CS features.

Fig. 2. Multi-modal and Multi-task Neural Network architectures. (a) The concatenation variant of the multi-modal neural network (MMNN.Concat)
architecture, which has two input branches for the GEX and CS features. The outputs of these networks are concatenated and fed into a fully con-
nected multi-layer classification block. b) The multi-task neural network (MTNN) architecture, which learns a shared embedding for all class groups
in the shared layers. The embedding is then fed into separate fully-connected multi-layer classification blocks for each class group, which learn task
specific models.
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shared and task-specific MLP sub-network blocks. The shared
block takes the concatenation of GEX and CS features as input
and outputs a joint embedding. Each task-specific sub-net-
work then converts the joint embedding into a vector of
binary prediction scores for a set of inter-related side-effect
classes.

We define 24 side-effect groups according to the ADR
ontology (see Section 2.2). Here, a side effect is allowed to
be a member of multiple groups. For instance, in the ADR
ontology, nausea is grouped under both stomach disorders
and dizziness sub-groups. For such side effects, our model
will output more than one probability estimate. The maxi-
mum estimate among multiple predictions for such cases is
taken as the final prediction, during both training, (i.e.,
when computing the log-loss), and testing. The architecture
is illustrated in Fig. 2.

2.3.5 SMILES Convolutional Network (SMILESConv)

Convolutional neural networks (CNN) are known to provide
a powerful way of automatically learning complex features
in vision tasks, see e.g., [34]. More recently, convolutional
networks have also been shown to be effective for modeling
sequential data, such as natural texts, see e.g., [35]. Our SMI-
LESConv architecture is built upon 1D convolutional opera-
tors for representation learning on the SMILES strings. In
this case, the kernels are vectors and they learn to leverage
the relations across the consecutive characters. [36] and [37]
use convolutional and recurrent networks for learning vector
space embeddings of SMILES strings for solving other pre-
diction tasks.

Our network contains 200 1D-convolutional layers where
the kernel sizes range from 1 to 200. Each layer has 32 out-
put channels, which are followed by batch normaliza-
tion [30]. We use ReLU activation function and max-pooling
operators. The size of the pooling operations is equal to size
the feature map that has been extracted after convolution,
batch normalization, and ReLU operations. Each vector is
concatenated to pass through classification layers. The
extracted feature vector has 6400 units (32x200). We use
dropout with a drop probability of 0.2 before the fully con-
nected classification layers. The classification block contains
2000 units. Batch normalization and ReLU activation follow
each fully connected layer. The sigmoid activation function
is applied to the output layer. The overall SMILESConv
architecture is shown in Fig. 3.

3 RESULTS

3.1 Experimental Setup

We use 3-fold cross-validation to evaluate our models; the
folds are stratified based on drugs. That is, all experiments of
a single drug are either completely in the training set or
completely in the test set, and therefore, a model is expected
to predict the side-effects of previously unseen drugs at test
time. To accomplish a fair comparison among models, we
use 6 different data settings. The first 3 settings consider 791
drugs and are used to train and test only the MLP based
models. The first setting uses all �18k experiments con-
ducted for the 791 drugs in different cell lines, dosages and
time points. In this setting, each instance is an experiment for
a drug and can accompany chemical structure information.

The training data contains �12k instances, while the test
data contains �6k instances. The second setting covers only
the highest quality experiment for each of the 791 drugs, as
marked in the meta-data of the LINCS L1000 dataset. Again,
each instance is an experiment for a drug. The training data
contains 528 instances and the test data contains 263 instan-
ces. Note that this setting is the same as the one used in [21].
The third setting uses a mixture of the first two ones: �12k
instances are used for training, and 263 highest quality
experiments are used for testing.

The last three settings use the 615 drugs (out of 791)
which are selected according to the SMILES string criteria
described in Section 2.2. To make a fair comparison between
the SMILESConv and MLP based models, we re-evaluate
the MLP based models in these settings and choose the best
performing one to compare against SMILESConv. The
fourth setting uses only the CS or SMILES string features
and uses 410 samples for training and 215 samples for test-
ing. The fifth setting uses �9K experiments from the GEX
dataset for the 410 drugs used for training and �4K experi-
ments for the 205 drugs for testing. Again, each instance is
an experiment for a drug and can accompany CS informa-
tion. The sixth setting also uses �9K experiments from the
GEX dataset for the 410 drugs like but the test data includes
only the highest quality experiments of the 205 drugs.

We use binary cross entropy (BCE) as the loss function.
We investigate the benefit of employing weighted BCE
(WBCE) on the SMILESConv model to address the imbal-
ance in our dataset (i.e.,, some side effects are observed
rarely.) Adam optimizer is used for training the neural net-
works. While the initial learning rate for Adam optimizer is
tuned separately for each model and dataset pair, the same
set of hyper-parameters is used across the folds.

The hyperparameters of the MLP models are decided
based on the input dimension and the number of the side
effects in the label set. We varied the number of layers from 1
to 5. The number of neurons are searched in the range 200–
2000. The learning rate parameter was changed in the range
0.01 and 0.0001.We report the results of the hyperparameters
that yields distinct performance results in Table 1. We deter-
mine the shape and number of kernels for the SMILESConv
model based on the maximum and minimum sizes of the
input sequence. We observe that even when we use fewer
number of kernels (i.e., 20 kernels with shapes in range 0 to
20), SMILESConv’s performance does not degrade. As the
number of kernels increases, on the other hand, we would
expect a minor increase in performance along with a signifi-
cant increase in complexity. To sum it up, we have tried to
select hyperparameters within a sensible parameter range,
with due regard to performance & complexity trade-off.

To assess how well we predict the side-effects of drugs
overall, we use the micro-averaged Area Under Curve
(AUC), micro-averaged mean Average Precision (mAP) and
Hamming loss metrics. To evaluate per side effect prediction
performance, we use the macro-averaged Area Under Curve
(AUC) and macro-averaged mean Average Precision (mAP)
metrics.

3.2 Performances of DeepSide Architectures

We present MLP-based model results in Table 1. Our first
finding is that the base MLP model that uses only the CS
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fingerprints outperforms the state of the art model [21],
which uses the same CS fingerprints along with the GO-
transformed GEX dataset, in terms of both micro and macro
AUC scores. Note that this comparison is based on the same
set of drugs and side effects.

The MLP model based purely on GEX features yields the
lowest scores in both Settings 1 and 3 (Table 1), the macro-
AUC is at most 67% and macro-AUC is 80%. This indicates
that GEX features alone are not sufficiently informative for
side effect prediction. When we combine GEX and CS fea-
tures through concatenation and input to the MLP model,
the performance increases to 76.8% macro AUC and 84.1%
micro AUC scores (Setting 3; similar for Setting 1), which
are still below the performance of the MLP model trained

only with the CS features. In fact, when we investigate the
feature importance for the MLP model that takes the
concatenated GEX, CS and META as input, we find that
top-100 of the most important are all CS related features, see
Section 3.3 for details.

We further input different combinations of CS and GEX
features into various machine learning algorithms in order
to check if our observation that CS is more informative than
the GEX features. We used all possible feature combinations
for each model (i.e., only CS, only GEX, CS + GEX). We
used three different machine learning algorithms, namely
Logistic Regression, XGBoost, and Random Forest.

We explore different hyperparameter combinations to
train these models on the same train test split we used for

Fig. 3. The SMILESConv architecture that performs 1D convolution operations on the SMILES representations of drugs. Fused embeddings are fed
into a fully connected multi-layer classification block.
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DeepSide architectures. For XGBoost model, we choose the
best performing model by using the learning rate 2
f0:05; 0:10; 0:15g and maximum tree depth 2 f4; 6; 8; 10; 12g.
For the Random Forest model, we tune the number of trees 2
f10; 100; 500; 1000g andmaximum tree dept2 f4; 6; 8; 10; 12g.
Finally, for the Logistic Regression model, the regularization
parameter C 2 f0:25; 0:50; 0:75; 1:0g is tuned. As the results in
Table 2, the models that use only CS features result in better
performance without an exception. These results align well
with the earlier experimental results.

The ResMLP architecture, which uses residual connec-
tions across the fully connected layers does not improve
upon the base MLP model. MTNN, which aims to leverage
the side effect group information based on the side effect
ontology, does not improve over the base MLP model
either. On the other hand, the MMNN model, which uses
two modalities (one for the concatenated GEX profiles and
META information and the other for the CS fingerprints),
produces the best predictive performance among all MLP-
based architectures in terms of all metrics, with the excep-
tion of micro mean average precision (micro mAP). This

architecture achieves 0.111 macro AUC improvement and
0.023 micro AUC improvement over state of the art in Set-
ting 3 when summation based embedding fusion is used.
Concatenation based fusion yields similar results. MMNN
is the only architecture that benefits from adding GEX fea-
tures on to the CS features. Since we consistently obtain
very similar or better results by incorporating the META
information, we exclude the results of some of the models
without META features for brevity.

Setting 2 only uses the highest quality experiments (as
in [21]), whereas Setting 3 uses the all experiments for a
compound during training. For testing, both settings use
the highest quality experiments. Here, we validate our
hypothesis that a deep learning based solution should be
able to perform better by utilizing the full dataset in Setting
3. First, we compare the performance of the MLP model
under Setting 2 and Setting 3 (using GEX, CS, and META
features): using Setting 3 provides 4:7% macro AUC and
1:2% micro AUC, 3:1% macro mAP and 3:6% micro mAP
improvement over Setting 2. We also compare the perfor-
mance of the best MLP-based model (MMNN.Sum) under

TABLE 1
Performance Comparison Between MLP Models That Use GEX, CS and META Information

X&Y represents the independent two datasets that are used as inputs for the MMNN architecture.X is an input for one of the branches and Y is the input for the
other branch of the MMNN-based models. ½X;Y � represents the concatenated features of the X and Y datasets. FC neurons column denotes neuron size in the
fully connected layers. layers column states the number of fully connected layers in the feature extractor and classification parts of the network.

TABLE 2
The Results of Off-the-Shelf Machine Learning Algorithms When Using CS, GEX and CS & GEX Features

Model Features Macro AUC Micro AUC Macro mAP Micro mAP Hamming

Logistic Regression
CS 0,576 0,645 0,194 0,237 0,089
GEX 0,501 0,569 0,095 0,169 0,089

[CS, GEX] 0,570 0,643 0,186 0,235 0,089

XGBoost
CS 0,660 0,714 0,273 0,315 0,083
GEX 0,506 0,586 0,101 0,151 0,108

[CS, GEX] 0,511 0,592 0,106 0,159 0,106

Random Forest
CS 0,778 0,884 0,464 0,600 0,070
GEX 0,536 0,800 0,131 0,365 0,090

[CS, GEX] 0,587 0,811 0,157 0,376 0,089

The results confirm our observation that CS is the most informative modality.
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these two settings using the CS and GEX features. Indeed,
setting 3 provides 1:1% macro AUC, 0:4% micro AUC, 2:4%
macro mAP and 1:2% micro mAP improvement over Set-
ting 2. While the margin of improvement is smaller for the
more complex model, both results show the benefit of using
all experiments in the LINCS L1000 dataset.

We investigate the benefit of using SMILES strings for
representing drug structures and employing convolutional
neural networks to extract features on them. Table 3 shows
the results of SMILESConv models that are trained with
unweighted (BCE) and class weighted loss (WBCE) func-
tions. To make a fair comparison to the SmilesConv models,
we retrain separate MLP and MMNN.Sum architectures
with datasets of Settings 4 - 6. In SMILESConv models, cost-
sensitive training with WBCE improves the results com-
pared to training with BCE; all performance measures are
higher for WBCE except for the hamming loss. SMILESConv
outperforms both the MMNN.Sum and the MLP based
model; with WBCE, it achieves 0.809 macro AUC and 0.885
micro AUC. This corresponds to about 2.1% improvement in
macroAUC and 3.6% improvement inmicro AUC compared
to the MLP model that uses only the CS structures. It also
improves upon the MMNN.Sum about 1.5% in macro AUC
and 3.3% in micro AUC. Similar improvements are observed
for the other performance metrics MAP and Hamming loss.
The predicted probabilities by SMILESConvWBCE for every
compound - side effect pair are listed in Supplementary
Table 1, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2022.3141103.

We further investigate whether uniting the GEX and
META features with SMILES strings improves the perfor-
mance. We train a new MMNN.Sum model in which we
replace the chemical fingerprint representation (CS) with
the SMILES representation. We observe that this improves
MMNN.Sum model’s performance but cannot outperform
SMILESConv only model (Table 3).

We also compared SMILESConv with a recent method
from the literture that also utilizes drug chemical structure,
called MEDICASCY [11]. To perform the comparison, we
used our dataset which is arranged according to SMILES-
Conv preprocessing rules detailed in Section II-B (615 drugs
for the 1042 side effects) and used the 166-bit MACCS fea-
tures to train MEDICASCY-MACCS-BRF method. We used
exactly the same 3-fold to compare MEDICASCY with our
approaches.

We observe that SMILESConv achieves 0.809 macro AUC
and 0.885 micro AUC, whereas MEDICASY achieves 0.781
macro AUC and 0.885 micro AUC. While the performances
are close we conclude that SMILESConv is better.

3.3 Feature Importance

We investigate the feature importance for the MLP model
that takes the concatenated GEX, CS and META as input
using Deep SHAP algorithm, which is a method to compute
SHAP values [38] of deep learning models. The method
relies on Shapley values [39] and assess the contribution of
each feature to prediction by comparing the predictive per-
formance of all models with and without the corresponding
feature. We quantify the feature importance at each fold
separately and use the average feature importance com-
puted over three folds to rank features. We observe all top-
100 features are CS related. Of the top-200 features, 140 of
them are CS related features, while 42 of them are GEX and
remaining 18 are META features. We list the top 20 features
obtained in Fig. 4. The feature importance for each feature is
provided in Supplementary Table 1, available online.

4 DISCUSSION

We investigate the easiest (top-10) and the hardest (bottom-
10) side effects to predict by the SMILESConv model
(WBCE) in Table 4. For both cases, these side effects have less
than 100 drugs. Although there is no clear pattern, we
observe that the easy examples are relatively more specific
compared to the hard examples (i.e., Myocardial rupture,
Lupusmiliaris disseminatus faciei, and Paraplegia are exam-
ples for easiest side effects; while Ear disorder, Personality
Disorder and Sensory disturbance are examples for hardest
side effects ones). Based on their presence in drugs, we calcu-
late the correlation coefficients (MCC) of the side effects. We
do not observe any correlation among most-difficult-to-pre-
dict side effect pairs. However, of the 45 possible side effect

TABLE 3
Performance Comparison Between MLP and Conv Models Which are Trained With 615 Drugs for the 1042 Side Effects

½X;Y � represents the concatenated features of the X and Y datasets. ½X�&½Y � represents the two separate datasets applied different braches of the MMNN-based
models. BCE denotes binary cross entropy and WBCE denotes the weighted binary cross entropy.

Fig. 4. The most important top-20 features between [GEX&CS&META]
features for the MLP model. Y axis shows the index of the given feature
type. All top-20 features are CS features.
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pairs among 10 side effects, in 22 of them, we observe posi-
tive correlation (MCC > 0.5). From the easiest side effects,
‘Skin test positive’, ‘Alkalosis hypokalaemic’ and ‘Muscle
mass’ side effects are the most positively correlated side
effects with anMCC value of 1.0 between each other.

We also investigate our most confident but incorrect pre-
dictions. Table 5 shows the top-10 false positive and top-10
false negative predictions. For the following false positive
examples, we find evidence in the literature that the pre-
dicted side effects might be relevant. Daunorubicin, which
is a chemotherapeutic compound, is predicted to cause ane-
mia by DeepSide. Chemotherapy-induced anemia is a com-
mon side effect in cancer patients [40]. In particular for this
drug, Hazardous Substances Data Bank1 (a toxicology data-
base curated by NIH NLM Toxicology Network) lists ane-
mia as a possible adverse reaction for daunorubicin.2

Similarly, we find that sulfasalazine (a drug used to treat
rheumatoid arthritis and ulcerative) causes vomiting. This
finding is supported by [41], which reports that 64 out of
152 people developed adverse reactions due to this drug,
and 19 out of that 64 had vomiting. Finally, our model pre-
dicts halcinonide to cause hypertension. Halcinonide is a
corticosteroid that is used to treat various skin conditions. It
is a glucocorticoid and [42] lists hypertension as an adverse
effect for glucocorticoids. Note that none of the above find-
ings are reported in SIDER. We also find support for 9 out
of the top 10 false positives through commercial online
resources. Nevertheless, it is hard to assess the reliability as

there is no peer review system. While it is harder to evaluate
false negatives, we find that rather than (i) doxycycline
causing premenstrual syndrome, and (ii) cyproterone caus-
ing leiomyoma; they are used in the treatment of these con-
ditions [43], [44]. For the rest of the findings we see that
there are indications in the literature and commercial online
resources that these compounds cause corresponding side
effects.

The LINCS L1000 dataset is a useful resource for predict-
ing condition specific side effects. In our experiments
though, we find the GEX does not improve the results sub-
stantially (see Tables 1 and 3) and the best performing
model that relies on the drug structure and surpasses the
state-of-the-art performance [21] (see Tables 1 and 3). One
reason for not being able to leverage condition specific GEX
information despite employing various deep learning archi-
tectures could be the absence of the condition specific
ground truth labels. Since the available side effect labels are
per drug but not per condition-drug pairs (i.e., dosage -
drug), we suspect the model cannot make use of the LINCS
dataset as effectively as it could. On the other hand, deep
learning based architecture can leverage the chemical struc-
ture information well and can surpass state of the art result,
which uses chemical structure and gene expression features
in combination with gene ontology [21].

We investigate whether the performance is better for test
examples which are structurally similar to drugs in the
training set. We find a test drug’s most similar top-3 drugs
in the train set, and calculate the average cosine similarity
of this test example with these drugs. We investigate the
relationship of the average cosine similarities versus log-
loss values of the test samples.

Fig. 5 displays the cosine similarities of the test sample to
the training examples and the log-loss computed on this

TABLE 4
The Easiest (Top-10) and the Hardest (Bottom-10) Side Effects
to Predict by the SMILESConv Model Trained With the Weighted

Binary Cross-Entropy Loss

Side Effect # Pos.
Samples

SMILESConv
AUC

Skin test positive 21 1.00
Cushing’s syndrome 12 1.00
Myocardial rupture 19 1.00
Alkalosis hypokalaemic 21 1.00
Fat embolism 15 1.00
Muscle mass 21 1.00
Coombs direct test positive 10 1.00
Paraplegia 17 1.00
Lupus miliaris disseminatus
faciei

23 1.00

Nitrogen balance 23 1.00

Skin burning sensation 7 0.54
Panic attack 9 0.55
Tachypnoea 10 0.64
Sensory disturbance 8 0.50
Hepatitis fulminant 11 0.58
Ear disorder 28 0.57
Arrhythmia supraventricular 15 0.65
Respiratory disorder 87 0.64
Personality disorder 26 0.62
Congenital eye disorder 11 0.62

Number of positive samples column indicates the number of drugs annotated
with a given side effect.

TABLE 5
The top-10 False Positive (Top Table) and Top-10 False
Negative Predictions (Bottom Table) of the SMILESConv

WBCE Model

Perturbation ID Compound Name Side Effect # Pos. Samples

BRD-A37630846 daunorubicin Anaemia 326
BRD-K13926615 vardenafil Anaemia 326
BRD-K10670311 sulfasalazine Vomiting 476
BRD-K19352500 prochlorperazine Vomiting 476
BRD-K28029915 dolasetron Vomiting 476
BRD-K32164935 tolazamide Vomiting 476
BRD-K71451869 halcinonide Hypertension 293
BRD-K81709173 halcinonide Hypertension 293
BRD-K81774264 flumethasone Pain 475
BRD-K81925854 clocortolone Pain 475
BRD-A39290993 cyproterone Leiomyoma 11
BRD-A51294525 cyproterone Leiomyoma 11
BRD-K05395900 nicotine Nasal ulcer 14
BRD-K11196887 norfloxacin Metabolic acidosis 16
BRD-A73635141 hydrocortisone Menstrual disorder 53
BRD-A73635141 hydrocortisone Application site reaction 26
BRD-A74980173 gatifloxacin Panic attack 9
BRD-A79479878 testosterone Sleep apnea syndrome 10
BRD-A88774919 doxycycline Osteopenia 12
BRD-A88774919 doxycycline Premenstrual syndrome 13

These are the most confident predictions by the model that are contradicting
with the ground truth. For the listed false positive pairs, predicted probabilities
are > 0:9995. For the false negative pairs, predicted probability scores are <
0:0005. Note that a drug (name) might have multiple perturbagen id that cor-
respond to different SMILES strings. In that case drug name - side effect pairs
are listed multiple times.

1. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB
2. http://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:

@term+@rn+@rel+20830-81-3, accessed on Oct 30, 2019
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test drug. The log-loss metric was chosen since it can be cal-
culated independently of the threshold value selection. The
figure shows all the test samples gathered from the 3-folds
(only one outlier sample which has cosine similarity less
than 0.5 was removed). Even if a test set drug does not have
any similar drugs in the test set, that is its average cosine
similarity is low, we can achieve a low log loss, indicating a
good prediction. The contrary is also observed, where drugs
that have high cosine similarities may produce a high log
loss. As such, we conclude that the model does not memo-
rize the examples in the training set.

5 CONCLUSION

The pharmaceutical drug development process is a long
and demanding process. Unforeseen ADRs that arise at the
drug development process can suspend or restart the whole
development pipeline. Therefore, the prior prediction of the
side effects of the drug at the design phase is critical.

In our DeepSide method, we use context-related (gene
expression) features along with the chemical structure to pre-
dictADRs to account for conditions such as dosing, time inter-
val, and cell line. The proposedMMNNmodel uses GEX and
CS as combined features and achieves better accuracy perfor-
mance compared to the models that only use the chemical
structure (CS) fingerprints. The reported accuracy is notewor-
thy considering that we do not have condition-independent
class labels. The multi-modal architecture learns embeddings
for eachmodality in a separate subnetwork and this combina-
tion of the embeddings lead to better prediction performance
compared to using raw feature vectors. Finally, SMILESConv
model outperforms all other approaches by applying convo-
lution on SMILES representation of drug chemical structure.
SMILESConvmodel learns the latent representations for drug
structures directly from the drugs’ SMILES strings with the
supervision of the loss function. However, other models use a
predefined feature set (MACCS) which are calculated only on
the structures. The better performance of SMILESConv could
be attributed to this supervisionwhich helps themodel to bet-
ter capture side effect and drug specific latent representations.
Besides, the ability of the convolutions to leverage sequential
feature information using fewer number of parameters com-
pared to the fully connected layers could be factoring in.
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