
Veeramani et al. BMC Bioinformatics 2018, 19(Suppl 9):289

https://doi.org/10.1186/s12859-018-2267-2

RESEARCH Open Access

DeepSort: deep convolutional networks
for sorting haploid maize seeds
Balaji Veeramani*†, John W. Raymond and Pritam Chanda†

From 13th International Symposium on Bioinformatics Research and Applications (ISBRA 2017)

Honolulu, Hawaii, USA. 30 May - 2 June 2017

Abstract

Background: Maize is a leading crop in the modern agricultural industry that accounts for more than 40% grain

production worldwide. THe double haploid technique that uses fewer breeding generations for generating a maize

line has accelerated the pace of development of superior commercial seed varieties and has been transforming the

agricultural industry. In this technique the chromosomes of the haploid seeds are doubled and taken forward in the

process while the diploids marked for elimination. Traditionally, selective visual expression of a molecular marker

within the embryo region of a maize seed has been used to manually discriminate diploids from haploids. Large scale

production of inbred maize lines within the agricultural industry would benefit from the development of computer

vision methods for this discriminatory task. However the variability in the phenotypic expression of the molecular

marker system and the heterogeneity arising out of the maize genotypes and image acquisition have been an

enduring challenge towards such efforts.

Results: In this work, we propose a novel application of a deep convolutional network (DeepSort) for the sorting of

haploid seeds in these realistic settings. Our proposed approach outperforms existing state-of-the-art machine

learning classifiers that uses features based on color, texture and morphology. We demonstrate the network derives

features that can discriminate the embryo regions using the activations of the neurons in the convolutional layers. Our

experiments with different architectures show that the performance decreases with the decrease in the depth of the

layers.

Conclusion: Our proposed method DeepSort based on the convolutional network is robust to the variation in the

phenotypic expression, shape of the corn seeds, and the embryo pose with respect to the camera. In the era of

modern digital agriculture, deep learning and convolutional networks will continue to play an important role in

advancing research and product development within the agricultural industry.

Keywords: Corn, Double haploid induction, Agriculture, Convolutional neural networks, Molecular markers, Deep

learning

Background

Feeding the growing population amidst shrinking farm

lands across the world requires increases in innovation

and efficiencies in agricultural output through high yield-

ing crops. Maize (aka corn) is a major crop that accounted

for 28.3% harvested acres within US in 2015, with 38,105

million bushels produced across the world in 2015-2016

[1]. Maize breeding programs generate better yielding and

*Correspondence: BVeeramani@dow.com
†Balaji Veeramani and Pritam Chanda contributed equally to this work.

Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN 46268, USA

more predictable hybrid seed varieties by crossing two

distinct inbred lines. Traditional development of inbred

lines, whose copies of genomes are 99% identical, takes

about 6-7 generations of recurrent selfing or crossing.

Double haploid (DH) based induction technology enables

large commercial breeding programs in Europe, North

America and China to efficiently generate homozygous

lines within 2-3 generations of breeding [2]. For exam-

ple, using DH process, Dupont-Pioneer has reported that

they have developed a greater number of inbred lines since

2012 than they had produced in the first 80 years of their
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breeding program. [3]. In addition to the shortening of the

generation time, DH process provides other benefits such

as simplified logistics, efficiency and precision of selec-

tion, accelerated product development, and fulfillment of

DUS (distinctness, uniformity, and stability) requirements

for plant variety protection [2].

Sorting the diploids from the haploids seeds is a criti-

cal step in a DH induction process. Double haploid based

induction uses a dominant anthocyanin color marker or

gene, referred to as R1-Navajo (R1-nj), to distinguish puta-

tive haploid seeds from diploids. This R1-nj marker when

expressed in a particular tissue leads to its purple col-

oration. R1-nj marker is expressed in both the outermost

layer of the maize endosperm (aleurone) as well as the

embryo (scutellum) in diploid maize seeds, whereas in

haploid seeds it is expressed only in the endosperm layer.

Using these visual differences, the most common method

for sorting haploid seed is by a manual inspection pro-

cess [4, 5]. In an agricultural industry setting, hundreds of

thousands of seeds are sorted to separate haploids from

the diploids during every breeding cycle. Manually sorting

these high volumes of haploid/diploid seeds by visual dis-

crimination is both labor intensive and error prone, and

developing automated methods to classify haploids from

diploids is critical.

To our knowledge, within the agricultural indus-

try there have been two automation efforts using the

R1-nj molecular marker system [6, 7]. The primary

advancement of the disclosure [6] can be attributed to

developments in the mechanical handling and image

acquisition; however the image analysis methods are

preliminary (uses thresholding with erosion and fill

morphological operations) and its performance demon-

strated in only 24 seeds. In the patent disclosure [7],

a different mechanical system along with a PC Eye-

bot system (Sightech Vision Systems, Inc.) was imple-

mented for image classification that recovered 38-53%

haploids and 92-98% diploids correctly. However robust

approaches in recovering haploids at industrial scale

are lacking.

Automated sorting of haploid seeds from the diploid

seeds robustly is challenging due to the differences in the

expression of the R1-nj marker in maize seeds from dif-

ferent genetic backgrounds used in DH induction [8, 9],

morphological variations due to incomplete pollination

of corn cobs, and several environmental factors [10, 11].

In addition, variations that naturally arise during real-

time image acquisition in field settings pose a challenge

to the image analysis methods. Researchers have resorted

to developing alternative phenotyping methods based on

oil content [9] and NMR [5]. However, the throughput of

these methods are constrained by multiple image acqui-

sitions [9], and requires expensive equipment as com-

pared with visible range RGB cameras. In this context,

development of robust computer visionmethods to enable

automated seed sorting becomes imperative.

Recent developments in deep learning algorithms and

availability of modern powerful GPUs have spurred a rev-

olution in the areas of image classification, speech recog-

nition, and genomics [12]. State-of-the-art performance

was demonstrated in the ImageNet challenge where the

images were classified into a thousand categories [13]

using deep convolutional networks. Convolutional neu-

ral networks (CNN) were initially developed to efficiently

represent images using neural nets with far fewer param-

eters (using local connectivity and weight sharing) and

train them using backpropagation algorithm [14]. CNN

has been widely used for several applications such as

predicting sequence specificities for DNA and RNA bind-

ing proteins [15], chromatin effects of sequence alterna-

tions [16], self driving vehicles, automated phenotyping of

developing C. elegans embryos and connectomics [12].

Applications of convolutional networks are starting to

emerge in agriculture/plant sciences recently. Convolu-

tional networks have been used to recognize paddy field

pests localized using saliency maps [17], identify 44 dif-

ferent plant species using leaf images collected at the

Royal Botanic Gardens, Kew, England [18] and classifi-

cation of forest and agricultural regions in Indian Pines

hyperspectral image dataset [19].

In this work, we propose an application of a convolu-

tional network (DeepSort) to discriminate maize haploids

from diploids using several thousand corn seed images

based on our earlier preliminary work [20]. We demon-

strate that performance of the convolutional network

closely matches the visual classification of the seeds by the

human experts. We also show this performance remains

robust under diverse lighting conditions, seed shapes,

embryo orientation relative to the camera field of view,

and heterogeneous genetic backgrounds; something that

has remained challenging in practice. Using visualizations,

we show that the convolutional network derives infor-

mation that are discriminative of haploids and extracts

features from the embryo regions. Our experiments using

multiple network architectures indicate that the pres-

ence of more layers (i.e. deeper network) contributes to

improved classification accuracy.

Methods

Diploid and haploid images

Corn seeds expressing the R1-nj marker are shown in the

Fig. 1. Haploid seed embryos that receive only the mater-

nal genetic material do not show the purple coloration

from dominant R1-nj marker expression (see Fig. 1b in

the region marked embryo), but diploid seed embryos

that also receive the genetic material from the inducer

carrying the R1-nj marker exhibits purple coloration in

the embryo (shown next to the arrow in Fig. 1a). R1-nj
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Fig. 1 Corn seeds expressing the R1-njmarker in (a) Diploid and (b) Haploid seeds. The marker is only expressed in the diploid embryo as a vertical

dark purple patch indicated by the arrow in (a). Variability in visual indications of marker expression, seed morphology, color and texture, embryo

positioning with respect to camera, and lighting conditions across multiple (c) diploid and (d) haploid seeds

marker expressed in the endosperm of both diploid and

haploid seeds leads to a dark coloration as seen at the bot-

tom of the seed images shown in Figs. 1a & 1b (below

the embryo). We acquired images of 4021 seeds for train-

ing, and 710 seeds for testing the performance of the

automatic seed classification system. A substantial hetero-

geneity in the level of expression of the R1-nj marker, seed

morphology, color and embryo region texture is observed

in our dataset. In addition, image acquisition introduces

further variations such as lighting inconsistencies and

embryo positioning relative to the camera field of view.

Sample images from our dataset that demonstrate this

heterogeneity in both diploids and haploids are shown in

Figs. 1c & 1d respectively.

Our dataset consists of 4731 RGB images of corn seeds

(3779 diploids, 952 haploids) obtained from multiple

proprietary inbred lines. Seeds were manually classified

into haploid and diploid categories using high resolution

images by a human expert. The images were acquired

under realistic settings across several days and different

genetic populations using uEye high-speed cameras. The

image acquisition apparatus returns two images; approx-

imately half the images do not depict the embryo side

and were discarded. The raw 640× 480 pixel images were

pre-processed using basic techniques (cropping, center-

ing and resizing). Each seed was repositioned so that it’s

pixel-based center of mass was located in the middle of

64× 64 cropped image and having its tip oriented upward.

These 64× 64 RGB images were used for training the

convolutional network and testing its performance.

Convolutional network

We adopt an exemplar CNN architecture for the clas-

sification of haploid and diploid seeds shown in Fig. 2

(termed DeepSort). It comprises of the following layers:

two convolutional layers each followed by max-pooling

and local-response-normalization layers, two densely

connected layers and an output layer. We first describe

each of these components briefly.

We start with description of the convolutional layer. For-

mally, let the input to a convolutional layer be represented

by the tensor X ∈ R
N×M×C . Let a convolutional layer be

Fig. 2 Schematic architecture of DeepSort Convolution network “Arch-1” used for classifying maize seeds. Input maize images are convolved with

16 filter kernels in the first convolutional layer followed by pooling and normalization layers. Outputs of these operations are again convolved with

16 kernels in the second convolutional followed by pooling, normalization and two fully connected layers
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comprised ofD kernels. Each kernel (or weight) is a tensor,

W
(l) ∈ R

d×d×C , {l = 1 . . .D} that applies a 2-dimensional

convolution operation on d× d patches in each of the X··k

plane (of dimension N × M) of the input tensor X, and

with stride s. For example, if X represent the input image

tensor, X··k ∈ R
N×M, {k = 1 . . .C} represents a N × M

pixel image across a color channel k, with C = 3 such

color channels (RGB). The convolution is followed by a

non-linear activation function f (z) = max(0, z) (Rectifier

Linear Unit or ReLU). This results in neuronal activations

of the form f
(

∑C
k=1

(

W (l) ◦ Xi:i+d−1,j:j+d−1,k

)

+ b
)

∈ R.

Here “◦” denotes the Hadamard product, b ∈ R is a

bias term; Xi:i+d−1,j:j+d−1,k represents the d × d subre-

gion on 2-dimensional matrix X··k ; and W (l) = W
(l)
··k , a

d × d slice of the tensor. Convolutions over the entire

input tensor X using stride size s and padding p pro-

duces activation matrix Al ∈ R

(

N−d+2·p
s +1

)

×

(

M−d+2·p
s +1

)

,

which represents the activations of all the neurons in a

slice l, {l = 1 . . .D} that share the weight tensor W
(l).

Each neuron in a convolutional layer is connected only

to a local region (defined by the convolution window) of

the input spatial volume, but to the full depth C of the

input tensor. Repeating this pattern for l = 1 . . .D, all

the neurons located on the similar region of a plane but

along the depth D look at the same region of the input

tensor through different kernels W
(l). A convolutional

layer is followed by max-pooling and local-response-

normalization layers. The max-pooling layer downsam-

ples the input tensor by partitioning it into a set of non-

overlapping sub-regions and outputs the maximum value

of each such sub-region. The normalization layer mimics

lateral inhibition in real neurons and performs damp-

ing of neuronal responses that are uniformly large in a

local neighborhood, while boosting neuron responses that

are moderately strong in a local neighborhood of weaker

responses [13].
In our primary design (called “Arch-1”, see Fig. 2), we

have D=16 kernels in the first convolutional layer looking

at RGB images (i.e tensor X ∈ R
N×M×3). This is followed

by max pooling and normalization layers. The first set of

layers is followed by the second convolution, normaliza-

tion and max pooling layers, in that order. The second

convolutional layer also has D=16 kernels and processes

as input, a tensor that is the output from the preced-

ing normalization layer. For both our convolutional layers,

d = 5, s = 1 and p = 2, other kernel receptive field

patch sizes (d = 3, 7) provided similar results. These

layers are followed by 2 fully connected layers (with 192

and 96 neurons respectively) that are connected to all the

neurons from the preceding layer, which is followed by

an output layer having 2 neurons that represent the hap-

loid and diploid classes. Our initial design is motivated

by the network used for classifying cifar10 data of natural

images (https://code.google.com/p/cuda-convnet/). The

choice of the number of kernels for classifying haploids

from diploids were four times smaller than the cifar10 net-

work that classifies images into 10 categories (roughly 5

times more classes than our problem).

We further experimented with different architectures

where the number of kernels in the convolutional lay-

ers and neurons in fully connected layers were reduced

by half for every subsequent architecture. We considered

two such architectures, followed by an architecture that

reduced the number the layers. Briefly the architectures

are : (1) “Arch-2” : 8 kernels in each of the two convolu-

tional layers, 96 and 48 neurons in first and second fully

connected layers respectively; (2) “Arch-3” : 4 kernels in

each of the convolutional layers, 48 and 24 neurons in first

and second fully connected layers respectively; and (3)

“Arch-4” : a single convolutional layer with 4 kernels and a

fully connected layer with 24 neurons. In all architectures,

each convolutional layer is followed by max-pooling and

local-response-normalization layers similar to “Arch-1”.

Convolutional networks were implemented with the

library tensorflow version 0.8.0 (https://www.tensorflow.

org/) and K80 Nvidia GPUs. During training, parameter

values (such initial learning rate (0.1), learning rate decay

factor (0.1), number of epochs per decay(350), moving

average decay (0.999)), images transformations (approxi-

mate whitening), and data augmentation distortions (ran-

dom flip, image brightness and contrast distortions) were

used. Furthermore, we used the strategies that have been

reported to reduce model overfitting during training and

improve performances of convolutional networks [13],

such as data augmentation by introducing transforma-

tions to the training data, and moving average weight

decay. We used a batch size of 64 samples, and training

was carried out for 400,000 iterations ensuring the algo-

rithm was not trapped in local optima with unfavorable

classification accuracy.

Results and discussion

Classification performance of deep convolutional network

We use 4021 randomly chosen images of corn seeds (809

haploids and 3212 diploids) for training and 710 images

(143 haploids and 567 diploids) for testing. The training

and test datasets contained 20% haploids. The training

dataset was further split in 5-folds to assess the perfor-

mance of different network architectures (discussed in

“Architectures of deep convolutional networks” section).

We also compared the performance of the convolutional

network with an image analysis pipeline that uses feature

extraction followed by classification, an approach similar

to one used by [21] to classify pepper seed images. We

extracted Haralick texture features [22], local binary pat-

terns, zernike moments, and shape features using MAT-

LAB ‘regionprops’ (total 84 features).

https://code.google.com/p/cuda-convnet/
https://www.tensorflow.org/
https://www.tensorflow.org/
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Using these features we experimented with several

classifiers: Support Vector Machine (SVM), Random

Forest (RF), and Logistic Regression (LR) [23]. In our

experiments, Haralick texture features were found to

better discriminate haploids from diploids as compared

to morphology, color and shape features. Therefore we

also report the performances of the classifiers using only

13 Haralick features in addition to using all the features

(see Table 1). Image handling and feature extraction

were performed using the Mahotas 1.4 library package

[24] and MATLAB, and the classifiers was imple-

mented using scikit-learn library [25]. For each classifier,

the respective parameters in scikit-learn terminology

(gamma and C for SVM with a radial basis kernel;

n_estimators,min_samples_split,min_samples_leaf for

RF; regularization parameter C for LR), were chosen

using a grid search with 5-fold cross-validation (CV).

The performance results are summarized in Table 1 .We

observe DeepSort is able to classify the training images

perfectly which shows enough flexibility in its architec-

ture to learn the heterogeneity of the samples in training

dataset. In our experiments using the test dataset, we

observe DeepSort outperforms all other machine learning

classifiers, and attained a classification accuracy of 0.968.

Among the other methods compared, SVM achieved the

highest classification accuracy (0.876) using Haralick fea-

tures; 9.2% lesser than DeepSort. We discuss only this

comparitive method in the next sections. We observe the

test and cross-validation accuracies of compared meth-

ods to be lacking even though their training accuracies

were high (RF Haralick, all features; SVM all features),

demonstrating their inability to generalize. Further, we

also observed the SVM classifier to have a large num-

ber of support vectors (1390 with full training dataset and

Haralick features).

We examined the confusion matrix of DeepSort and

the best performing machine learning classifier (SVM

with Haralick features) to understand the performance

of these methods on each category individually using

the test data set (See Table 2). Diagonal values of the

confusion matrix represent the correct classification of

haploids and diploids into their appropriate categories,

and off-diagonals represent mis-classifications. DeepSort

Table 1 Comparison of classification accuracies of DeepSort and

other classifiers. Other classifiers were tested with all features

described in text (values within brackets), and using only Haralick

texture features (values outside brackets). CV indicates 5-fold

cross-validation

DeepSort Random Forest SVM Logistic Reg

CV 0.961 0.840 (0.823) 0.857 (0.836) 0.749 (0.777)

Train 1.000 1.000 (0.997) 0.911 (0.994) 0.751 (0.786)

Test 0.968 0.845 (0.824) 0.876 (0.839) 0.775 (0.772)

Table 2 Confusion Matrix for DeepSort and SVM

DeepSort SVM

Pred-Diploid Pred-Haploid Pred-Diploid Pred-Haploid

True-Diploid 556 11 545 22

True-Haploid 12 131 66 77

Pred: Predicted label; True: Actual label; Using test data (143 haploids, 567 diploids)

misclassified 11 diploid images as haploids, and 12 haploid

images as diploids, while SVM misclassified 22 diploid

images as haploids and 66 haploid images as diploids. We

observe SVM is biased towards classifying haploid images

as diploids, possibly representing the distribution of the

diploid images in the dataset. Our attempts to compen-

sate for this class bias in the SVM (using ‘balanced’ setting

for class_weight parameter in Scikit-learn) decreased the

training error but led to a larger cross-validation error

(results not shown).

Visualizing the convolutional network neurons

We conducted visualizations of the kernels and neuronal

activations of the two convolutional layers in order to

understand the features learnt by the network in achieving

superior classification performance. Understanding the

features learned by deep neural networks, and how these

features are effectively combined towards superior classi-

fication is complex (as these networks often have several

hundreds of thousands of parameters), and is an active

field of ongoing research [26, 27]. Visualization of the neu-

ronal activations in a convolution layer, weight tensors and

bias parameters; image regions/features that lead to maxi-

mal neuronal activations; and receptive fields of individual

neurons are some of the current techniques employed

towards this goal [27]. In our work, we chose to focus on

visualizations of the neuronal activations of the first two

convolutional layers, as the structure of the input images

are somewhat preserved in these two layers. We show that

these visualizations help to gain key insights into the func-

tions performed by the convolutional layers in extracting

discriminatory seed features.

Figure 3 shows the activations of the neurons in the first

two convolutional layers to an input of 30 randomly cho-

sen haploid and diploid seeds from our test dataset (i.e.

15 of each category, and denoted by columns numbered

1-15). The activations of first convolutional layer neurons

to diploid and haploid seeds are shown in Figs. 3a and 3b,

respectively. An image(i, j) in the grid of each subfigure a-d

of Fig. 3 denotes activations of all neurons that share a ker-

nel i on an input from the seed image in column j shown

at the top. Visually comparing the images in haploid and

diploid categories across a row of Fig. 3 (a & b or c & d)

allows one to identify kernels that are discriminatory and

the operations performed by them. The 16 kernels in the
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Fig. 3 Figure (a, b) shows the activations of all neurons in the convolutional layer 1 (each row corresponds to the activations that share a kernel)

across images of 15 random diploid (a) and haploid (b) seeds (each column for a seed shown at the top row) from the test data set. Similar to figures

(a, b), figures (c, d) shows the activations of neurons in the convolutional layer 2 across the same set of seeds. Kernels in the convolutional layers 1

and 2 perform various feature extractions and their complex compositions. For example, kernels 3 of first layer segments the seed from the

background, and kernel 5 of the second layer provides discriminatory features (for other examples see text). Figure (e) shows visualizations of 16

kernels from the convolutional layer 1

first convolutional layer each looking at 5× 5× 3 segment

of an input RGB image are shown in Fig. 3e. Kernels in the

second layer, looking at an input tensor 5 × 5 × 16 with a

depth larger than three, are not shown.

We observe several interesting patterns. The neurons

in the first layer perform image pre-processing opera-

tions, while those in the second layer synthesize higher

level features. Looking at the activations of neurons in the

first convolution layer in Figs. 3a and 3b, we observe ker-

nels 2, 3, 8, 11, 12, 14, 15 to broadly segment the seed

from the background, however with differences near the

seed boundaries and output intensity. We also looked at

the corresponding kernel tensors of these neurons, and

observe them to be different in terms of their magnitudes,

patterns within a given channel, and across the differ-

ent RGB channels (see Fig. 3e), possibly contributing to
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the robustness of performance across the heterogeneous

seeds. Although some kernels are seen as dark patches

in Fig. 3e, they are not uniformly zero as seen from the

raw values. Several other kernels in the first convolution

layer (kernels 4-7,9-10) extract features related to seed tex-

ture, while kernel 1 extracts texture in endosperm region

but not in the embryo. Kernel 13 serves to perform an

intensity based segmentation, while kernel 10 accentuates

embryo regions is diploid seeds (and in some haploids).

The second convolutional layer kernels extract complex

features that do not reflect the exact shape of the seeds

or embryo features. Rather these features encode more

abstract input concepts combining features extracted

from the max-pooled and normalized output of the first

convolutional layer. We notice that fewer neurons in the

second convolutional layer are active as observed by fewer

white pixels in Figs. 3c and 3d. Strikingly, activations from

the kernels 5 and 9 are already discriminatory of most

diploid and haploid seeds, roughly highlighting the pur-

ple dark regions in diploid seeds. Kernels 12 and to some

extent 15 marks the brighter regions of the embryo in the

diploid seeds with two vertical patches. Information from

these activations are further nonlinearly combined by the

fully connected layers to achieve robust performance.

Architectures of deep convolutional networks

We explored the effect of the architecture on the perfor-

mance of the convolutional network in classifying haploid

seeds from diploids by changing the number of kernels

in the convolutional layer, neurons in the fully connected

layer, and depth (i.e, number of layers) of the network

(see Table 3). We considered two different architectures

(“Arch-2” and “Arch-3”) with the same number of lay-

ers as “Arch-1”, but with reduced number of kernels and

neurons in the fully connected layer. “Arch-2” had eight

kernels in the first and second convolutional layers, and

“Arch-3” had four kernels in the convolutional layers (see

“Convolutional network” section for the number of ker-

nels/neurons, and Table 3 for the number of parameters in

each layer). Going from “Arch-1” to “Arch-3”, the number

of parameters decreases roughly four fold for each step.

We also considered a shallower architecture (“Arch-4”)

with a single convolutional and fully connected layer.

We observe that the performance of the “Arch-2” (0.968

on test set) is similar to that of “Arch-1”, whereas in

“Arch-3” the accuracy is reduced by 0.027 (or roughly 15

more test images were misclassified). We also observe

that the training accuracy goes down by 0.008 (roughly

32 more training images were wrongly classified). We

further reduced a convolutional and a fully connected

layer and obtained “Arch-4” to assess the impact of hav-

ing a shallower network. The performance on test data

dropped to 0.935 in “Arch-4” (a slight reduction as com-

pared to “Arch-3”, but lesser than “Arch-2” by 0.033),

even though the total number of parameters is more than

“Arch-3” (since “Conv1” of “Arch-4” has more neurons

than “Conv2” of “Arch-3”). Although “Arch-1” displayed

similar classification accuracy as “Arch-2” (with four times

more parameters than “Arch-2”), future experiments have

to be performed to study if more trainable parameters

enable “Arch-1” to be more robust to unseen variations

and more heterogeneity.

Conclusion

Our experiments provide evidence to the usefulness of

DeepSort in discriminating haploids from diploid seeds in

the double haploid induction process, and to its robust-

ness amidst variations arising from biological factors and

image acquisition. We establish such robustness using

thousands of seed images obtained in an industrial sce-

nario from different genetic backgrounds. Our visualiza-

tions indicate that embryo’s features are being extracted

by the network, which may be used further to classify

the seeds, as are carried out manually by agricultural

field workers. We further observe that deeper architec-

tures provide better classification accuracies as compared

to shallower architectures. In the future, we intend to

develop more general deep networks, which can classify

haploids from diploids using two un-identified images

with one showing the embryo and other not showing it,

and with minimal pre-processing.

Convolutional networks and other deep learning meth-

ods, though popular in several commercial applications

(e-commerce, social networking, retail, automotive, etc.),

have only began to find applications within agriculture

recently. The approach we use to classify corn seed images

Table 3 Effect of CNN architecture on classification accuracy (cols. 2,3) and number of parameters per layer (cols. 4-9) in each

architecture

Method Train Test Conv1 Conv2 Full1 Full2 Output Total

Arch-1 1.000 0.968 1216 6416 786,624 18,528 194 812,978

Arch-2 1.000 0.968 608 1608 196,704 4656 98 203,674

Arch-3 0.992 0.941 304 404 49,200 1176 50 51,134

Arch-4 0.989 0.935 304 - 98,328 - 50 98,682

Conv[1/2]: [first/second] convolution layers, Full[1/2] : [first/second] fully connected layers, output: final softmax layer
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into haploid or diploid categories, could be extended to

other agricultural applications. A few of these include

sorting seed images of crops such as soybean, canola,

etc. into various categories (e.g. high oil vs low oil, high-

moisture vs low-moisture, deformed vs non-deformed,

etc.), detecting pest infestations using remote sensing

images, estimating plant vigor using field images from

drones, assigning diseased status to plants from leaf

images, insect mortality rate estimation from bioassay

images, etc. The combination of different deep network

architectures with a variety of sensors (such as multispec-

tral, infra-red, MRI, etc.) offers enormous possibilities,

and will contribute to next generation agricultural phe-

notyping. In addition, modern high-throughput technolo-

gies has enabled agricultural industries to collect large

scale molecular datasets. Deep networks can be applied

to several such agricultural biotech predictive applications

using biological sequences (DNA, RNA, proteins etc.),

genetic (SNPs other genetic variations etc.), chemical,

environmental and phenotypic data.
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