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ABSTRACT In this paper, we propose a multimodal search engine that combines visual and textual cues
to retrieve items from a multimedia database aesthetically similar to the query. The goal of our engine is to
enable intuitive retrieval of fashion merchandise such as clothes or furniture. Existing search engines treat
textual input only as an additional source of information about the query image and do not correspond to
the real-life scenario, where the user looks for ‘‘the same shirt but of denim’’. Our novel method, dubbed
DeepStyle, mitigates those shortcomings by using a joint neural network architecture to model contextual
dependencies between features of different modalities. We prove the robustness of this approach on two
different challenging datasets of fashion items and furniture where our DeepStyle engine outperforms
baseline methods by more than 20% on tested datasets. Our search engine is commercially deployed and
available through a Web-based application.

INDEX TERMS Multimedia computing, multi-layer neural network, multimodal search, machine learning.

I. INTRODUCTION

Multimodal search engine allows to retrieve a set of items
from a multimedia database according to their similarity to
the query in more than one feature spaces, e.g. textual and
visual or audiovisual (see Fig. 1). This problem can be divided
into smaller subproblems by using separate solutions for each
modality. The advantage of this approach is that both textual
and visual search engines have been developed for several
decades now and have reached a certain level of maturity.
Traditional approaches such as Video Google [2] have been
improved, adapted and deployed in industry, especially in the
ever-growing domain of e-commerce. Major online retailers
such as Zalando, Alibaba and ASOS already offer visual
search engine functionalities to help users find products that
they want to buy [3]. Furthermore, interactive multimedia
search engines are omnipresent in mobile devices and allow
for speech, text or visual queries [4]–[6].
Nevertheless, using separate search engines per each

modality suffers from one significant shortcoming: it prevents
the users from specifying a very natural query such as ‘I want
this type of dress but made of silk’. This is mainly due to
the fact that the notion of similarity in separate spaces of
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different modalities is different than in one multimodal space.
Furthermore, modeling this highly dimensional multimodal
space requires more complex training strategies and thor-
oughly annotated datasets. Finally, defining the right balance
between the importance of various modalities in the context
of a user query is not obvious and hard to estimate a pri-
ori. Although several multimodal representations have been
proposed in the context of a search for fashion items, they
typically focus on using other modalities as an additional
source of information, e.g. to increase classification accuracy
of compatible and non-compatible outfits [7].

To address the above-mentioned shortcomings of the cur-
rently available search engines, we propose a novel end-to-
end method that uses neural network architecture to model
the joint multimodal space of database objects. This method
is an extension of our previous work [9] that blended multi-
modal results. Although in this paper we focus mostly on the
fashion items (clothes, accessories) and furniture, our search
engine is in principle agnostic to object types and we see no
limitations from applying it to other domains. We call our
methodDeepStyle and show that thanks to its ability to jointly
model both visual and textual modalities, it allows for a more
intuitive search queries, while providing higher accuracy than
the competing approaches. We prove the superiority of our
method over single-modality approaches and state-of-the-art
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FIGURE 1. Example of a typical multimodal query sent to a search engine
for fashion items. By modeling common multimodal space with a deep
neural network, we can provide a more flexible and natural user interface
while retrieving results that are semantically correct, as opposed to the
results of the search based on the state-of-the-art visual search
embedding model [8].

multimodal representation using two large-scale datasets of
fashion and furniture items. Finally, we deploy our DeepStyle
search engine as a web-based application.
To summarize, the contributions of our paper are threefold:
• We introduce a novel DeepStyle-Siamese method for
retrieval of stylistically similar product items that could
be applied to a broad range of domains. To the best of
our knowledge, this is the first system for joint learning
of stylistic context as well as semantic regularities of
both image and text. The proposed method outperforms
the baselines on diversified datasets from fashion and
interior design domains by 18 and 21%, respectively.

• Our system is deployed in production and available
through a Web-based application.

• Last but not least, we introduce a new interior design
dataset of furniture items offered by IKEA, an inter-
national furniture manufacturer, which contains both
visual and textual meta-data of over 2 000 objects from
almost 300 rooms. We plan to release the dataset to the
public.

The remainder of this work is organized in the following
manner. In Sec. II we discuss related work. In Sec. III we
present a set of methods based on blending single-modality
search results that serve as our baseline. Finally, in Sec. IV,
we introduce our DeepStyle multimodal approach as well
as its extension. In Sec. V we present the datasets used
for evaluation and in Sec. VI we evaluate our method and
compare its results against the baseline. Sec. VIII concludes
the paper.

II. RELATED WORK

In this section, we first give an overview of the current
visual search solutions proposed in the literature. Secondly,
we discuss several approaches used in the context of a

textual search. We then present works related to defining
similarity in the context of aesthetics and style, as it directly
pertains to the results obtained using our proposed method.
Finally, we present an overview of existing search methods
in fashion domain as this topic is gaining popularity.

A. VISUAL SEARCH

Traditionally, image-based search methods drew their inspi-
ration from textual retrieval systems [10]. By using k-means
clustering method in the space of local feature descriptors
such as SIFT [11], they are able to mimic textual word entities
with the so-called visual words. Once the mapping from
image salient keypoints to visually representative words was
established, typical textual retrieval methods such as Bag-
of-Words [12] could be used. Video Google [2] was one of
the first visual search engines that relied on this concept.
Several extensions of this concept were proposed, e.g. spatial
verification [13] that checks for geometrical correctness of
initial query or fine-grained image search [14] that accounts
for semantic attributes of visual words.

Successful applications of deep learning techniques
in other computer vision applications have motivated
researchers to apply those methods also to visual search. Pre-
liminary results proved that applications of convolutional
neural networks [15] (image-based retrieval), as well as other
deep architectures such as Siamese networks [16] (content-
based image retrieval) may be successful. New methods have
been proposed to bridge the gap between real-shot images
from users, that often contain a lot of clutter, and online
shop images [17]. New ranking and indexing methods have
been proposed to deal with large scale data, often containing
billions of images [17], [18].

Nevertheless, all of the above-mentioned methods suffer
from one important drawback, namely they do not take into
account the stylistic similarity of the retrieved objects, which
is often a different problem from visual similarity. Items that
are similar in style do not necessarily have to be close in visual
features space.

B. TEXTUAL SEARCH

First methods that proposed to address textual information
retrieval were based on token counts, e.g. Bag-of-Words [12]
or TF-IDF [19].

Later, a new type of representation called word2vec was
proposed by Mikolov et al. [20]. The proposed models in
word2vec family, namely continuous Bag of Words (CBOW)
and Skip-Grams, allow the token representation to be learned
based on its local context. To grasp also the global context
of the token, GloVe [21] has been introduced. GloVe takes
advantage of information both from the local context and the
global co-occurrence matrix, thus providing a powerful and
discriminative representation of textual data. Similarly, not all
queries can be represented with a text only. There might be a
clear textual definition missing for style similarities that are
apparent in visual examples. Also, the same concepts might
be expressed in synonymical ways.
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C. STYLISTIC SIMILARITY

Comparing the style similarity of two objects or scenes is
one of the challenges that have to be addressed when train-
ing a machine learning model for interior design or fashion
retrieval application. This problem is far from being solved
mainly due to the lack of a clear metric defining how to mea-
sure style similarity. Various approaches have been proposed
for defining style similarity metric. Some of them focus on
evaluating similarity between shapes based on their struc-
tures [22], [23] and measuring the differences between scales
and orientations of bounding boxes. Other approaches pro-
pose the structure-transcending style similarity that accounts
for element similarity [24]. In this work, we follow [25],
and define style as a distinctive manner which permits the
grouping of works into related categories. We enforce this
definition by including context information that groups dif-
ferent objects together (in terms of clothing items in an outfit
or furniture in a room picture in interior design catalog). This
allows us to a take data-driven approach that measures style
similarity without using hand-crafted features and predefined
styles.

D. DEEP LEARNING IN FASHION

There has been a significant number of works published
in the domain of fashion item retrieval or recommendation
due to the potential of their application in highly profitable
e-commerce business. Some of them focused on the notion of
fashionability, e.g., [26] rated a user’s photo in terms of how
fashionable it is and provided fashion recommendations that
would increase overall outfit score. Others focused on fashion
items retrieval from online database when presented with user
photos taken ’in the wild’ usually with phone cameras [27].
Finally, there is ongoing research in terms of clothing coseg-
mentation [28], [29] that is an important preprocessing step
for better item retrieval results.
Kiros et al. [8] present an encoder-decoder pipeline

that learns a joint Visual-Semantic Embedding (VSE) from
images and a text, which is later used to generate text cap-
tions for custom images. Their approach is inspired by suc-
cesses in Neural Machine Translation (NMT) and perceives
visual and textual modalities as the same concept described
in different languages. The proposed architecture consists
of LSTM, which is a type of recurrent neural network, for
encoding sentences, convolutional neural network (CNN)
for encoding images and structure-content neural language
model (SC-NLM) for decoding. The authors show that their
learnedmultimodal embedding space preserves semantic reg-
ularities in terms of vector space arithmetic e.g. image of
a black car - ‘‘black’’ + ‘‘red’’ is near images of red cars.
However, results of this task are only available in some
example images. We would like to leverage their work and
numerically evaluate multimodal query retrieval, specifically
in the domain of fashion and interior design.
Ben-Younes et al. [30] introduced MUTAN, a method for

multimodal fusion between visual and textual information
using a bilinear framework. It uses a multimodal tensor-based

Tucker decomposition in order to efficiently parametrize
bilinear interactions between the two representations. Addi-
tional low-rank matrix constraint is designed to allow for
controlling the full bilinear interaction complexity. While
in the original paper, authors evaluate architecture primarily
on the Visual Question Answering task, we would like to
utilize it when learning a joint multimodal representation.
In the similar manner, as with the previously mentioned VSE,
we evaluate it on multimodal query retrieval in the domain of
fashion and interior design.

Xintong Han et al. [31] train bi-LSTM model to predict
next item in the outfit generation. Moreover, they learn a joint
image-text embedding by regressing image features to their
semantic representations aiming to inject attribute and cate-
gory information as a regularization for training the LSTM.
It should be noted, however, that their approach to stylis-
tic compatibility is different from ours in a way that they
optimize for generation of a complete outfit (e.g. it should
not contain two pairs of shoes) whereas we would like to
retrieve items of similar style regardless of the category they
belong to. Also, they evaluate compatibility with ‘‘fill-in-the-
blanks’’ test that does not incorporate retrieval from the full
dataset of items. Only several example results are illustrated
and no quantitative evaluation is presented.

Numerousworks focus on the task of generating a compati-
ble outfit from available clothing products [7], [31]. However,
very few of the related works focus on the notion of product
retrieval with multimodal query. Some attempts have been
made to improve visual search with text information gener-
ated by running classification algorithm on the image [32].
Such methods however do not allow for explicit text input
that is independent or different from visual information. Text
information is only used as an alternative query and not as a
complementary information to extend the information about
the searched object. A similar line of research that works
with multimodal representations for retrieval is dialog-based
image retrieval [33]–[35]. However those methods focus pri-
marily on conversational agents and sequential improvement
of the results instead of one-shot search. Finally, research
community has not yet paid much attention to define or
evaluate style similarity.

III. FROM SINGLE TO MULTIMODAL SEARCH

In this section, we present a baseline style search engine
model introduced in [9], which is the basis for our current
research. It is built on top of two single-modal modules.
More precisely, two searches are run independently for both
image and text queries resulting in two initial sets of results.
Then, the best matches are selected from initial pool of results
according to blending methods - re-ranking based on visual
features similarity to the query image as well as on contextual
similarity (items that appear more often together in the same
context).

For input, baseline style search engine takes two types of
query information: an image containing object(-s), e.g. a pic-
ture of a dining room, and a textual query used to specify
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FIGURE 2. A high-level overview of our Early-fusion Blending architecture. Visual search finds closest neighbors of the
image query in the space of extracted visual features that are the outputs of a pre-trained deep neural network. For each of
the retrieved visually similar items, we search for the contextually similar, i.e. items that appeared together in the
compatible sets from database, and extend the set of results with those items. The textual block allows to further specify
search criteria with text in order to narrow down the set of stylistically and aesthetically similar items, to those that are
relevant to the query.

search criteria, e.g. cozy and fluffy. If needed, an object
detection algorithm is run on the uploaded picture to detect
objects of classes of interest such as chairs, tables or sofas.
Once the objects are detected, their regions of interest are
extracted as picture patches and run through visual search
method. For queries that already represent a single object,
no object detection is required. Simultaneously, the engine
retrieves the results for a textual query. With all visual and
textual matches retrieved, our blending algorithm ranks them
depending on the similarity in the respective feature spaces
and returns the resulting list of stylistically and aesthetically
similar objects. Below, we describe each part of the engine in
more details.

A. VISUAL SEARCH

Instead of using an entire image of the interior as a query, our
search engine applies an object detection algorithm as a pre-
processing step. This way, not only can we retrieve the results
with higher precision, as we search only within a limited
space of same-class pictures, but we do not need to know the
object category beforehand. This is in contrast to other visual
search engines proposed in the literature [16], [36], where the
object category is known at test time or inferred from textual
tags provided by human labeling.
For object detection, we used YOLO 9000 [37], which is

based on the DarkNet-19 model [37], [38] and is a variety of a

neural network. The bounding boxes are then used to generate
regions of interest in the pictures and search is performed on
the extracted parts of the image.

Once the regions of interest are extracted, we feed them
to a pretrained deep neural network to get a vector repre-
sentation. More precisely, we use the outputs of fully con-
nected layers of neural networks pretrained on ImageNet
dataset [39]. We then normalize the extracted output vec-
tors, so that their L2 norm is equal to 1. We search for
similar images within the dataset using this representation to
retrieve a number of closest vectors (in terms of Euclidean
distance).

To illustrate how the space of extracted visual features
preserves the visual similarity of product items, we have visu-
alized the visual features embedding (fig. 10) with common
dimensionality reduction technique t-SNE [40]. It is clearly
seen that products that share colour, shape or texture features
appear close together.

To determine the pretrained neural network architecture
providing the best performance, we conduct several experi-
ments that are illustrated in Fig. 3. As a result, we choose
ResNet-50 as our visual feature extraction architecture.

B. TEXT QUERY SEARCH

To extend the functionality of our Style Search Engine,
we implement a text query search that allows to further
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FIGURE 3. Architecture comparison for choosing the object detection
model in Visual Search. The recall is plotted as a function of the number
of returned items k . Best retrieval results are achieved for YOLO object
detection and visual features exraction from Resnet-50.

specify the search criteria. This part of our engine is particu-
larly useful when trying to search for product items that rep-
resent abstract concepts such as minimalism, Scandinavian
style, casual and so on.
In order to perform such a search, we need to find a

mapping from textual information to vector representation of
the item, i.e, from the space of textual queries to the space
of items in the database. The resulting representation should
live in a multidimensional space, where stylistically similar
objects reside close to each other.
To obtain the above-defined space embedding, we use a

Continuous Bag-of-Words (CBOW) model that belongs to
word2vec model family [20]. In order to train our model,
we use the descriptions of items available as a metadata
supplied with the catalog images. Such descriptions are avail-
able as part of both, the IKEA and the Polyvore datasets,
which we describe in details in Sec. V. Textual description
embedding is calculated as a mean vector of individual words
embeddings.
In order to optimize hyper-parameters of CBOW for item

embedding, we run a set of initial experiments on the valida-
tion dataset and use cluster analysis of the embedding results.
We select the parameters that minimize intra-cluster distances
at the same maximizing inter-cluster distance.
Having found such a mapping, we can perform the search

by returning k-nearest neighbors of the transformed query
in the space of product descriptions from the database using
cosine similarity as a distance measure.

C. CONTEXT SPACE SEARCH

In order to leverage the information about different item
compatibility, which is available as a context data (outfit or
room), we train an additional word2vec model (using the
CBOWmodel), where different products are treated as words.
Compatible sets of those products appearing in the same
context are treated as sentences. It is worth noticing that our
context embedding is trainedwithout relying on any linguistic
knowledge. The only information that the model sees during
training is whether given objects appeared in the same set.
Fig. 4 shows the obtained feature embeddings using t-SNE

dimensionality reduction algorithm [40] for IKEA dataset.
One can see that some classes of objects, e.g. those that appear

FIGURE 4. T-SNE visualization of interior items’ embedding using context
information only. Distinctive classes of objects, e.g., those that appear in
a bathroom or a baby room, are clustered around the same region of the
space. No text descriptions nor information about image room categories
was used during training.

in a bathroom or a baby room, are clustered around the same
region of the space.

D. BLENDING METHODS

Let us denote p = (i, t) to be a representation of a product
stored in the database P. This representation consists of a
catalog image i ∈ I and the textual description t ∈ T.
The multimodal query provided by the user is given by Q =

(iq, tq),where iq ∈ I is the visual query and tq ∈ T is the
textual query.

We run a series of experiments with blending methods,
aiming to combine the retrieval results from various modal-
ities in the most effective way. To that end, we use the
following approaches for blending.

1) LATE-FUSION BLENDING

In the simplest case, we retrieve top k items independently
for each modality and take them to as a set of final results.
We do not use the contextual information here.

2) EARLY-FUSION BLENDING

In order to use the full potential of our multimodal search
engine, we combine the retrieval results of visual, textual
as well as contextual search engines in the specific order.
We optimize this order to present the most stylistically coher-
ent sets to the user. To that end, we propose Early-fusion
Blending (see Fig. 2) approach that uses features extracted
from different modalities in a sequential manner.

More precisely, for a multimodal query (iq, tq), an initial
set of results Rvis is returned for visual modality - closest
images to iq in terms of Euclidean distance dvis between their
visual representations. Then, we retrieve contextually similar
products Rcont that are close to Rvis results in terms of dcont
distance in context embedding space (context space search
described in section III-C). Finally, Rvis and Rcont form a list
of candidate itemsRcand fromwhichwe select the resultsR by
extracting the textual features (word2vec vectors) from items
descriptors and rank them using distance from the textual
query dtext .
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FIGURE 5. The proposed architecture of DeepStyle network. An image is first fed through the ResNet-50 network pretrained on ImageNet
while the corresponding text description is transformed with Word2vec. Final layer predicts a clothing item category. Penultimate layer
serves as a multimodal image and text representation of the product item.

This process can be formulated as:

Rvis =







p : argmin
p1,...,pn1∈P

n1
∑

j=1

dvis(iq, ij)







⇒ Rcont =
⋃

r∈Rvis







p : argmin
p1,...,pn2∈P

n2
∑

j=1

dcont (cr , cj)







⇒ Rcand = Rcont ∪ Rvis

R =







p : argmin
p1,...,pn3∈Rcand

n3
∑

j=1

dtext (tq, tj)







(1)

where n1, n2 and n3 are parameters to be chosen.

IV. DEEPSTYLE: MULTIMODAL STYLE SEARCH

ENGINE WITH DEEP LEARNING

Inspired by recent advancements in deep learning for com-
puter vision, we experiment with end-to-end approaches that
learn the embedding space jointly. In this section, we describe
experiments with artificial neural networks that we did to
create a joint image-text model. Our goal is to have onemodel
that takes image and text and returns product items satisfying
both modalities. First, we start with a simple approach and
experiment with a single neural network that is fed with
multiple inputs and learns a multimodal embedding space.
Such embedding can later be used to retrieve results using
a multimodal query. The first proposed architecture is a mul-
timodal DeepStyle network that learns common image-text
embedding through classification task. Then, we go further
and improve over the first network with the information we
have about products’ context (outfit). The most straightfor-
ward way tomake neural network learn the distances between
similar and non-similar items is by introducing a Siamese
architecture with shared weights and contrastive loss.

The resulting architecture that learns to map pairs from the
same outfit close in the multi-modal embedding space is
called DeepStyle-Siamese network.

A. DEEPSTYLE

Our proposed neural network learns common embedding
through classification task. Our architecture, dubbed Deep-
Style, is inspired by [7], where they use a multimodal joint
embedding for fashion product retrieval. In contrast to their
work, our goal is not to retrieve images with text query
(or vice versa) but to retrieve itemswhere a text query compli-
ments the image and provides additional query requirements.

Similarly to [7], our network has two inputs - image fea-
tures (output of penultimate layer of pretrained CNN) and text
features (processed with the same word2vec model trained
on descriptions). Each input vector is followed by the fully-
connected (Dense) layer in order to bring them to the com-
mon dimensionality. This way, we avoid our network to be
biased towards particular modality. The resulting vectors are
concatenated into the single embedding vector and the param-
eters of the resulting network are optimized for classification
loss to enforce the concept of semantic regularities. For this
purpose, product category labels (with arbitrary number of
classes) should be present in the dataset. Unlike [7], we do
not consider the image and the text branches separately for
predictions but add a fully connected layer on top of the con-
catenated image and text embeddings that is used to predict a
single class. Illustration of network architecture is presented
in fig. 5. For more detailed explanation of neural network
components see the Appendix A.

B. DEEPSTYLE-SIAMESE

We want to also include context information (whether or not
two items appeared in the same context) to our network. For
this purpose, we design a Siamese network [41] where each
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branch has a dual input consisting of image and text features.
Positive pairs are generated as image-text pairs from the
same outfit while unrelated pairs are obtained by randomly
sampling an item (image and description) from a different
outfit.

FIGURE 6. The architecture of DeepStyle-Siamese network. DeepStyle
block is the block of dense and concatenation layers from Fig. 5 that has
shared weights between the image-text pairs. Three kinds of losses are
optimised - the classification loss for each image-text branch and the
contrastive loss for image-text pairs. Contrastive loss is computed on
joint image and text descriptors.

As seen in fig. 6, two types of losses are optimized. Classi-
fication loss is used as before to help network learn semantic
regularities. Also, minimizing contrastive loss encourages
image-text pairs from the same outfit to have a small distance
between embedding vectors while different outfit items to
have distance larger than a predefined margin.
Formally, contrastive loss is defined in the following

manner [41]:

LC (d, y) = (1 − y)
1

2
d2 + y

1

2
{max(0,m− d)}2, (2)

where d is the Euclidean distance between two different
embedded image-text vectors (i, t) and (i′, t ′), y is a binary
label indicating whether two vectors are from the same outfit
(y = 0) or from different outfits (y = 1) andm is a predefined
margin for the minimal distance between items from different
outfits.
Full training loss L consists of weighted sum of contrastive

loss and cross entropy classification losses:

L = αLC (d, y) + βLX (Cl1(i, t), ỹ(i, t))

+ γLX (Cl2(i
′, t ′), ỹ(i′, t ′)), (3)

where LX is the cross entropy loss, Cl1(i, t) and Cl2(i, t)
are outputs of the first and second classification branches

respectively and ỹ(i, t) is the category label for product with
image i and text description t . Parameters α, β, γ are treated
as hyperparameters for tuning.

V. DATASETS

Although several datasets for standard visual search methods
exist, e.g. Oxford 5K [13] or Paris 6K [42], they are not
suitable for our experiments, as our multimodal approach
requires an additional type of information to be evaluated.
More precisely, dataset that can be used with a multimodal
search engine should fulfill the following conditions:

• It should contain both images of individual objects as
well as scene images (room/outfit image) with those
objects present.

• It should have a ground truth defining which objects are
present in scene photo.

• It should also have textual descriptions.
We specifically focus on datasets containing pictures of

interior design and fashion as both domains are highly depen-
dant on style and would benefit from style search engine
applications. In addition, we analyze datasets with varying
degrees of context information, as in real life applications it
might differ from dataset to dataset. For example, in some
cases (specifically when the database is not very extensive),
items can co-occur very often together (in context of the same
design, look or outfit). Whereas in other cases, when database
of available items is much bigger, the majority of items will
not have many co-ocurrences with other items. We apply our
Multimodal Search Engine for both types of datasets and
perform quantitative evaluation to find the best model.

A. INTERIOR DESIGN

To our knowledge, there is no publicly available dataset
that contains the interior design items and fulfill previously
mentioned criteria. Hence, we collect our own dataset by
scraping the website of one of the most popular interior
design distributors - IKEA.1 We collect 298 room photos with
their description and 2193 individual product photos with
their textual descriptions. A sample image of the room scene
and interior item along with their description can be seen
in Fig. 7. We also group together products from some of the
most frequent object classes (e.g. chair, table, sofa) for more
detailed analysis. In addition, we divide room scene photos
into 10 categories based on the room class (kitchen, living
room, bedroom, children room, office). The vast majority of
furniture items in the dataset (especially from the frequent
classes above) have rich context as they appear in more than
one room.

B. FASHION

Several datasets for fashion related tasks are already pub-
licly available. DeepFashion [43] contains 800 000 images
divided into several subsets for different computer vision
tasks. However, it lacks the context (outfit) information as
well as the detailed text description. Fashion Icon [28] dataset

1https://ikea.com/
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FIGURE 7. Example entries from IKEA dataset. It contains room images,
object images, and their respective text descriptions.

FIGURE 8. Example entries from Polyvore dataset. It contains outfit
images, item images, and their respective text descriptions.

contains video frames for human parsing but no individual
product images. In contrast, Polyvore [31] dataset has satis-
fied our dataset conditions mentioned before (see Fig. 8).

Polyvore dataset contains 111 589 clothing items that
are grouped into compatible outfits (of 5-10 items per
outfit). We perform additional dataset cleaning - remove non-
clothing items such as electronic gadgets, furniture, cosmet-
ics, designer logos, plants, furniture. In addition, we perform
additional scraping of Polyvore2 website for product items
in the cleaned dataset to obtain longer product descriptions
and add the descriptions where they are missing. As a result,
we have 82 229 items from 85 categories with text descrip-
tions and context information. Context information is much
weaker when compared to IKEA dataset. Only 30% of cloth-
ing items appear in more than one outfit. Sample images
from Polyvore dataset together with illustration of cleaning
procedure are shown in fig. 9.

Item (query) images are already object photos. Therefore,
for fashion dataset object detection step from style search
engine is omitted for evaluation.

VI. EVALUATION

In this section we want to evaluate our method and check
howwell it performs in the task of finding similar items when

2http://polyvore.com

FIGURE 9. Illustration of Polyvore dataset. Cleaned items column shows
items removed from the original dataset [31] after cleaning procedures.

compared to baselines by querying on a subset of images and
a set of popular text queries.

A. EVALUATION METRICS

1) SIMILARITY SCORE

As mentioned in Sec. II-C, defining a similarity metric that
allows quantifying the stylistic similarity between products is
a challenging task and an active area of research. In this work,
we propose the following similarity measure that is inspired
by [25] and based on the probabilistic data-driven approach.

Let us remind that P is a set of all possible product items
available in the catalog. Let us then denote C to be a set of all
sets that contain stylistically compatible items (such as outfits
or interior design rooms). Then we search for a similarity
function between two items p1, p2 ∈ P which determines
if they fit well together. We propose the empirical similarity
function sc : P × P → [0, 1] which is computed in the
following way:

sc(p1, p2) =
|{Ci ∈ C : p1 ∈ Ci ∧ p2 ∈ Ci}|

maxp∈{p1,p2} | {Cj ∈ C : p ∈ Cj} |
. (4)

In fact, it is the number of compatible sets Ci that are empiri-
cally found from C, in which both p1 and p2 appear, normal-
ized by the maximum number of compatible sets in which
any of those items occur. This metric can be interpreted as an
empirical probability for the two objects p1 and p2 to appear
in the same compatible set and it is expressed by the similarity
score lying in the interval [0, 1]

In order to account for datasets that have weak context
information (where two items rarely co-occur in the same
compatible set), we add an additional similarity measure sn
that is directly derived from their name overlap. It counts for
overlap of some of the most frequent descriptive words such
as elegant, denim, casual, etc. It should be mentioned, how-
ever, that product name information should be independent
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FIGURE 10. T-SNE visualization of clothing items’ visual features
embedding. Distinctive classes of objects, e.g. those that share visual
similarities are clustered around the same region of the space.

from the text description (that is used during training). As a
result, name-derived similarity is non-zero only on datasets
that have this kind of additional name information.

sn(p1, p2) = 1{Wp1 ∩Wp2 6= ∅}, (5)

where Wf is a set of frequent descriptive words appearing in
the name of item f .
To summarize, an evaluated pair is considered to be similar

if either of the two conditions is satisfied:
• items co-occurred in the same outfit before
• names of the two items are overlapping
Formally,

s(p1, p2) = max (sc(p1, p2), sn(p1, p2)) . (6)

We also experiment with alternative similarity function.
The main motivation to use this method, is an attempt to
capture the transitive nature of the style compatibility. In other
words, if an item 1 appeared in the set A but not in B, while
item 2 appeared in the set B but not in A, we can still treat
them as somehow compatible if there is an item 3 which
appeared in both A and B.
Firstly, in order to leverage the information about different

item compatibility, which is available as an empirical com-
patible sets data, we train a word2vec model were different
products are treated as words and compatible set’s of those
products, appearing in the same outfits, as sentences. The
model has a context window of 3 items and does not ignore
any item appearing at least once, and it is set to produce
100 dimensional vectors using CBOW.
Secondly, for similar purpose, we train word2vec model

on the item names data. This way, we evaluate the extent to
which our system capture the semantic information contained

in the textual part of the multimodal query. The model has a
context window of 4 words and similarly builds vocabulary
on all words appearing at least once, producing 100 dimen-
sional vectors using CBOW.

Finally, to compute style similarity score between the two
items we use an average of the two cosine distances in the
mentioned embeddings. This way we achieve continuous
method for evaluation.

2) INTRA-LIST SIMILARITY

Given that our multimodal query search engine provides a
non-ranked list of stylistically similar items, the definition of
the evaluation problem differs significantly from other infor-
mation retrieval domains. For this reason, instead of using
some of the usual metrics for performance evaluation like
mAP [44] or nDCG [45], which use a ranked list of items as an
input, we apply a modified version of the established metric
for non-ranked list retrieval. Inspired by the [46], we define
the average intra-list similarity for a generated results list R
of length k to be:

AILS(R) =

(

k

2

)−1
∑

pi∈R

∑

pj∈R,pi 6=pj

s(p1, p2), (7)

that is an average similarity score computed across all possi-
ble pairs in the list of generated items. By doing so, we are
aiming to assess the overall compatibility of the generated
set. As mentioned in [46], this metric is also permutation-
insensitive, hence the order of retrieved results does not
matter, making it suitable for not ranked results.

B. BASELINE METHODS

In experiments, we compare our approach with several
baselines.

One area of research that uses multimodal representations
is Visual Question Answering (VQA). We take several recent
methods and use their intermediate multimodal embedding
as feature extractor for products database. Then comparison
is made with our method in multimodal products retrieval.

We fine-tune the weights of Visual Semantic Embedding
(VSE) [8] model made publicly available by authors on our
datasets. The model was pretrained on MS COCO dataset
that has 80 categories with broad semantic context, hence it’s
applicable to our datasets. Original VSE implementation uses
VGG 19 [47] architecture for feature extraction. In order to
allow fair comparison, we train an additional baseline model
with VSE that uses Resnet-50 as a feature extractor.

Another recent VQA approach for multimodal representa-
tion learning from text and image is MUTAN [30]. It is a mul-
timodal tensor-based Tucker decomposition that efficiently
parametrizes bilinear interactions between visual and textual
representations.

Furthermore, we compare our approachwith one-shot mul-
timodal search [32] that has been recently applied for item
retrieval from multimodal database. The proposed method
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FIGURE 11. Mean AILS metric scores for selected textual queries and the
average of the mean scores for other methods and strongest
baseline (VSE-VGG). We can see that our DeepStyle-Siamese architecture
significantly outperforms other architectures on multiple text queries.

generates augmented feature vectors from concatenated text
and image vectors.
We also compare our method with Late and Early-fusion

Blending strategies from our previous work [9].

C. RESULTS

1) TRAINING DETAILS

We run the training for 50 epochs with batch size set
to 128 until validation loss stops improving. We experiment
with several optimizers and achieve the best results with
Adam [48] and learning rate set to be 0.0001. More detailed
experiments with different metrics and architecture structure
are presented in section B (Appendix B). Training time of one
epoch takes on average 230 seconds onGeForceGTX1080Ti
graphics card.

2) EVALUATION PROTOCOL

In order to test the ability of our method to generalize,
we evaluate it using a dataset different from the training
dataset. For both datasets, we set aside 10% of the initial
number of items for that purpose. All results shown in this
section come from the following evaluation procedure:
1) For each item/text query from the test set we extract

visual and textual features.
2) We run engine and retrieve a set of k most compatible

items from the trained embedding space.

3) We evaluate the query results by computing an Aver-
age Intra-List Similarity metric for all possible pairs
between the retrieved items and the query, which gives
(

k
2

)

pairs for k retrieved items.
4) The final results are computed as the mean of AILS

scores for all of the tested queries.
It should be noted that for the IKEA dataset, object detection
is performed on room images and similar items are returned
for the most confident item in the picture. On the other hand,
for Polyvore dataset, the test set images are already catalog
items of clothes on white background, hence the object detec-
tion is not necessary and this step is omitted.

3) QUANTITATIVE RESULTS

Tab. 1 shows the results of the blendingmethods for the IKEA
dataset in terms of the mean value of our similarity metric.

When analyzing the results of blending approaches,
we experiment with several textual queries in order to eval-
uate system robustness towards changes in the text search.
We observe that DeepStyle approach outperforms all base-
lines for almost all text queries achieving the highest average
similarity score. DeepStyle-Siamese approach gives the best
results, outperforming the strongest baseline (VSE-VGG19)
by 21% for IKEA dataset. It should also be noted that network
complexity is not directly correlated with its ability to learn
style similarity that is illustrated by worse similarity results
on VSE baseline that extracts Resnet-50 features instead of
VGG-19. For coherence, we include an additional experiment
of training DeepStyle-Siamese network with VGG-19 feature
extraction as input. Similarity values on test set for this
DeepStyle version are slightly worse than trained with Resnet
features, however the difference is not significant.

Tab. 2 shows the results of all of the tested methods for
the Polyvore dataset in terms of the mean value of our simi-
larity metric. Here, we also evaluate two joint architectures,
namelyDeepStyle andDeepStyle-Siamese. Fig.11 shows that
DeepStyle architecture yields better results in terms of an
average performance over different textual queries, when
compared to our previous blending approaches, as well as
other baselines. In this case, DeepStyle-Siamese also yields
the best average similarity results. In terms of an average
performance, it scores by 32% higher, when compared to the
strongest baseline model, and more than 4% higher, when
compared to DeepStyle.

TABLE 1. Mean AILS results averaged for IKEA dataset and sample text queries from the set of most frequent words in text descriptions.
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TABLE 2. Mean AILS results for fashion Search on Polyvore dataset. Sample text queries are selected from the set of most frequent words in text
descriptions.

TABLE 3. Mean similarity per text query category with and without
context information available during the training stage.

FIGURE 12. Hyperparameter analysis for early-fusion blending and
n3 = 4 number of final results. The choice of n1 = 3 and n2 = 4 gives
optimal similarity results.

It can be observed by the reader, that adding contextual
information helps both systems to achieve better results.
For blending approaches, Early-fusion, where the contex-
tual embedding was used as a part of the retrieval pro-
cess, outperforms Late-fusion, where this embedding was not
used. Similarly, DeepStyle-Siamese architecture which was
learned using matching pairs of furniture, hence implicitly
using contextual information, outperforms plain DeepStyle
architecture which was not using it.

4) TEXT QUERY ANALYSIS

The choice of text queries for input is completely arbitrary as
they provide additional description that does not have to be
related to image content. Hence we analyze if any types of

TABLE 4. Mean number of distinct categories present in the results list
for different fashion search methods.

FIGURE 13. Sample screenshot of our Style Search Engine for interior
design applied in web application showing product detection and
retrieval of visually similar products.

text queries work better with our model. We group the set of
most common descriptive words in Polyvore descriptions by
separate categories, such as fabrics (leather, suede, denim),
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FIGURE 14. Sample multimodal results compared with baselines. We observe how results differ for typical fashion text queries (‘‘wool’’, ‘‘men’’,
‘‘leather’’, ‘‘boho’’) on two test images. Our method (DeepStyle-Siamese) returns similar items corresponding to text query as well as extends visual
search with items from different categories that share style similarities. We can see how our approach is different from other methods that focus
mostly on shapes and colours similarity (VSE-VGG, VSE-Resnet) or methods that rely stronger on text retrieval (MUTAN).

color, style (floral, vintage, classic) and human body (ankle,
skinny, average). The comprehensive analysis is presented in
table 3. Onemay observe that text queries related to color give
slightly better similarity results. This might seem intuitive as
the concept of color seems easy to define and learn. On the
other hand, the average similarity difference is not significant
between various text groups, implying that all types of queries
can be used with our method.

5) CONTEXTUAL ANALYSIS

Moreover, we investigated influence of using embedding
trained on data coming from the domain source and general
source. For this reason, we trained our word2vec embeddings
using two datasets separately, firstly using the data dump
from English Wikipedia [49], hence not including contextual
information and secondly on the dataset that was built using
all product descriptions, hence taking contextual approach.
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As it can be observed in the table 3, the differences in the
performance are not significantly large. From the practical
perspective however, the Wikipedia dataset is substantially
larger, which influences both the training time and the size
of the embedding. For this reason, we decided to use the
embedding trained on the dataset of product descriptions in
the final model.

6) HYPERPARAMETER ANALYSIS

We analyze influence of hyper-parameters on blending meth-
ods. The number of final results presented to the user is set
to 4 for all methods and baselines, hence we set n3 = 4.
Figure 12. displays how different values of n1 and n2 impact
similarity. In the range of considered values we observe that
the right balance between parameters gives similarity values
higher by 0.05 and the optimal parameters are n1 = 3 and
n2 = 4.

7) CATEGORY DIVERSITY ANALYSIS

We analyze mean number of distinct object categories present
in the results set (for each query and k = 4 result items).
Mean similarity as it is defined in Section VI depends on
both name similarity as well as item co-occurence in outfit.
Hence, method that would only return similar objects of the
same class would not maximize the similarity metric. We see
from Table 4 that VSE-Resnet has the lowest average number
of distinct categories, which suggests that results from this
method mostly focus on visual similarity. On the other side
of the spectrum, MUTAN [30] and Early-Fusion Blending
results have the most intra-results category diversity which
means lower similarity in terms of object categories.

8) QUALITATIVE RESULTS

Fig. 1 and 16 display sample results for user queries in
both fashion and interior design domains. Fig. 1 illustrates
that semantics are preserved with multimodal query and user
is presented with results that combine both visual and tex-
tual queries. In the Fig. 14 detailed qualitative analysis is
presented. Multimodal search results are shown for sample
images with typical fashion text queries. We can see that our
method is capable of retrieving visually similar results that
correspond to text query but can also extend to objects from
different categories that fit the semantics and have higher
outfit compatibility.

VII. WEB APPLICATION

To apply our method in real-life application, we implemented
a Web-based application of our Style Search Engine with
application to Interior Design. The application allows the user
either to choose the query image from a pre-defined set of
room images or to upload his/her own image. The application
was implemented using Python Flask3 - a lightweight server
library. It is currently released to public.4 Fig. 16 shows

3http://flask.pocoo.org/
4http://stylesearch.tooploox.com/

a screenshot from the working Web application with Style
Search Engine.

VIII. CONCLUSIONS

In this paper we propose a new method for multimodal query
item retrieval. The proposed method is a Siamese neural
network architecture that learns style similarity by leveraging
on empirical context information - how often given items
appear in the same stylistic context. Our method surpasses
baseline methods and achieves state-of-the-art results for the
generation of stylistically compatible item sets using multi-
modal queries.
The biggest advantage of our method is two-fold. First,

it allows to extend the visual query with arbitrary text input
and convey information that is not included in visual input,
thus allowing the user to find better suited products. Second,
it retrieves results that are compatible stylistically.
The main disadvantage of the method is the need for

vast labeled data in terms of scene images (context informa-
tion where items appear together). Semi-supervised learning
approaches that could reduce the need for such data are
subject to our future work.
We successfully apply our methodology for several com-

mercial domain applications - fashion and interior design,
by exploiting the product images and their associated meta-
data. Finally, we deploy a publicly available web implemen-
tation of our solution and release the new data set with the
IKEA furniture items.

APPENDIX A

The basic model of Fully-connected network, also known as
the Multi-layered Perceptron, can be described as a series
of functional transformations. Given the n-dimensional input
vector x = x1, x2, ...xn we construct M linear combinations
of the input variables as follows:

aj(x) = w
(1)
j0 +

n
∑

i=1

w
(1)
ij xi, (8)

where j = 1, . . . ,M and M is a parameter to be selected.
Superscript (1) indicates that the corresponding weight
parameters (represented by the links in the network) are in the
first layer of the network, andw(1)

j0 is called the bias term. Such
combinations are often called activations. Each activation is
transformed using the activation function, which is chosen
depending on the network layer type. For multilabel classifi-
cation layers, the softmax is typically used. With activation
function applied the transformation is the following:

hj(x) = σhidden
(

aj
)

= σhidden

(

w
(1)
j0 +

n
∑

i=1

w
(1)
ij xi

)

, (9)

where σhidden is the activation function for hidden units. It can
be observed that for σhidden equal to identity function neural
network model becomes a linear regression model. Similarly,
if the sigmoid function is being used, resemblance to logistic
regression can be immediately observed.
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TABLE 5. Experiments with architecture structure of deepStyle model on Polyvore dataset.

In the context of our paper, we use fully-connected layers
in two ways. First, in order to reduce the dimensionality
of the input vectors, we use a single layer of hidden units
with the number of activations that matches desired output
dimensionality. As an activation function in this layer, we use
ReLu (rectified linear unit), defined as:

f (x) = max {0, x} ,

which is widely recommended activation functions in the
deep learning community [50]. In the case of classification
layer, the number of activation units corresponds to the num-
ber of classes, which are followed by the sigmoid activation.
The training of neural network, defined as obtaining opti-

mal weight and bias terms, is done via minimization of
the loss function, typically by (stochastic) gradient descent
(back-propagation) [51]. To optimize our network we use
Adam, which belongs to the family of the so called adaptive
learning optimizers [48]. It is one of the most widely used
algorithms for optimization of deep networks, known for its
fast convergence property [50].

TABLE 6. Comparison of distance metrics in training DeepStyle-Siamese
model. Architecture, learning rate, batch size, and other hyper-parameters
were kept the same during all experiments. The best results were
achieved with Euclidean and L1 metric for both data sets.

APPENDIX B

We provide additional experimental analysis of hyper-
parameters related to network structure such as number of
layers, number of neurons in fully-connected layers, embed-
ding size, text embedding model and choice of distance met-
rics. Results in Table 6 show that Euclidean and L1 distance
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FIGURE 15. Validation loss per step for different multimodal embedding
sizes and Polyvore data set. Similar loss values are achieved at earlier
training stages but for larger number of iterations choosing higher
embedding size is more prone to overfitting.

FIGURE 16. Validation loss per step for different multimodal embedding
sizes and IKEA data set. For larger multimodal embedding size network
quickly stops improving, which suggests that for smaller data sets a
smaller multimodal embedding size should be used.

metrics are best suited for the defined task. The findings
in Table 5 suggest that the best performance is achieved
with Word2vec text model for text vectorizing and single
multimodal dense layer. Some of the parameters depend on
data features such as data set size. As illustrated in Figures 15.
and 16, higher values of embedding size (number of neurons
in Dense layer) might lead to overfitting on smaller datasets
(e.g IKEA data set). Hence, the number of neurons in fully
connected layers might be adjusted empirically for other
applications.
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