
RESEARCH Open Access

DeepSuccinylSite: a deep learning based
approach for protein succinylation site
prediction
Niraj Thapa1, Meenal Chaudhari1, Sean McManus1, Kaushik Roy2, Robert H. Newman3, Hiroto Saigo4 and

Dukka B. KC5*

From Joint 30th International Conference on Genome Informatics (GIW) & Australian Bioinformatics and Computational Biol-

ogy Society (ABACBS) Annual Conference

Sydney, Australia. 9-11 December 2019

Abstract

Background: Protein succinylation has recently emerged as an important and common post-translation

modification (PTM) that occurs on lysine residues. Succinylation is notable both in its size (e.g., at 100 Da, it is one of

the larger chemical PTMs) and in its ability to modify the net charge of the modified lysine residue from + 1 to − 1

at physiological pH. The gross local changes that occur in proteins upon succinylation have been shown to

correspond with changes in gene activity and to be perturbed by defects in the citric acid cycle. These

observations, together with the fact that succinate is generated as a metabolic intermediate during cellular

respiration, have led to suggestions that protein succinylation may play a role in the interaction between cellular

metabolism and important cellular functions. For instance, succinylation likely represents an important aspect of

genomic regulation and repair and may have important consequences in the etiology of a number of disease states.

In this study, we developed DeepSuccinylSite, a novel prediction tool that uses deep learning methodology along with

embedding to identify succinylation sites in proteins based on their primary structure.

Results: Using an independent test set of experimentally identified succinylation sites, our method achieved efficiency

scores of 79%, 68.7% and 0.48 for sensitivity, specificity and MCC respectively, with an area under the receiver operator

characteristic (ROC) curve of 0.8. In side-by-side comparisons with previously described succinylation predictors,

DeepSuccinylSite represents a significant improvement in overall accuracy for prediction of succinylation sites.

Conclusion: Together, these results suggest that our method represents a robust and complementary technique for

advanced exploration of protein succinylation.

Keywords: Succinylation, Deep learning, Convolutional neural network, Recurrent neural network, Long short-term

memory, Embedding

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: dukka.kc@wichita.edu
5Electrical Engineering and Computer Science Department, Wichita State

University, Wichita, KS, USA

Full list of author information is available at the end of the article

Thapa et al. BMC Bioinformatics 2020, 21(Suppl 3):63

https://doi.org/10.1186/s12859-020-3342-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-3342-z&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:dukka.kc@wichita.edu


Background
Protein post-translational modifications (PTM) are im-

portant cellular regulatory processes that occur after pro-

tein synthesis. PTMs increase the functional diversity of

the proteome by the covalent addition of functional moi-

eties to proteins, proteolytic cleavage of regulatory sub-

units and play important roles in signaling for degradation

of entire proteins. PTMs include phosphorylation, glyco-

sylation, ubiquitination and relatively recently described

modifications, such as succinylation. Succinylation is a

PTM that occurs through the addition of a succinyl group

(−CO-CH2-CH2-CO2H) to the ε-amino of target lysine

residues.

Protein PTMs have been detected by a variety of experi-

mental techniques [1], including mass spectrometry (MS)

[2, 3], liquid chromatography [4], radioactive chemical la-

beling [5] and immunological detection, such as chroma-

tin immunoprecipitation [6] and western blotting [7].

Generally, the experimental analysis of PTMs requires

time-consuming, labor- and capital-intensive techniques

and the use of hazardous/expensive chemical reagents.

Due to importance of PTMs in both disease states and

normal biological functions, it is imperative to invest in

developing options that can screen proteins for potential

PTM sites in a rapid, cost-effective manner.

In recent years, machine learning has become a cost-

effective method for prediction of different PTM sites.

Some of the machine learning based succinylation site pre-

diction approaches are iSuc-PseAAC [8], iSuc-PseOpt [9],

pSuc-Lys [10], SuccineSite [11], SuccineSite2.0 [12], GPSuc

[13] and PSuccE [14] . Although results have been promis-

ing, the potential for bias is present due to manual selection

of features along with the possible absence of unknown fea-

tures that contribute to succinylation. Moreover, the pre-

diction performance of these methods is not yet satisfactory

enough to be used in high throughput studies.

Recently, deep learning (DL) approaches have been de-

veloped to elucidate putative PTM sites in cellular pro-

teins. For instance, MusiteDeep [15] and DeepPhos [16]

have been developed to predict phosphorylation sites

while Fu et al. [17] and Wu et al. [18] used DL-based

methods to identify putative ubiquitination and acetyl-

ation sites, respectively. These DL methods have achieved

relative improvement in aggregate measures of method

performance, such as the area under curve (AUC) and

Matthews Correlation Coefficient (MCC). Typically, these

models utilize some combination of one-hot encoding and

extracted features as an input, largely trying to avoid reli-

ance on manual feature extraction. To the best of our

knowledge, DL models have not been applied previously

for prediction of succinylation sites. In this study, we de-

veloped a succinylation site predictor, termed DeepSucci-

nylSite, based on a convolutional neural network (CNN)

deep learning framework [19] using Keras library [20].

Methods
Benchmark dataset

In this study, we used the same training and independ-

ent dataset collected from experimentally derived lysine

succinylation sites as in Hasan et al. [13] and Ning et al.

[14]. Ning et al. used UniProtKB/Swiss-Prot database

and NCBI protein sequence database as Hasan et al. to

create the succinylation dataset. After removing proteins

that have more than 30% sequence identity using CD-

HIT, 5009 succinylation sites and 53,542 sites not

known to be succinylated remained. Of these, 4755 suc-

cinylation sites and 50,565 non-succinylation sites were

used for the training set and 254 succinylation sites and

2977 non-succinylation sites were used for the inde-

pendent test. Moreover, for our approach the optimal

window size came out to be 33 and some of the se-

quences had other characters, we lost 5 (out of 4755)

positive sites in the training set.

For the training and test sets, data were balanced using

under-sampling. The final training dataset contained 4750

positive and 4750 negative sites whereas the independent

test dataset contained 254 positive and 254 negative sites

after balancing. Table 1 shows the final dataset for training

and independent test after balancing. In order to generate

a local representation of the protein and to optimize the

model, a window parameter was set around each lysine

(K) of interest. If the left or right side of K was less than

half the size of the window, then pseudo residue “-” was

used in order to retain all the positive sites.

Encoding

In contrast to traditional machine learning methods, our

DL-based method takes sequence data in the form of

windows directly as an input, reducing the need for

hand-crafted feature extraction. A pre-requisite for this

approach is that the sequence data must be encoded in a

form that is readable by our DL model. Accordingly, we

have utilized two types of encoding: (i) one-hot encoding

and (ii) embedding layer. Compared to other DL ap-

proaches for other types of post-translational modifica-

tion site prediction, one of the major differences is our

embedding encoding.

One-hot encoding

One hot encoding converts categorical variables to respect-

ive binary variables. We implemented one-hot encoding in

a manner similar to that used during the development of

Table 1 Number of positive and negative sites for training and

testing dataset

Dataset Positive Negative

Training 4750 4750

Independent Test 254 254

Thapa et al. BMC Bioinformatics 2020, 21(Suppl 3):63 Page 2 of 10



MusiteDeep [15]. In order to convert the 20 common

amino acids and our pseudo residue “-” into numerical

values, these 21 characters are converted into integers ran-

ging from 0 to 20. Every amino acid was represented by a

binary code consisting of a sequence of zeros and a singular

one, the location of which encodes the identity of the

amino acid. In our study, the binary representation was

done based on alphabetical order. For example, Alanine (A)

is represented as 100000000000000000000 and Arginine

(R) is represented as 010000000000000000000 and so on.

Accordingly, in our model, a window of size, N, corre-

sponded to an input vector size of N × 21.

One of the primary drawbacks of one-hot encoding is

that the mapping is completely uniform. Therefore,

amino acids with similar properties are not placed to-

gether in vector space.

Embedding layer

One of the highlights of our approach is the embedding

layer. The second type of encoding that we utilize is the

embedding encoding [20, 21]. Embedding finds the best

representation for the amino acid sequence, as in DeepGO

[22], to overcome the shortcomings of one-hot encoding.

Briefly, the 20 amino acids residue and 1 pseudo residue

were first converted into integers ranging from 0 to 20.

This is provided as an input to the embedding layer, which

lies at the beginning of our DL architecture. The embed-

ding layer is initialized with random weights. The layer then

learns better vector-based representations with subsequent

epochs during training. Each vectorization is an orthogonal

representation in another dimension, thus preserving its

identity. Hence, making it more dynamic than the static

one-hot encoding. In our study, embedding encoding (word

to vec) for K is: [− 0.03372079, 0.01156038, − 0.00370798,

0.00726882, − 0.00323456, − 0.00622324, 0.01516087, 0.023

21764, 0.00389882, − 0.01039953, − 0.02650939, 0.0117422

9, − 0.0204078, − 0.06951248, − 0.01470334, − 0.03336572,

0.01336034, − 0.00045607, 0.01492316, 0.02321628, − 0.025

51141] in 21-dimensional vector space after training. Em-

bedding groups commonly co-occurring items together in

the vector space. Two key arguments must be specified in

the embedding layer. These are:

� output_dim: Size of vector space.

� input_length: Size of input, which is window size.

Training and testing datasets

The training dataset was further sub-divided into 80%

training and 20% validation sets. The model was trained

on 80% of the training data with validation done in every

epoch using the remaining 20% of the training dataset.

This validation approach was performed in order to track

the training progress and to identify overfitting. Overfit-

ting was identified when validation accuracy started

decreasing while training accuracy continued to in-

crease. Checkpointer was utilized to select the optimal

model from the epochs based on validation accuracy;

this approach also helped to minimize any potential

overfitting. The model generated was then used for

independent testing with the independent testing

dataset.

Input

The main advantage of using DL over traditional ma-

chine learning approaches is the exclusion of manual

feature extraction. The input for our DL approach is the

sequence windows in FASTA format. For example, for a

window size of 33, the input dimension would be 33 ×

21 for one-hot encoding. For embedding for the same

window size, the input dimension would be 33 × 21 for

embedding output dimension of 21.

DeepSuccinylSite architecture

The overall architecture of DeepSuccinylSite is shown in

Fig. 1.

After encoding the input data, the encoded data was

fed into the network. The same architecture was utilized

for both encoding methods, except for the inclusion of

an embedding layer and a lambda layer in the case of

the embedding encoding.

The next layer is the convolutional layer. Previous

DL-based models for Phosphorylation sites (Deep-

Phos, MusiteDeep) [19, 20] have used 1-D (dimen-

sional) convolutional layer, whereas we have used 2-D

(dimensional) convolutional layer, thus increasing our

flexibility with choosing 2-D size. If we use 1D con-

volutional layer and do the same, then we will not be

able to deduce many feature information, as the x-

axis is fixed (it will stay at 21) and will only stride

vertically. Thereafter, other layers were also chosen

with 2D. We used a 2D convolutional layer to

prioritize the inclusion of filter size 17 × 3 (for win-

dow size 33, the PTM site lies at the 17th position),

which will include the PTM site in every stride. The

use of this filter size, along with the disabling of pad-

ding, allowed the model to be optimized for training

time without compromising performance. Higher

dropout of 0.6 was used to avoid overfitting. More-

over, a rectified linear unit (ReLU) was used as an ac-

tivation function for all layers. ReLU was deemed an

optimal activation function due to its sparse activa-

tion, which minimized the possibility for overfitting

and maximized the predictive power of the model.

We used two convolutional layers, one maxpooling

layer, a fully connected layer with two dense layers,

and an output layer. The parameters used in the

model are given in Table 2.

Thapa et al. BMC Bioinformatics 2020, 21(Suppl 3):63 Page 3 of 10



Adam optimization was used as the optimizer for our

architecture, as described previously by Kingma et al. [23].

Adam uses an adaptive learning rates methodology to cal-

culate individual learning rates for each parameter. Adam

is different from classical stochastic gradient descent in

that stochastic gradient descent maintains a single, con-

stant learning rate for all weight updates during training

[24]. Specifically, Adam combines benefits of both adap-

tive gradient algorithm and root mean square propagation,

allowing for efficient training of the model. Since this

study is a binary classification problem, binary cross-

entropy (measure of uncertainty associated with given

distribution) or log loss was used as the loss function. The

binary cross-entropy is given by:

−

1

N

X

N

i¼1

yi log ŷið Þ þ 1−yið Þ log 1−ŷið Þ½ � ð1Þ

where y is the label (1 for positive and 0 for negative)

and ŷi is the predicted probability of the site being posi-

tive for all N points. For each positive site (y = 1), it adds

logðŷiÞ to the loss, that is, the log probability of it being

positive. Conversely, for each negative site (y = 0), it adds

Fig. 1 a Window size of 33 in FASTA format is the input. It is converted into integers which is then encoded either using one-hot encoding or

embedding layer. This will be the input for CNN layers. b The output from either of the encoding is then fed as input into the deep learning

architecture. Finally, after the flattening and fully connected layers we get the final output which contains two nodes with outputs [0 1] for

positive and [1 0] for negative sites

Thapa et al. BMC Bioinformatics 2020, 21(Suppl 3):63 Page 4 of 10



logð1−ŷiÞ , that is, the log probability of it being

negative.

The fully connected layers contained two dense layers

with 768 and 256 nodes, respectively, with the final out-

put layer containing 2 nodes.

Model evaluation and performance metrics

In this study, 10-fold cross validation was used to

evaluate the performance of the model. In 10-fold

cross validation, the data are partitioned into 10 equal

parts. Then, one-part is left out for validation and

training is performed on remaining 9 parts. This

process is repeated until all parts are used for

validation.

Confusion Matrix (CM), Matthew’s Correlation Co-

efficient (MCC) and Receiver Operating Characteris-

tics (ROC) curve were used as performance metrics.

The ROC curve is a graphical plot that illustrates the

diagnostic ability of a binary classifier whereas area

under curve (AUC) represents the degree or measure

of separability. Since identification of succinylation

sites is a binary classification problem, the confusion

matrix size is 2 × 2 composed of true positives (TP),

true negatives (TN), false positives (FP) and false neg-

atives (FN). Other metrics calculated using these vari-

ables were accuracy, sensitivity (i.e., the true positive

rate) and specificity (i.e., the true negative rate).

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
� 100 ð2Þ

Sensitivity ¼
TP

TP þ FN
� 100 ð3Þ

Specificity ¼
TN

TN þ FP
� 100 ð4Þ

MCC ¼
TPð Þ TNð Þ− FPð Þ FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þ
p

ð5Þ

Results
Optimal window size and encoding

Initially, window sizes from 9 to 45 were tested with

both one-hot encoding and embedding. For example, for

a window size of 9, the lysine (K) residue was set in the

middle of the window with 4 amino acid residues up-

stream and 4 amino acid residues downstream. A win-

dow size of 33 yielded the highest MCC for both one-

hot encoding and embedding, with further increases in

window size resulting in reductions in MCC (Table 3).

Likewise, the highest specificity and AUC were achieved

using a window size of 33, with only a marginal reduc-

tion in sensitivity when using embedding (Table 3 and

Fig. 2). Hence, a window size of 33 was considered as

the optimal window size for this study. Interestingly, a

window size of 33 was also utilized by Wang et al. for

phosphorylation site prediction using one-hot encoding

[15]. It is worth noting that the consistency in window

size between this study and the previous study by Wang

et al. correlates with the known range for many inter-

protein amino acid interactions. Importantly, with only a

few exceptions, embedding performed better than one-

hot encoding for every window size tested. Therefore,

for this study, embedding was chosen for encoding.

Identification of optimal embedding dimension

Next, we sought to identify the optimal embedding di-

mension. To this end, dimensions ranging from 9 to 33

were tested for embedding. It is important to note that

Table 2 Parameters in DeepSuccinylSite

Parameters Settings

Embedding Output Dimension 21

Learning Rate 0.001

Batch Size 256

Epochs 80

Conv2d_1 number of filters 64

Conv2d_1 filter size 17 × 3 (For window size 33)

Conv2d_1 padding Disabled

Dropout 0.6

Conv2d_1 number of filters 128

Conv2d_1 filter size 3 × 3

Conv2d_1 padding Enabled

Dropout 0.6

MaxPooling2d 2 × 2

Dense 1 768

Dropout 0.5

Dense_2 256

Dropout 0.5

Checkpointer Best validation accuracy

Table 3 Performance metrics for different window sizes. The

highest values in each category are highlighted in boldface.

MCC: Matthew’s Correlation Coefficient

Window
Size

One-Hot Encoding Embedding (Dimension = 21)

Sensitivity Specificity MCC Sensitivity Specificity MCC

9 0.70 0.55 0.25 0.80 0.57 0.39

15 0.73 0.60 0.33 0.82 0.58 0.42

21 0.79 0.55 0.34 0.76 0.67 0.43

27 0.79 0.59 0.38 0.81 0.63 0.45

33 0.84 0.55 0.41 0.79 0.69 0.48

39 0.81 0.53 0.36 0.75 0.63 0.40

45 0.81 0.55 0.38 0.76 0.67 0.43

Thapa et al. BMC Bioinformatics 2020, 21(Suppl 3):63 Page 5 of 10



increasing the dimension of embedding will result in

higher computational cost. Therefore, we aimed to

identify the smallest dimension that struck a balance

across all metrics. Because MCC is often used as a

surrogate of overall model performance, it was priori-

tized slightly over the other parameters. While both

dimension sizes of 15 and 21 struck such a balance,

the performance metrics were generally better using a

dimension size of 21. Indeed, a dimension size of 21

achieved the highest MCC, with sensitivity and speci-

ficity scores that were within 7% of the maximum

scores achieved in these areas (Table 4). Consistently,

dimension size of 15 and 21 achieved the highest

AUC score (Fig. 3). Taken together, these data sug-

gest that a dimension size of 21 is optimal using our

architecture. Therefore, a dimension size of 21 was

selected for model development. The dimension size

is consistent with the fact that 20 amino acid residues

and 1 pseudo residue were present in each vector.

Cross-validation and alternative classifiers

Our final model, which we termed DeepSuccinylSite, uti-

lizes embedding with window and dimension sizes of 33

and 21, respectively. Based on five rounds of 10-fold cross-

validation, DeepSuccinylSite exhibited robustness with

consistent performance metrics with an average MCC of

0.519 +/− 0.023 and an AUC of 0.823 (Additional file 1:

Table S3). We also implemented additional Deep Learning

architectures and different machine learning models where

the input was hand-crafted ‘physico-chemical’ based fea-

tures rather than the protein sequence alone. Essentially,

this implementation takes various physiochemical features

combined with XGBoost to extract prominent features.

We excluded any sequences with ‘-‘, while calculating the

features. We then used XGBoost to extract prominent fea-

tures, which provided better accuracy and obtained a total

of 160 features at threshold of 0.00145. Interestingly, the

performance of the methods using these approaches were

not as good as DeepSuccinylSite, whose input is protein

sequence alone (Additional file 1: Table S2). Further in-

formation on performance of our model are included in

Additional file 1. Additionally, the results of feature-

based Deep Learning architecture is shown in Add-

itional file 1: Figure S1.

Comparison with other deep learning architectures

Other DL architectures, such as Recurrent Neural Network

(RNN) [25] and Long Short-Term Memory (LSTM) [26],

as well as the combined model, LSTM-RNN, were also im-

plemented for one-hot encoding (DeepSuccinylSite-one_

hot) and compared with the independent test result of

Fig. 2 ROC curve for different window sizes for embedding

Table 4 Performance metrics for different embedding

dimensions. The highest values in each category are shown in

bold. MCC: Matthew’s Correlation Coefficient

Dimension Sensitivity Specificity MCC

9 0.85 0.58 0.45

15 0.73 0.71 0.44

21 0.79 0.67 0.48

27 0.75 0.66 0.41

33 0.77 0.68 0.45

Thapa et al. BMC Bioinformatics 2020, 21(Suppl 3):63 Page 6 of 10



DeepSuccinylSite (Table 5). Additionally, we implemented

an additional DL architecture, where the input includes

other features beyond the primary amino acid sequence.

Specifically, this implementation utilizes a combination of

1) physiochemical features, such as Pseudo Amino acid

Composition (PAAC), ‘k-Spaced Amino Acid Pairs’ (AAP);

2) Autocorrelation features, such as Moreau-Broto auto-

correlation and Composition, Transition and Distribution

(CTD) features, and 3) Entropy Features, such as Shannon

entropy, Relative entropy, and Information gain. We ex-

cluded any sequences with ‘-‘, while calculating the fea-

tures. We then used XGBoost to extract prominent

features which provided better accuracy and obtained

a total of 160 features at threshold 0.00145. The ver-

sion of the algorithm using features is termed as

DeepSuccinylSite-feature based.

For fair comparison, we used the same balanced train-

ing and testing dataset for window size of 33 and one-

hot encoding for these three DL architectures. The re-

sults are shown in Table 5 and ROC curve is shown in

Fig. 4. The results for our DL model with embedding

(DeepSuccinylSite) is also shown. The detailed architec-

ture of these models, including results for other window

sizes are discussed in Additional file 1 and the perform-

ance of these methods is presended in Additional file 1:

Table S1. For one-hot encoding, DeepSuccinylSite

achieved better MCC and AUC score than the other DL

architectures. Likewise, our final model using embedding

achieved the highest MCC and AUC scores of any

model (Table 5).

Independent test comparisons with existing models

Next, the performance of DeepSuccinylSite was com-

pared with other succinylation site predictors using an

independent test set as mentioned in the benchmark

dataset earlier. During these analyses, some of the most

widely used tools for succinylation site prediction, such

as iSuc-PseAAC [8], iSuc-PseOpt [9], pSuc-Lys [10], Suc-

cineSite [11], SuccineSite2.0 [12], GPSuc [13] and PSuccE

[14], were considered. All these methods use the same

training and independent test data sets as in Table 6. The

performance metrics for these previously published

methods were taken from their respective manuscripts

mainly based on comparison done in PSuccE [14].

DeepSuccinylSite achieved a 58.3% higher sensitivity

score than the next highest performing model (Table 6).

In contrast, our model exhibited the lowest specificity

Fig. 3 ROC curves for different embedding dimensions

Table 5 Comparison of DeepSuccinylSite with other deep

learning architectures for window size 33. The highest value in

each category is shown in bold. MCC: Matthew’s Correlation

Coefficient; RNN: Recurrent neural network; LSTM: Long short-

term memory model

Models Sensitivity Specificity MCC

RNN 0.70 0.49 0.20

LSTM-RNN 0.66 0.57 0.23

LSTM 0.74 0.66 0.36

DeepSuccinylSite-feature based 0.80 0.44 0.27

DeepSuccinylSite-one_hot 0.84 0.55 0.41

DeepSuccinylSite-Embedding 0.79 0.69 0.48

Thapa et al. BMC Bioinformatics 2020, 21(Suppl 3):63 Page 7 of 10



score of all of models tested. However, the specificity score

achieved by DeepSuccinylSite was only 22.2% lower than

that of the top-ranked methods. Consequently, DeepSuc-

cinylSite achieved a significantly higher performance as

measured by MCC. Indeed, DeepSuccinylSite exhibited an

~ 62% increase in MCC when compared to the next high-

est method, GPSuc. Taken together, the novel architecture

we have described, termed DeepSuccinylSite, shows sig-

nificantly improved performance for precise and accurate

prediction of succinylation sites.

Discussion
Succinylation is relatively newly discovered PTM that is

garnering interest due to the biological implications of

introducing a large (100Da) chemical moiety that changes

the charge of the modified residue. Experimental detection

of succinylation is labor intensive and expensive. Due to

the availability of a relatively large dataset containing 4750

positive sites for training, it was possible for us to imple-

ment different DL architectures. The model optimization

process described in this paper led to a significant im-

provement in precise prediction of succinylation sites

when compared to models previously described in the lit-

erature. Two types of encoding were considered for this

study, one-hot encoding and embedding. Our results sug-

gest that embedding is an optimal approach, as it allows

the model to learn representations similar to the amino

acid features, which results in further improvements in

the ability to identify putative sites of modification.

Furthermore, DeepSuccinylSite corroborates previous

indications in the literature that have suggested a window

size of 33 optimally reflects local chemical interactions in

proteins that predict sites of PTM due to its performance

in metrics like MCC. One of the important parameters

was embedding dimension. DeepSuccinylSite was trained

with different dimensions ranging from 9 to 33. With in-

crease in dimension, training time also increased. Though

there was not a significant difference between dimension

sizes 15 and 21, considering the number of amino acid

residues and slightly better result, 21 was chosen as the

embedding dimension for this study. Finally, for window

size 33 with embedding dimension 21, DeepSuccinylSite

achieved efficiency scores of 0.79, 0.69 and 0.48 for sensi-

tivity, specificity and MCC, respectively.

For further improvements, instead of current protein

sequence-based window sequence, we can extract

structure-based window sequence centered around the site

Fig. 4 ROC curve for different deep learning architectures

Table 6 Comparison of DeepSuccinylSite with existing

predictors using an independent test dataset. The highest value

in each category is shown in bold

Prediction Schemes Sensitivity Specificity MCC

iSuc-PseAAC 0.12 0.89 0.01

iSuc-PseOpt 0.30 0.76 0.04

pSuc-Lys 0.22 0.83 0.04

SuccineSite 0.37 0.88 0.20

SuccineSite2.0 0.45 0.88 0.26

GPSuc 0.50 0.88 0.30

PSuccE 0.38 0.89 0.20

DeepSuccinylSite 0.79 0.69 0.48

Thapa et al. BMC Bioinformatics 2020, 21(Suppl 3):63 Page 8 of 10



of interest and use that window as the input. When the

structure of the protein is not available, protein structure

prediction pipelines like I-TASSER [27] or ROSETTA [28],

can first be used to predict the structure. Since the struc-

ture of the proteins are more conserved than sequence, we

hope to capture evolutionary information better and thus

obtain better prediction accuracy. Moreover, we could also

improve the performance of the approach by creating mul-

tiple models using sequence-based windows, structure-

based windows, physiochemical properties and then utilize

voting approaches. Lastly, multi-window input, as done in

DeepPhos [16], using our encoding technique can improve

the performance. However, more datasets are required for

these schemes and once more experimental data becomes

available, we could explore this in more detail. We also ex-

plored the effects of data size on prediction performance

(Additional file 1: Table S4 and Additional file 1: Figure

S2). These studies suggest that, initially, the performance of

our model increases with the increasing data size before

reaching a plateau. This is somewhat contrary to the gen-

eral consensus in deep learning that performance keeps

increasing with the data size according to a power law.

However, with more experimental data likely to be

available in the future, we could perform a more com-

prehensive study on how performance scales with in-

creasing data size. Perhaps, this might also suggest that

with increasing data we might have to develop more

complex deep learning models.

Utilizing the unique architecture described in this paper,

the DeepSuccinylSite model shows a substantial improve-

ment in predictive quality over existing models. The utility

of this model is in its ability to predict lysine residues that

are likely to be succinylated. Accordingly, this model could

be utilized to optimize workflows for experimental verifica-

tion of succinylation sites. Specifically, use of this model

could significantly reduce the time and cost of identification

of these sites. This model may also have some utility in hy-

pothesis generation when PTM presents itself as likely ex-

planation for observed biological phenomenon.

Conclusion
In this study, we describe the development of DeepSucci-

nylSite, a novel and effective deep learning architecture

for the prediction of succinylation sites. The primary ad-

vantage of using this model over other machine learning

architectures is the elimination of feature extraction. As a

consequence, other PTM sites could be easily applied in

this model. Since this model only utilizes two convolu-

tional layer and one max-pooling layer to avoid overfitting

for the current data, provision of new data sources may

allow for further modification of this model in the future.

In conclusion, DeepSuccinylSite is an effective deep learn-

ing architecture with best-in-class results for prediction of

succinylation sites and potential for use in general PTM

prediction problems.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s12859-020-3342-z.

Additional file 1: Contains supplementary tables and figures referred to

in the text. We describe various other deep learning architectures, other

machine learning architectures, cross-validation results and independent

test results for different sample sizes. Table S1. Independent Test Results.

Table S2. Independent test result for different machine learning architec-

tures. Figure S1. ROC curve for feature based DL-model. Table S3.

Cross-validation (CV) results for different run. Table S4. Independent test

results for different sample sizes. Figure S2. MCC and AUC for independ-

ent test for different sample sizes.

Abbreviations

AUC: Area under ROC curve; CNN: Convolutional Neural Network; DL: Deep

learning; LSTM: Long short-term memory; MCC: Mathew correlation

coefficient; PTM: Post translational modification; ReLU: Rectified linear unit;

RNN: Recurrent neural network; ROC: Receiver operator characteristics

Acknowledgements

Not Applicable.

About this supplement

This article has been published as part of BMC Bioinformatics Volume 21

Supplement 3, 2020: Proceedings of the Joint International GIW & ABACBS-2019

Conference: bioinformatics (part 2). The full contents of the supplement are

available online at https://bmcbioinformatics.biomedcentral.com/articles/

supplements/volume-21-supplement-3.

Authors’ contributions

DK, SH, RN, KR conceived of and designed the experiments. NT and MC

performed the experiments and data analysis. NT, DK, SMM and MC wrote

the paper. RN, SH, DK, KR and SMM revised the manuscript. All authors read

and approved the final manuscript.

Funding

This work was supported by National Science Foundation (NSF) grant nos.

1901793, 1564606 and 1901086 (to DK). RHN is supported by an HBCU-UP

Excellence in Research Award from NSF (1901793) and an SC1 Award from

the National Institutes of Health National Institute of General Medical Science

(5SC1GM130545). HS was supported by JSPS KAKENHI Grant Numbers

JP18H01762 and JP19H04176.

Availability of data and materials

The datasets and models analyzed during the current study along with the

supplementary materials are available in https://github.com/dukkakc/

DeepSuccinylSite.

Ethics approval and consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1Department of Computational Science and Engineering, North Carolina A&T

State University, Greensboro, NC, USA. 2Department of Computer Science,

North Carolina A&T State University, Greensboro, NC, USA. 3Department of

Biology, North Carolina A&T State University, Greensboro, NC, USA. 4Faculty

of Information Science and Electrical Engineering, Kyushu University,

Fukuoka, Japan. 5Electrical Engineering and Computer Science Department,

Wichita State University, Wichita, KS, USA.

Thapa et al. BMC Bioinformatics 2020, 21(Suppl 3):63 Page 9 of 10

https://doi.org/10.1186/s12859-020-3342-z
https://doi.org/10.1186/s12859-020-3342-z
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-3
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-3
https://github.com/dukkakc/DeepSuccinylSite
https://github.com/dukkakc/DeepSuccinylSite


Received: 20 November 2019 Accepted: 8 January 2020

Published: 23 April 2020

References

1. Hasan MM, Khatun MS. Prediction of protein Post-Translational Modification

sites: An overview. Ann Proteom Bioinform. 2018;2:049-57. https://doi.org/

10.29328/journal.apb.1001005.

2. Medzihradszky KF. Peptide sequence analysis. Methods Enzymol. 2005;402:

209–44.

3. Agarwal KL, Kenner GW, Sheppard RC. Feline gastrin. An example of peptide

sequence analysis by mass spectrometry. J Am Chem Soc. 1969;91(11):

3096–7.

4. Welsch DJ, Nelsestuen GL. Amino-terminal alanine functions in a calcium-

specific process essential for membrane binding by prothrombin fragment

1. Biochemistry. 1988;27(13):4939–45.

5. Slade DJ, Subramanian V, Fuhrmann J, Thompson PR. Chemical and

biological methods to detect post-translational modifications of arginine.

Biopolymers. 2014;101(2):133–43.

6. Umlauf D, Goto Y, Feil R. Site-specific analysis of histone methylation and

acetylation. Methods Mol Biol. 2004;287:99–120.

7. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. Protein S-

nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol.

2001;3(2):193–7.

8. Xu Y, Ding YX, Ding J, Lei YH, Wu LY, Deng NY. iSuc-PseAAC: predicting

lysine succinylation in proteins by incorporating peptide position-specific

propensity. Sci Rep. 2015;5:10184.

9. Jia J, Liu Z, Xiao X, Liu B, Chou KC. iSuc-PseOpt: identifying lysine

succinylation sites in proteins by incorporating sequence-coupling effects

into pseudo components and optimizing imbalanced training dataset. Anal

Biochem. 2016;497:48–56.

10. Jia J, Liu Z, Xiao X, Liu B, Chou KC. pSuc-Lys: predict lysine succinylation

sites in proteins with PseAAC and ensemble random forest approach. J

Theor Biol. 2016;394:223–30.

11. Hasan MM, Yang S, Zhou Y, Mollah MNH. SuccinSite: a computational tool

for the prediction of protein succinylation sites by exploiting the amino

acid patterns and properties. Mol BioSyst. 2016;12(3):786–95.

12. Hasan MM, Khatun MS, Mollah MNH, Yong C, Guo D. A systematic

identification of species-specific protein succinylation sites using joint

element features information. Int J Nanomedicine. 2017;12:6303–15.

13. Hasan MM, Kurata H. GPSuc: global prediction of generic and species-

specific Succinylation sites by aggregating multiple sequence features. PLoS

One. 2018;13(10):e0200283.

14. Ning Q, Zhao X, Bao L, Ma Z, Zhao X. Detecting Succinylation sites from

protein sequences using ensemble support vector machine. BMC

Bioinformatics. 2018;19(1):237.

15. Wang D, Zeng S, Xu C, Qiu W, Liang Y, Joshi T, et al. MusiteDeep: a deep-

learning framework for general and kinase-specific phosphorylation site

prediction. Bioinformatics. 2017;33(24):3909–16.

16. Fenglin Luo, Minghui Wang, Yu Liu, Xing-Ming Zhao, Ao Li. DeepPhos:

prediction of protein phosphorylation sites with deep learning,

Bioinformatics. 2019;35(16):2766–73.

17. Fu H, Yang Y, Wang X, Wang H, Xu Y. DeepUbi: a deep learning framework

for prediction of ubiquitination sites in proteins. BMC Bioinformatics. 2019;

20(1):86.

18. Wu M, Yang Y, Wang H, Xu Y. A deep learning method to more accurately

recall known lysine acetylation sites. BMC Bioinformatics. 2019;20(1):49.

19. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436.

20. Chollet F, et al. Keras; 2015. https://keras.io.

21. D’Informatique Et Recherche Operationnelle D. In: Bengio Y, Ejean

Ducharme R, Vincent P, De Recherche Mathematiques C, editors. A Neural

Probabilistic Language Model; 2001.

22. Kulmanov M, Khan MA, Hoehndorf R. DeepGO: predicting protein functions

from sequence and interactions using a deep ontology-aware classifier.

Bioinformatics. 2017;34(4):660–8.

23. Kingma DP, Adam BJ. A Method for Stochastic Optimization. arXiv e-prints

[Internet]. 2014;01:2014 Available from: https://ui.adsabs.harvard.edu/abs/2

014arXiv1412.6980K.

24. Kiefer J, Wolfowitz J. Stochastic estimation of the maximum of a regression

function. Ann Math Stat. 1952;23(3):462–6.

25. Jain LC, Medsker LR. Recurrent neural networks: design and applications:

CRC press, Inc.; 1999. 416 p.

26. Hochreiter S. #252, Schmidhuber r. long short-term memory. Neural

Comput. 1997;9(8):1735–80.

27. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated

protein structure and function prediction. Nat Protoc. 2010;5(4):725–38.

28. DiMaio F, Leaver-Fay A, Bradley P, Baker D, Andre I. Modeling symmetric

macromolecular structures in Rosetta3. PLoS One. 2011;6(6):e20450.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Thapa et al. BMC Bioinformatics 2020, 21(Suppl 3):63 Page 10 of 10

https://doi.org/10.29328/journal.apb.1001005
https://doi.org/10.29328/journal.apb.1001005
https://keras.io
https://ui.adsabs.harvard.edu/abs/2014arXiv1412.6980K
https://ui.adsabs.harvard.edu/abs/2014arXiv1412.6980K

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Benchmark dataset
	Encoding
	One-hot encoding
	Embedding layer

	Training and testing datasets
	Input
	DeepSuccinylSite architecture
	Model evaluation and performance metrics

	Results
	Optimal window size and encoding
	Identification of optimal embedding dimension
	Cross-validation and alternative classifiers
	Comparison with other deep learning architectures
	Independent test comparisons with existing models

	Discussion
	Conclusion
	Supplementary information
	Abbreviations
	Acknowledgements
	About this supplement
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

