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Abstract

Background: Medical practitioners use survival models to explore and understand the relationships between

patients’ covariates (e.g. clinical and genetic features) and the effectiveness of various treatment options. Standard

survival models like the linear Cox proportional hazards model require extensive feature engineering or prior medical

knowledge to model treatment interaction at an individual level. While nonlinear survival methods, such as neural

networks and survival forests, can inherently model these high-level interaction terms, they have yet to be shown as

effective treatment recommender systems.

Methods: We introduce DeepSurv, a Cox proportional hazards deep neural network and state-of-the-art survival

method for modeling interactions between a patient’s covariates and treatment effectiveness in order to provide

personalized treatment recommendations.

Results: We perform a number of experiments training DeepSurv on simulated and real survival data. We

demonstrate that DeepSurv performs as well as or better than other state-of-the-art survival models and validate that

DeepSurv successfully models increasingly complex relationships between a patient’s covariates and their risk of

failure. We then show how DeepSurv models the relationship between a patient’s features and effectiveness of

different treatment options to show how DeepSurv can be used to provide individual treatment recommendations.

Finally, we train DeepSurv on real clinical studies to demonstrate how it’s personalized treatment recommendations

would increase the survival time of a set of patients.

Conclusions: The predictive and modeling capabilities of DeepSurv will enable medical researchers to use deep

neural networks as a tool in their exploration, understanding, and prediction of the effects of a patient’s characteristics

on their risk of failure.
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Background
Medical researchers use survival models to evaluate the

significance of prognostic variables in outcomes such

as death or cancer recurrence and subsequently inform

patients of their treatment options [1–4]. One standard
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survival model is the Cox proportional hazards model

(CPH) [5]. The CPH is a semiparametric model that cal-

culates the effects of observed covariates on the risk of an

event occurring (e.g. ‘death’). The model assumes that a

patient’s log-risk of failure is a linear combination of the

patient’s covariates. This assumption is referred to as the

linear proportional hazards condition. However, in many

applications, such as providing personalized treatment

recommendations, it may be too simplistic to assume that

the log-risk function is linear. As such, a richer family of

survival models is needed to better fit survival data with

nonlinear log-risk functions.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-018-0482-1&domain=pdf
http://orcid.org/0000-0002-3035-071X
mailto: yuval.kluger@yale.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Katzman et al. BMCMedical ResearchMethodology  (2018) 18:24 Page 2 of 12

To model nonlinear survival data, researchers have

applied three main types of neural networks to the prob-

lem of survival analysis. These include variants of: (i)

classification methods (see details in [6, 7]), (ii) time-

encoded methods (see details in [8, 9]), (iii) and risk-

predicting methods (see details in [10]). This third type

is a feed-forward neural network (NN) that estimates an

individual’s risk of failure. In fact, Faraggi-Simon’s network

is seen as a nonlinear extension of the Cox proportional

hazards model.

Risk neural networks learn highly complex and nonlin-

ear relationships between prognostic features and an indi-

vidual’s risk of failure. In application, for example, when

the success of a treatment option is affected by an individ-

ual’s features, the NN learns the relationship without prior

feature selection or domain expertise. The network is then

able to provide a personalized recommendation based on

the computed risk of a treatment.

However, previous studies have demonstrated mixed

results on NNs ability to predict risk. For instance,

researchers have attempted to apply the Faraggi-Simon

network with various extensions, but they have failed to

demonstrate improvements beyond the linear Cox model,

see [11–13]. One possible explanation is that the practice

of NNs was not as developed as it is today. To the best

of our knowledge, NNs have not outperformed standard

methods for survival analysis (e.g. CPH). Our manuscript

shows that this is no longer the case; with modern tech-

niques, risk NNs have state-of-the-art performance and

can be used for a variety of medical applications.

The goals of this paper are: (i) to show that the appli-

cation of deep learning to survival analysis performs as

well as or better than other survival methods in predicting

risk; and (ii) to demonstrate that the deep neural network

can be used as a personalized treatment recommender

system and a useful framework for further medical

research.

We propose a modern Cox proportional hazards deep

neural network, henceforth referred to as DeepSurv, as

the basis for a treatment recommender system. We make

the following contributions. First, we show that Deep-

Surv performs as well as or better than other survival

analysis methods on survival data with both linear and

nonlinear effects from covariates. Second, we include

an additional categorical variable representing a patient’s

treatment group to illustrate how the network can learn

complex relationships between an individual’s covariates

and the effect of a treatment. Our experiments validate

that the network successfully models the treatment’s risk

within a population. Third, we use DeepSurv to pro-

vide treatment recommendations tailored to a patient’s

observed features. We confirm our results on real clin-

ical studies, which further demonstrates the power of

DeepSurv. Finally, we show that the recommender system

supports medical practitioners in providing personal-

ized treatment recommendations that potentially could

increase the median survival time for a set of patients.

The organization of the manuscript is as follows: in

“Background” section, we provide a brief background on

survival analysis. In “Methods” section, we present our

contributions, including an explanation of our imple-

mentation of DeepSurv and our proposed recommender

system. In “Results” section, we describe the experimen-

tal design and results. “Conclusion” and “Discussion”

sections conclude the manuscript.

In this section, we define survival data and the

approaches for modeling a population’s survival and fail-

ure rate. Additionally, we discuss linear and nonlinear

survival models and their limitations.

Survival data

Survival data is comprised of three elements: a patient’s

baseline data x, a failure event time T, and an event indica-

tor E. If an event (e.g. death) is observed, the time interval

T corresponds to the time elapsed between the time in

which the baseline data was collected and the time of

the event occurring, and the event indicator is E = 1.

If an event is not observed, the time interval T corre-

sponds to the time elapsed between the collection of the

baseline data and the last contact with the patient (e.g.

end of study), and the event indicator is E = 0. In this

case, the patient is said to be right-censored. If one opts to

use standard regression methods, the right-censored data

is considered to be a type of missing data. This is typi-

cally discarded which can introduce a bias in the model.

Therefore, modeling right-censored data requires special

consideration or the use of a survival model.

Survival and hazard functions are the two fundamen-

tal functions in survival analysis. The survival function is

denoted by S(t) = Pr(T > t), which signifies the proba-

bility that an individual has ‘survived’ beyond time t. The

hazard function λ(t) is defined as:

λ(t) = lim
δ→0

Pr(t ≤ T < t + δ | T ≥ t)

δ
. (1)

The hazard function is the probability an individual will

not survive an extra infinitesimal amount of time δ, given

they have already survived up to time t. Thus, a greater

hazard signifies a greater risk of death.

Linear survival models

The Cox proportional hazards model is a common

method for modeling an individual’s survival given their

baseline data x. In accordance with the standard R sur-

vival package coxph, we use notation from [14] to describe

the Cox model. The model assumes that the hazard func-

tion is composed of two non-negative functions: a baseline



Katzman et al. BMCMedical ResearchMethodology  (2018) 18:24 Page 3 of 12

hazard function, λ0(t), and a risk score, r(x) = eh(x),

defined as the effect of an individual’s observed covariates

on the baseline hazard [14]. We denote h(x) as the log-risk

function. The hazard function is assumed to have the form

λ(t|x) = λ0(t) · eh(x). (2)

The CPH is a proportional hazards model that estimates

the log-risk function, h(x), by a linear function ĥβ(x) =

βTx [or equivalently r̂β(x) = eβ
Tx]. To perform Cox

regression, one tunes the weights β to optimize the Cox

partial likelihood. The partial likelihood is the product of

the probability at each event time Ti that the event has

occurred to individual i, given the set of individuals still at

risk at timeTi. The Cox partial likelihood is parameterized

by β and defined as

Lc(β) =
∏

i:Ei=1

r̂β(xi)
∑

j∈ℜ(Ti)

r̂β(xj)
=

∏

i:Ei=1

exp(ĥβ(xi))
∑

j∈ℜ(Ti)

exp(ĥβ(xj))
,

(3)

where the values Ti, Ei, and xi are the respective event

time, event indicator, and baseline data for the ith observa-

tion. The product is defined over the set of patients with

an observable event Ei = 1. The risk setℜ(t) = {i : Ti ≥ t}

is the set of patients still at risk of failure at time t.

In many applications, for example modeling nonlinear

gene interactions, we cannot assume the data satisfies the

linear proportional hazards condition. In this case, the

CPH model would require computing high-level interac-

tion terms. This becomes prohibitively expensive as the

number of features and interactions increases. Therefore,

a more complex nonlinear model is needed.

Nonlinear survival models

The Faraggi-Simon method is a feed-forward neural net-

work that provides the basis for a nonlinear proportional

hazards model. [10] experimented with a single hidden

layer network with two or three nodes. Their model

requires no prior assumption of the log-risk function h(x)

other than continuity. Instead, the NN computes nonlin-

ear features from the training data and calculates their

linear combination to estimate the log-risk function. Sim-

ilar to Cox regression, the network optimizes a modified

Cox partial likelihood. They replace the linear combina-

tion of features ĥβ(x) in Eq. 3 with the output of the

network ĥθ (x).

As previous research suggests, the Faraggi-Simon net-

work has not been shown to outperform the linear CPH

[10, 12, 13]. Furthermore, to the best of our knowledge, we

were the first to attempt applying modern deep learning

techniques to the Cox proportional hazards loss function.

Another popular machine learning approach to model-

ing patients’ hazard function is the random survival forest

(RSF) [15, 16]. The random survival forest is a treemethod

that produces an ensemble estimate for the cumulative

hazard function.

A more recent deep learning approach models the event

time according to a Weibull distribution with parameters

given by latent variables generated by a deep exponential

family [17].

Methods
In this section, we describe our methodology for pro-

viding personalized treatment recommendations using

DeepSurv. First, we describe the architecture and train-

ing details of DeepSurv, an open source Python module

that applies recent deep learning techniques to a nonlin-

ear Cox proportional hazards network. Second, we define

DeepSurv as a prognostic model and show how to use the

network’s predicted log-risk function to provide personal-

ized treatment recommendations.

DeepSurv

DeepSurv is a deep feed-forward neural network which

predicts the effects of a patient’s covariates on their haz-

ard rate parameterized by the weights of the network θ .

Figure 1 illustrates the basic components of DeepSurv.

The input to the network is a patient’s baseline data x. The

hidden layers of the network consist of a fully-connected

layer of nodes, followed by a dropout layer [18]. The out-

put of the network ĥθ (x) is a single node with a linear

activation which estimates the log-risk function in the

Cox model (Eq. 2). We train the network by setting the

objective function to be the average negative log partial

likelihood of Eq. 3 with regularization:

l(θ) :=−
1

NE=1

∑

i:Ei=1

⎛

⎝ĥθ (xi) − log
∑

j∈ℜ(Ti)

eĥθ (xj)

⎞

⎠+λ·||θ ||22,

(4)

where NE=1 is the number of patients with an observable

event and λ is the ℓ2 regularization parameter. We then

use gradient descent optimization to find the weights of

the network which minimize Eq. 4.

We use modern deep learning techniques to optimize

the training of the network. These include: standardizing

the input, Scaled Exponential Linear Units (SELU) [19]

as the activation function, Adaptive Moment Estimation

(Adam) [20] for the gradient descent algorithm, Nesterov

momentum [21], and learning rate scheduling [22]. To

tune the network’s hyper-parameters, we perform a Ran-

dom hyper-parameter optimization search [23]. For more

technical details, see Appendix A.
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Fig. 1 Diagram of DeepSurv. DeepSurv is a configurable feed-forward

deep neural network. The input to the network is the baseline data x.

The network propagates the inputs through a number of hidden

layers with weights θ . The hidden layers consist of fully-connected

nonlinear activation functions followed by dropout. The final layer is a

single node which performs a linear combination of the hidden

features. The output of the network is taken as the predicted log-risk

function ĥθ (x). The hyper-parameters of the network (e.g. number of

hidden layers, number of nodes in each layer, dropout probability,

etc.) were determined from a random hyper-parameter search and

are detailed in Table 3

Treatment recommender system

In a clinical study, patients are subject to different levels of

risk based on their relevant prognostic features and which

treatment they undergo. We generalize this assumption as

follows. Let all patients in a given study be assigned to one

of n treatment groups τ ∈ {0, 1, . . . , n − 1}. We assume

each treatment i to have an independent risk function

ehi(x). Collectively, the hazard function becomes:

λ(t; x|τ = i) = λ0(t) · ehi(x). (5)

For any patient, the network should be able to accu-

rately predict the log-risk hi(x) of being prescribed a given

treatment i. Then, based on the assumption that each indi-

vidual has the same baseline hazard function λ0(t), we

can take the log of the hazards ratio to calculate the per-

sonal risk-ratio of prescribing one treatment option over

another. We define this difference of log hazards as the

recommender function or recij(x):

recij(x) = log

(

λ(t; x|τ = i)

λ(t; x|τ = j)

)

= log

(

λ0(t) · ehi(x)

λ0(t) · ehj(x)

)

= hi(x) − hj(x).

(6)

The recommender function can be used to provide per-

sonalized treatment recommendations. We first pass a

patient through the network once in treatment group

i and again in treatment group j and take the differ-

ence. When a patient receives a positive recommenda-

tion recij(x), treatment i leads to a higher risk of death

than treatment j. Hence, the patient should be prescribed

treatment j. Conversely, a negative recommendation indi-

cates that treatment i is more effective and leads to a

lower risk of death than treatment j, and we recommend

treatment i.

DeepSurv’s architecture holds an advantage over the

CPH because it calculates the recommender function

without an a priori specification of treatment interac-

tion terms. In contrast, the CPH model computes a

constant recommender function unless treatment inter-

action terms are added to the model, see Appendix B

for more details. Discovering relevant interaction terms

is expensive because it requires extensive experimenta-

tion or prior biological knowledge of treatment outcomes.

Therefore, DeepSurv is more cost-effective compared

to CPH.

Results
We perform four sets of experiments: (i) simulated sur-

vival data, (ii) real survival data, (iii) simulated treatment

data, and (iv) real treatment data. First, we use simu-

lated data to show how DeepSurv successfully learns the

true log-risk function of a population. Second, we vali-

date the network’s predictive ability by training DeepSurv

on real survival data. Third, we simulate treatment data

to verify that the network models multiple risk func-

tions in a population based on the specific treatment a

patient undergoes. Fourth, we demonstrate how Deep-

Surv provides treatment recommendations and show that

DeepSurv’s recommendations improve a population’s sur-

vival rate. For more technical details on the experiments,

see Appendix A.

In addition to training DeepSurv on each dataset, we

run a linear CPH regression for a baseline comparison.

We also fit a RSF to compare DeepSurv against a state-

of-the-art nonlinear survival model. Even though we can

compare the RSF’s predictive accuracy to DeepSurv’s, we

do not measure the RSF’s performance onmodeling a sim-

ulated dataset’s true log-risk function h(x). This is due to

the fact that the the RSF calculates the cumulative haz-

ard function �(t) =
∫ t
0 λ(τ)dτ rather than the hazard

function λ(t).
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Evaluation

Survival data

To evaluate the models’ predictive accuracy on the sur-

vival data, we measure the concordance-index (C-index)

c as outlined by [24]. The C-index is the most common

metric used in survival analysis and reflects a measure of

how well a model predicts the ordering of patients’ death

times. For context, a c = 0.5 is the average C-index of a

randommodel, whereas c = 1 is a perfect ranking of death

times. We perform bootstrapping [25] and sample the test

set with replacement to obtain confidence intervals.

Treatment recommendations

We determine the recommended treatment for each

patient in the test set using DeepSurv and the RSF.

We do not calculate the recommended treatment for

CPH; without preselected treatment-interaction terms,

the CPH model will compute a constant recommender

function and recommend the same treatment option for

all patients. This would effectively be comparing the sur-

vival rates between the control and experimental groups.

DeepSurv and the RSF are capable of predicting an indi-

vidual’s hazard per treatment because each computes

relevant interaction terms. For DeepSurv, we choose the

recommended treatment by calculating the recommender

function (Eq. 11). Because the RSF predicts a cumulative

hazard for each patient, we choose the treatment with the

minimum cumulative hazard.

Once we determine the recommended treatment, we

identify two subsets of patients: those whose treatment

group aligns with the model’s recommended treatment

(Recommendation) and those who do not undergo the

recommended treatment (Anti-Recommendation). We

calculate the median survival time of each subset to deter-

mine if a model’s treatment recommendations increase

the survival rate of the patients. We then perform a log-

rank test to validate whether the difference between the

two subsets is significant.

Simulated survival data

In this section, we perform two experiments with simu-

lated survival data: one with a linear log-risk function and

one with a nonlinear (Gaussian) log-risk function. The

advantage of using simulated datasets is that we can ascer-

tain whether DeepSurv can successfully model the true

log-risk function instead of overfitting random noise.

For each experiment, we generate a training, valida-

tion, and testing set of N = 4000, 1000, 1000 obser-

vations respectively. Each observation x represents a

patient vector with d = 10 covariates. The ten vari-

ables are each drawn from a uniform distribution on

[−1, 1). We then generate a patient’s death time T as

a function of their covariates by using the exponential

Cox model [26]:

T ∼ Exp(λ(t; x)) = Exp
(

λ0 · eh(x)
)

. (7)

In both experiments, the log-risk function h(x) only

depends on two of the ten covariates. This allows us to

verify that DeepSurv discerns the relevant covariates from

the noise. Next, we choose a censoring time to represent

the ‘end of study’ such that 50 percent of the patients have

an observed event, E = 1, in the dataset. Further details of

the simulated data generation are found in Appendix C.

Linear experiment

We first simulate patients to have a linear log-risk func-

tion for x ∈ R
d so that the linear proportional hazards

assumption holds true:

h(x) = x0 + 2x1. (8)

Because the linear proportional hazards assumption holds

true, we expect the linear CPH to accurately model the

log-risk function in Eq. 8.

Our results (see Table 1) demonstrate that DeepSurv

performs as well as the standard linear Cox regression and

better than RSF in predictive ability.

Figure 2 demonstrates how DeepSurv more accurately

models the log-risk function compared to the linear CPH.

Figure 2a plots the true log-risk function h(x) for all

patients in the test set. As shown in Fig. 2b, the CPH’s esti-

mated log-risk function ĥβ(x) does not perfectly model

the true log-risk for a patient. In contrast, as shown

in Fig. 2c, DeepSurv better estimates the true log-risk

function.

To quantify these differences, Fig. 2d and e show that the

CPH’s estimated log-risk has a significantly larger absolute

error than that of DeepSurv, specifically for patients with

a high positive log-risk. We calculate the mean-squared-

error (MSE) between a model’s predicted log-risk and the

true log-risk values. The MSEs of CPH and DeepSurv

are 20.528 057 878 872 541 and 0.192 683 15, respectively.

Even though DeepSurv and CPH have similar predic-

tive abilities, this demonstrates that DeepSurv is superior

than the CPH at modeling the true risk function of the

population.

Nonlinear experiment

We set the log-risk function to be a Gaussian with λmax =

5.0 and a scale factor of r = 0.5:

h(x) = log(λmax) exp

(

−
x20 + x21
2r2

)

. (9)

The surface of the log-risk function is depicted in Fig. 3a.

Because this log-risk function is nonlinear, we do not

expect the CPH to predict the log-risk function properly

without adding quadratic terms of the covariates to the

model. We expect DeepSurv to reconstruct the Gaussian

log-risk function and successfully predict a patient’s risk.
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Table 1 Experimental results for all experiments C-index (95% confidence interval)

Experiment CPH DeepSurv RSF

Simulated Linear 0.779239 (0.777,0.781) 0.778065 (0.776,0.780) 0.757863 (0.756,0.760)

Simulated Nonlinear 0.486728 (0.484,0.489) 0.652434 (0.650, 0.655) 0.626552 (0.624,0.629)

WHAS 0.816025 (0.813, 0.819) 0.866723 (0.863,0.870) 0.892884 (0.890,0.895)

SUPPORT 0.583076 (0.581,0.585) 0.618907 (0.617,0.621) 0.619302 (0.618,0.621)

METABRIC 0.631674 (0.627,0.636) 0.654452 (0.650,0.659) 0.619517 (0.615,0.624)

Simulated Treatment 0.516620 (0.514,0.519) 0.575400 (0.573,0.578) 0.550298 (0.548,0.553)

Rotterdam & GBSG 0.658773 (0.655, 0.662) 0.676349 (0.673,0.679) 0.647924 (0.644, 0.651)

The bold faced numbers signify the best performing algorithm

Lastly, we expect the RSF and DeepSurv to accurately rank

the order of patient’s deaths.

The CI results in Table 1 shows that DeepSurv outper-

forms the linear CPH and predicts as well as the RSF.

In addition, DeepSurv correctly learns nonlinear relation-

ships between a patient’s covariates and their log-risk.

As shown in Fig. 3, DeepSurv is more successful than

the linear CPH in modeling the true log-risk function.

Figure 3b demonstrates that the linear CPH regression

fails to determine the first two covariates as significant.

The CPH has a C-index of 0.486728, which is equivalent to

the performance of randomly ranking death times. Mean-

while, Fig. 3c demonstrates that DeepSurv reconstructs

the Gaussian relationship between the first two covariates

and a patient’s log-risk.

Real survival data experiments

We compare the performance of the CPH and DeepSurv

on three datasets from real studies: the Worcester

Heart Attack Study (WHAS), the Study to Understand

Prognoses Preferences Outcomes and Risks of Treat-

ment (SUPPORT), and The Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC).

Because previous research shows that neural net-

works do not outperform the CPH, our goal is to

demonstrate that DeepSurv does indeed have state-of-

the-art predictive ability in practice on real survival

datasets.

Worcester Heart Attack Study (WHAS)

The Worcester Heart Attack Study (WHAS) investigates

the effects of a patient’s factors on acute myocardial

infraction (MI) survival [27]. The dataset consists of 1638

observations and 5 features: age, sex, body-mass-index

(BMI), left heart failure complications (CHF), and order

of MI (MIORD). We reserve 20 percent of the dataset as

a testing set. A total of 42.12 percent of patients died dur-

ing the survey with a median death time of 516.0 days.

Fig. 2 Simulated Linear Experimental Log-Risk Surfaces. Predicted log-risk surfaces and errors for the simulated survival data with linear log-risk

function with respect to a patient’s covariates x0 and x1 . a The true log-risk h(x) = x0 + 2x1 for each patient. b The predicted log-risk surface of

ĥβ (x) from the linear CPH model parameterized by β . c The output of DeepSurv ĥθ (x) predicts a patient’s log-risk. d The absolute error between

true log-risk h(x) and CPH’s predicted log-risk ĥβ (x). e The absolute error between true log-risk h(x) and DeepSurv’s predicted log-risk ĥθ (x)
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Fig. 3 Simulated Nonlinear Experimental Log-Risk Surfaces. Log-risk surfaces of the nonlinear test set with respect to patient’s covariates x0 and x1 .

a The calculated true log-risk h(x) (Eq. 9) for each patient. b The predicted log-risk surface of ĥβ (x) from the linear CPH model parameterized on β .

The linear CPH predicts a constant log-risk. c The output of DeepSurv ĥθ (x) is the estimated log-risk function

As shown in Table 1, DeepSurv outperforms the CPH;

however, the RSF outperforms DeepSurv.

Study to Understand Prognoses Preferences Outcomes

and Risks of Treatment (SUPPORT)

The Study to Understand Prognoses Preferences Out-

comes and Risks of Treatment (SUPPORT) is a larger

study that researches the survival time of seriously ill

hospitalized adults [28]. The dataset consists of 9,105

patients and 14 features for which almost all patients have

observed entries (age, sex, race, number of comorbidi-

ties, presence of diabetes, presence of dementia, presence

of cancer, mean arterial blood pressure, heart rate, respi-

ration rate, temperature, white blood cell count, serum’s

sodium, and serum’s creatinine). We drop patients with

any missing features and reserve 20 percent of the dataset

as a testing set. A total of 68.10 percent of patients died

during the survey with a median death time of 58 days.

As shown in Table 1, DeepSurv performs as well as the

RSF and better than the CPH with a larger study. This val-

idates DeepSurv’s ability to predict the ranking of patient’s

risks on real survival data.

Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC)

The Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) uses gene and protein expres-

sion profiles to determine new breast cancer subgroups in

order to help physicians provide better treatment recom-

mendations.

The METABRIC dataset consists of gene expression

data and clinical features for 1,980 patients, and 57.72

percent have an observed death due to breast cancer

with a median survival time of 116 months [29]. We

prepare the dataset in line with the Immunohistochem-

ical 4 plus Clinical (IHC4+C) test, which is a com-

mon prognostic tool for evaluating treatment options for

breast cancer patients [30]. We join the 4 gene indicators

(MKI67, EGFR, PGR, and ERBB2) with the a patient’s clin-

ical features (hormone treatment indicator, radiotherapy

indicator, chemotherapy indicator, ER-positive indicator,

age at diagnosis). We then reserved 20 percent of the

patients as the test set.

Table 1 shows that DeepSurv performs better than both

the CPH and RSF. This result demonstrates not only

DeepSurv’s ability to model the risk effects of gene expres-

sion data but also shows the potential for future research

of DeepSurv as a comparable prognostic tool to common

medical tests such as the IHC4+C.

Treatment recommender system experiments

In this section, we perform two experiments to demon-

strate the effectiveness of DeepSurv’s treatment rec-

ommender system. First, we simulate treatment data

by including an additional covariate to the simulated

data from “Nonlinear experiment” section. Second, after

demonstrating DeepSurv’s modeling and recommenda-

tion capabilities, we apply the recommender system to a

real dataset used to study the effects of hormone treat-

ment on breast cancer patients. We show that DeepSurv

can successfully provide personalized treatment recom-

mendations. We conclude that if all patients follow the

network’s recommended treatment options, we would

gain a significant increase in patients’ lifespans.

Simulated treatment data

We uniformly assign a treatment group τ ∈ {0, 1} to each

simulated patient in the dataset. All of the patients in

group τ = 0 were ‘unaffected’ by the treatment (e.g. given

a placebo) and have a constant log-risk function h0(x).

The other group τ = 1 is prescribed a treatment with

Gaussian effects (Eq. 9) and has a log-risk function h1(x)

with λmax = 10 and r = 0.5.

Figure 4 illustrates the network’s success in modeling

both treatments’ log-risk functions for patients. Figure 4a

plots the true log-risk distribution h(x). As expected,

Fig. 4b shows that the network models a constant log-

risk for a patient in treatment τ = 0, independent of

a patient’s covariates. Figure 4c shows how DeepSurv

models the Gaussian effects of a patient’s covariates on
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Fig. 4 Simulated Treatment Log-Risk Surface. Treatment Log-Risk Surfaces as a function of a patient’s relevant covariates x0 and x1 . a The true

log-risk h1(x) if all patients in the test set were given treatment τ = 1. We then manually set all treatment groups to either τ = 0 or τ = 1. b The

predicted log-risk ĥ0(x) for patients with treatment group τ = 0. c The network’s predicted log-risk ĥ1(x) for patients in treatment group τ = 1

their treatment log-risk. To further quantify these results,

Table 1 shows that DeepSurv has the largest concor-

dance index. Because the network accurately reconstructs

the risk function, we expect that it will provide accurate

treatment recommendations for new patients.

In Fig. 5, we plot the Kaplan-Meier survival curves for

both the Recommendation and Anti-Recommendation

subset for each method. Figure 5a shows that the sur-

vival curve for the Recommendation subset is shifted to

the right, which signifies an increase in survival time for

the population following DeepSurv’s recommendations.

This is further quantified by the median survival times

summarized in Table 2. The p-value of DeepSurv’s recom-

mendations is less than 0.000090, and we can reject the

null hypothesis that DeepSurv’s recommendations would

not affect the population’s survival time. As shown in

Table 2, the subset of patients that follow RSF’s recom-

mendations have a shorter survival time than those who

do not follow RSF’s recommended treatment. Therefore,

we could take the RSF’s recommendations and provide the

patients with the opposite treatment option to increase

median survival time; however, Fig. ?? shows that that

improvement would not be statistically valid. While both

methods of DeepSurv and RSF are able to compute treat-

ment interaction terms, DeepSurv is more successful in

recommending personalized treatments.

Rotterdam&German Breast Cancer Study Group (GBSG)

We first train DeepSurv on breast cancer data from the

Rotterdam tumor bank [31]. and construct a recom-

mender system to provide treatment recommendations to

patients from a study by the German Breast Cancer Study

Group (GBSG) [32]. The Rotterdam tumor bank dataset

contains records for 1546 patients with node-positive

breast cancer, and nearly 90 percent of the patients have

an observed death time. The testing data from the GBSG

contains complete data for 686 patients (56 percent are

censored) in a randomized clinical trial that studied the

effects of chemotherapy and hormone treatment on sur-

vival rate. We preprocess the data as outlined by [33].

Fig. 5 Simulated Treatment Survival Curves. Kaplan-Meier estimated survival curves with confidence intervals (α = .05) for the patients who were

given the treatment concordant with a method’s recommended treatment (Recommendation) and the subset of patients who were not

(Anti-Recommendation). We perform a log-rank test to validate the significance between each set of survival curves. a Effect of DeepSurv’s

Treatment Recommendations (Simulated Data), b Effect of RSF’s Treatment Recommendations (Simulated Data)
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Table 2 Experimental results for treatment recommendations:

median survival time (months)

Experiment
DeepSurv RSF

Rec Anti-Rec Rec Anti-Rec

Simulated 3.334 2.867 3.270 3.334

Rotterdam & GBSG 40.099 31.770 39.014 30.752

The bold faced numbers signify the best performing algorithm

We first validate DeepSurv’s performance against the

RSF and CPH baseline. We then plot the two survival

curves: the survival times of those who followed the rec-

ommended treatment and those who did not. If the rec-

ommender system is effective, we expect the population

with the recommended treatments to survive longer than

those who did not take the recommended treatment.

Table 1 shows that DeepSurv provides an improved pre-

dictive ability relative to the CPH and RSF. In Fig. 6,

we plot the Kaplan-Meier survival curves for both the

Recommendation subset and the Anti-Recommendation

subset for each method. Figure 6a shows that the sur-

vival curve for DeepSurv’s Recommendation subset is

statistically significant from the Anti-recommendation

subset, and Table 2 shows that DeepSurv’s recommenda-

tions increase the median survival time of the population.

Figure 6b demonstrates that RSF is unable to provide sig-

nificant treatment recommendations, despite an increase

in median survival times (see Table 2). The results of this

experiment demonstrate not only DeepSurv’s superior

modeling capabilities but also validate DeepSurv’s abil-

ity in providing personalized treatment recommendations

on real clinical data. Moreover, we can train DeepSurv

on survival data from one clinical study and transfer

the learnings to provide personalized treatment recom-

mendations to a different population of breast cancer

patients.

Conclusion
In conclusion, we demonstrated that the use of deep learn-

ing in survival analysis allows for: (i) higher performance

due to the flexibility of the model, and (ii) effective treat-

ment recommendations based on the predicted effect of

treatment options on an individual’s risk. We validated

that DeepSurv predicts patients’ risk mostly as well as

or better than other linear and nonlinear survival meth-

ods. We experimented on increasingly complex survival

datasets and demonstrated that DeepSurv computes com-

plex and nonlinear features without a priori selection

or domain expertise. We then demonstrated that Deep-

Surv is superior in predicting personalized treatment rec-

ommendations compared to the state-of-the-art survival

method of random survival forests. We also released a

Python module that implements DeepSurv and scripts for

running reproducible experiments in Docker, see [34] for

more details.

Discussion
The success of DeepSurv’s predictive, modeling,

and recommending abilities paves the way for

future research in deep neural networks and survival

analysis. DeepSurv can lead to various extensions, such

as the use of convolution neural networks to predict

risk with medical imaging. With more research at scale,

DeepSurv has the potential to supplement traditional

survival analysis methods and become a standard method

for medical practitioners to study and recommend

personalized treatment options.

Appendix A
Experimental details

We run all linear CPH regression, Kaplan-Meier esti-

mations, c-index statistics, and log-rank tests using the

Lifelines Python package. DeepSurv is implemented in

Fig. 6 Rotterdam & German Breast Cancer Study Group (GBSG) Survival Curves. Kaplan-Meier estimated survival curves with confidence intervals

(α = .05) for the patients who were given the treatment concordant with a method’s recommended treatment (Recommendation) and the subset

of patients who were not (Anti-Recommendation). We perform a log-rank test to validate the significance between each set of survival curves.

a Effect of DeepSurv’s Treatment Recommendations (GBSG), b Effect of RSF’s Treatment Recommendations (GBSG)
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Theano with the Python package Lasagne. We use the R

package randomForestSRC to fit RSFs. All experiments

are run using Docker containers such that the experi-

ments are easily reproducible. We use the FloydHub base

image for the DeepSurv docker container.

The hyper-parameters of the network include: the depth

and size of the network, learning rate, ℓ2 regularization

coefficient, dropout rate, exponential learning rate decay

constant , and momentum. We run the Random hyper-

parameter optimization search as proposed in [23] using

the Python package Optunity.We use the Sobol solver [35,

36] to sample each hyper-parameter from a predefined

range and evaluate the performance of the configuration

using k-means cross validation (k = 3). We then choose

the configuration with the largest validation C-index to

avoid models that overfit. The hyper-parameters we use

in all experiments are summarized in the next “Model

Hyper-parameters” section.

Model Hyper-parameters

As described in “Experimental details” section, we tune

DeepSurv’s hyper-parameters by running a random

hyper-parameter search using the Python package Optu-

nity. The table below summarizes the hyper-parameters

we use for each experiment’s DeepSurv network.

We applied inverse time decay to the learning rate at

each epoch:

decayed_LR :=
LR

1 + epoch · lr_decay_rate
. (10)

Appendix B

CPH recommender function

Let each patient in the dataset have a set of n features

xn, in which one feature is a treatment variable x0 = τ .

The CPH model estimates the log-risk function as a lin-

ear combination of the patient’s features ĥβ(x) = βTx =

β0τ + β1x1 + . . . + βnxn. When we calculate the rec-

ommender function for the CPH model, we show that

the model returns a constant function independent of the

patient’s features:

recij(x) = log

(

λ(t; x|τ = i)

λ(t; x|τ = j)

)

= log

(

λ0(t) · eβ0i+β1x1+...+βnxn

λ0(t) · eβ0j+β1x1+...+βnxn

)

= log
(

eβ0i+β1x1+...+βnxn−(β0j+β1x1+...+βnxn)
)

= β0i − β0j

= β0(i − j).

(11)

The CPH will recommend all patients to choose the

same treatment option based on whether the model

calculates the weight β0 to be positive or negative.

Thus, the CPH would not be providing personalized

treatment recommendations. Instead, the CPH deter-

mines whether the treatment is effective and, if so,

then recommending it to all patients. In an exper-

iment, when we calculate which patients took the

CPH’s recommendation, the Recommendation and Anti-

Recommendation subgroups will be equal to the control

and treatment groups. Therefore, calculating treatment

recommendations using the CPH provides little value

to the experiments in terms of comparing the models’

recommendations.

Appendix C
Simulated data generation

Each patient’s baseline information x is drawn from a

uniform distribution on [−1, 1)d. For datasets that also

involve treatment, the patient’s treatment status τx is

drawn from a Bernoulli distribution with p = 0.5.

The Cox proportional hazard model assumes that the

baseline hazard function λ0(t) is shared across all patients.

The initial death time is generated according to an expo-

nential random variable with a mean μ = 5, which we

denote u ∼ Exp(5). The individual death time is then

generated by

Table 3 DeepSurv’s experimental hyper-parameters

Hyper-parameter Sim linear Sim nonlinear WHAS SUPPORT METABRIC Sim treatment GBSG

Optimizer sgd sgd adam adam adam adam adam

Activation SELU ReLU ReLU SELU SELU SELU SELU

# Dense layers 1 3 2 1 1 1 1

# Nodes / Layer 4 17 48 44 41 45 8

Learning rate (LR) 2.922e−4 3.194e−4 0.067 0.047 0.010 0.026 0.154

ℓ2 Reg 1.999 4.425 16.094 8.120 10.891 9.722 6.551

Dropout 0.375 0.401 0.147 0.255 0.160 0.109 0.661

LR decay 3.579e−4 3.173e−4 6.494e−4 2.573e−3 4.169e−3 1.636e−4 5.667e−3

Momentum 0.906 0.936 0.863 0.859 0.844 0.845 0.887
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T =
u

eh(x)
, when there is no treatment variable,

T =
u

eτxh(x)
, when there is a treatment variable.

These times are then right censored at an end time to

represent the end of a trial. The end timeT0 is chosen such

that 90 percent of people have an observed death time.

Because we cannot observe any T beyond the end time

threshold, we denote the final observed outcome time

Z = min(T ,T0).
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