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DeepTag: inferring diagnoses from veterinary clinical notes
Allen Nie1, Ashley Zehnder 1, Rodney L. Page2, Yuhui Zhang3, Arturo Lopez Pineda 1, Manuel A. Rivas1, Carlos D. Bustamante1,4 and

James Zou1,4

Large scale veterinary clinical records can become a powerful resource for patient care and research. However, clinicians lack the

time and resource to annotate patient records with standard medical diagnostic codes and most veterinary visits are captured in

free-text notes. The lack of standard coding makes it challenging to use the clinical data to improve patient care. It is also a major

impediment to cross-species translational research, which relies on the ability to accurately identify patient cohorts with specific

diagnostic criteria in humans and animals. In order to reduce the coding burden for veterinary clinical practice and aid translational

research, we have developed a deep learning algorithm, DeepTag, which automatically infers diagnostic codes from veterinary free-

text notes. DeepTag is trained on a newly curated dataset of 112,558 veterinary notes manually annotated by experts. DeepTag

extends multitask LSTM with an improved hierarchical objective that captures the semantic structures between diseases. To foster

human-machine collaboration, DeepTag also learns to abstain in examples when it is uncertain and defers them to human experts,

resulting in improved performance. DeepTag accurately infers disease codes from free-text even in challenging cross-hospital

settings where the text comes from different clinical settings than the ones used for training. It enables automated disease

annotation across a broad range of clinical diagnoses with minimal preprocessing. The technical framework in this work can be

applied in other medical domains that currently lack medical coding resources.
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INTRODUCTION

While a robust medical coding infrastructure exists in the US
healthcare system for human medical records, this is not the case
in veterinary medicine, which lacks coding infrastructure and
standardized nomenclatures across medical institutions. Most
veterinary clinical notes are not coded with standard SNOMED-CT
diagnosis.1 This hampers efforts at clinical research and public
health monitoring. Due to the relative ease of obtaining large
volumes of free-text veterinary clinical records for research
(compared to similar volumes of human medical data) and the
importance of turning these volumes of text into structured data
to advance clinical research, we investigated effective methods for
building automatic coding systems for the veterinary records.
It is becoming increasingly accepted that spontaneous diseases

in animals have important translational impact on the study of
human disease for a variety of disciplines.2 Beyond the study of
zoonotic diseases, which represent 60–70% of all emerging
diseases, noninfectious diseases, like cancer, have become
increasingly studied in companion animals as a way to mitigate
some of the problems with rodent models of disease.3 Addition-
ally, spontaneous models of disease in companion animals are
being used in drug development pipelines as these models more
closely resemble the “real world” clinical settings of diseases than
genetically altered mouse models.4–7 However, when it comes to
identifying clinical cohorts of veterinary patients on a large scale
for clinical research, there are several problems. One of the first is
that veterinary clinical visits rarely have diagnostic codes applied
to them, either by clinicians or medical coders. There is no
substantial third party payer system and no HealthIT act that

applies to veterinary medicine, so there are few incentives for
clinicians or hospitals to annotate their records for diseases to be
able to identify patients by diagnosis. Billing codes are largely
institution-specific and rarely applicable across institutions, unless
hospitals are under the same management structure and records
system. Some large corporate practice groups have their own
internal clinical coding structures, but that data is rarely made
available for outside researchers. A small number (<5) academic
veterinary centers (of a total of 30 veterinary schools in the US)
employ dedicated medical coding staff that apply disease codes
to clinical records so these records can be identified for clinical
faculty for research purposes. How best to utilize this rare, well-
annotated, veterinary clinical data for the development of tools
that can help organize the remaining seqments of the veterinary
medical domain is an open area of research.
In this paper, we develop DeepTag, a system to automatically

code veterinary clinical notes. DeepTag takes free-form veterinary
note as input and infers clinical diagnosis from the note. The
inferred diagnosis is in the form of 42 SNOMED-CT codes. We
trained DeepTag on a large set of 112,558 veterinary notes, and
each note is expert labeled with a set of SNOMED-CT codes.
DeepTag is a bidirectional long–short-term memory network
(BLSTM) augmented with a hierarchical training objective that
captures similarities between the diagnosis codes. We evaluated
DeepTag’s performance on challenging cross-hospital coding
tasks.
Natural language processing (NLP) techniques have improved

from leveraging discrete patterns such as n-grams8 to continuous
learning algorithms like LSTMs.9 This strategy has proven to be
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very successful when a sizable amount of data can be acquired.
Combined with advances in optimization and classification
algorithms, the field has developed algorithms that can match
or exceed human performance in several traditionally difficult
tasks.10

Analyzing free text such as diagnostic reports and clinical notes
has been a central focus of clinical natural language processing.11

Most of the previous research has focused on the human
healthcare systems. Examples include using NLP tools to improve
pneumonia screening in the emergency department, assisting in
adenoma detection, assisting and simplifying hospital processes
by identifying billing codes from clinical notes.12 In an unsuper-
vised setting, Pivovarov et al.13 have conducted experiments to
discover phenotypes and diseases on a broad set of hetero-
geneous data.
In the domain of veterinary medicine, millions of clinical

summaries are stored as electronic health records (EHR) in various
hospitals and clinics. Unlike human discharge summaries that
have been assigned with billing codes (ICD-9/ICD-10 codes),
veterinary summaries exist primarily as free text. This makes it
challenging to perform systematic analysis such as disease
prevalence studies, analysis of adverse drug effects, therapeutic
efficacy or outcome analysis. Veterinary domain is very favorable
for an NLP system that can convert large amount of free-text notes
into structured information. Such a system would benefit the
veterinary community in a substantial way and can be deployed in
multiple clinical settings. Veterinary medicine is a domain where
clinical NLP tools can have a substantial impact in practice and be
integrated into daily use.
Identifying a set of conditions/diseases from clinical notes has

been actively studied.12,14 Currently, the task of transforming free
text into structured information primarily relies on two
approaches: named entity recognition (NER) and automated
coding. DeepTag is designed to perform automated coding rather
than NER. NER requires annotation on the word level, where each
word is associated with one of a few types. In the ShARe task,15

the importance is placed on identifying disease span and then
normalizing into standard terminology in SNOMED-CT or Unified
Medical Language System. In other works, the focus has been on
tagging each word with a specific type: adverse drug effect,
severity, drug name, etc.16 Annotating on word level is expensive,
and most corpora contain only a couple of hundreds or thousands
of clinical notes. Even though early shared task in this domain has
proven to be successful,17,18 it is still difficult to curate a large
dataset in this manner.
Automated coding on the other hand takes the entire free text

as input, and infers a set of codes that are used to code the entire
work. Most discharge summaries in human hospitals have billing
codes assigned. Baumel et al.19 proposed a text processing model
for automated coding that processes each sentence first and then
processes the encoded hidden states for the entire document.
This multilevel approach is especially suitable for longer texts, and
the method was applied to the MIMIC data, where each document
is on average five times longer than the veterinary notes from
Colorodo State University of Veterinary Medicine and Biomedical
Sciences (CSU). Rajkomar et al.20 used deep learning methods to
process the entire EHR and make clinical predictions for a wide
range of problems including automated coding. In their work, they
compared three deep learning models: LSTM, time-aware
feedforward neural network, and boosted time-based decision
stumps. In this work, we use a new hierarchical training objective
which is designed to capture the similarities among the SNOMED-
CT codes. This hierarchical objective is complementary to these
previous approaches in the sense that the hierarchical objective
can be used on top of any architecture. Our cross-hospital
evaluations also extend what is typically done in literature. Even
though Rajkomar et al. had data from two hospitals, they did not
investigate the performance of the model when trained on one

hospital but evaluated on the other. In our work, due to the lack of
coded clinical notes in the veterinary community beyond a few
academic hospitals, it is especially salient for us to evaluate the
model's™ ability to generalize across hospitals.
Our work is also related to the work of Kavuluru et al.,21 who

experimented with different training strategies and compared
which strategy is the best for automated coding, and Subotin
et al.,22 who improved upon direct label probability estimation
and used a conditional probability estimator to fine-tune the
label probability. Perotte et al.23 also investigated possible
methods to leverage the hierarchical structure of disease codes
by using an support vector machine (SVM) algorithm on each level
of the ICD-9 hierarchy tree.
Cross-hospital generalization is a significant challenge in the

veterinary coding setting. Most veterinary clinics currently do not
apply diagnosis codes to their notes.1 Therefore our training data
can only come from a handful of university-based regional referral
centers that manually code their free-text notes. The task is to
train a model on such data and deploy for thousands of private
hospitals and clinics. University-based centers and private
hospitals and clinics have substantial variation in the writing
style, the patient population, and the distribution of diseases (Fig.
1). For example, the training dataset we have used in this work
comes from a university-based hospital with a high-volume
referral oncology service, but typical local hospitals might face
more dermatologic or gastrointestinal cases.

RESULTS

DeepTag takes clinician’s notes as input and predicts a set of
SNOMED-CT disease codes. SNOMED-CT is a comprehensive and
precise clinical health terminology managed by the International
Health Terminology Standards Development Organization. Deep-
Tag is a BLSTM neural network with a new hierarchical learning
objective designed to capture similarities between the disease
codes (see the Supplementary for model details).
DeepTag is trained on 112,558 annotated veterinary notes from

the CSU curated for research purposes. Each of these notes is a
free-text description of a patient visit, and is manually tagged with
at least one, and on average 8, out of the 41 SNOMED-CT disease
codes by experts. In addition, we map every nondisease related
code to an extra code. In total, DeepTag learns to tag a clinical
note with a subset of 42 codes.
We evaluate DeepTag on two different datasets. One consists of

5628 randomly sampled nonoverlapping held-out documents
from the same CSU dataset that the system is trained on. The
other dataset contains 586 documents and are collected from a
private practice (PP) located in northern California. Each of the
these document is also manually annotated with the appropriate
SNOMED-CT codes by human experts. We refer to this dataset as
the PP dataset.
We regard the PP dataset as a “out-of-domain” dataset due to

its substantial difference with regard to writing style and
institution type compared to the CSU dataset.24 The PP
documents tend to be substantially shorter (average of 253 words
compared to 368 words in CSU), use more abbreviations and have
different distribution of diseases (see Methods section for more
details).

Tagging performance

We present DeepTag’s performance on the CSU and PP test data
in Table 1. To save space, we display the 20 most frequent disease
codes in Table 1. For each disease code, we report the number of
training examples for the disease code (N), the scores for
precision, recall, F1, ROC AUC, and the number of subtypes in
this disease code. While DeepTag achieves reasonable F1 scores
overall, its performance is quite heterogeneous for different
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disease codes. Moreover, the performance decreases when
DeepTag is applied to the out-of-domain PP test data. We identify
two factors that substantially impact DeepTag’s performance: (1)
the number of training examples that are tagged with the given

disease code and (2) the number of subtypes, where a subtype is a
SNOMED-CT code applied to either dataset that is lower in the
SNOMED-CT hierarchy than the top-level disease codes DeepTag
is predicting. We use the number of subtypes as a proxy for the

Fig. 1 System workflow and clinical note examples. Figure a shows the workflow of DeepTag with abstention. Then we show two example
meta-diseases corresponding to two subsets of the 42 SNOMED-CT codes. Figure b shows two example notes from the CSU and PP datasets
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diversity and specificity of the clinical text descriptions. Thus, a
higher number of subtypes suggests a wider spectrum of diseases.

Performance improves with more training examples. We first note
that DeepTag works relatively well when the number of training
examples for each disease code is abundant. We generate a
scatter plot to capture the correlation between number of
examples in the in CSU dataset and the disease code’s F1 score
evaluated on the CSU test set. We also plot the F1 score for the
disease code evaluated on the PP dataset and its number of
training examples on the CSU dataset.
For the CSU dataset, we observe an almost linear relationship

between the log number of examples and the F1 score in Fig. 2,
suggesting that our large training data is crucial for the prediction
performance. We observe a similar pattern when evaluating on
the PP dataset, thought the correlation is weaker and the pattern
is less linear. This is due to the out-of-domain nature of PP, which
we investigate in depth below.

More diverse disease codes are harder to predict. After observing
the general correlation between number of training examples and
per-disease code F1 scores, we can investigate outliers. These are
diseases that have many examples but on which DeepTag
performed poorly and diseases that have few examples but
DeepTag performed well. For disorder of digestive system, despite
having the second highest number of training examples (22,589),
both precision and recall are lower than other frequent diseases.
We find that this disease code covers the second largest number
of subtypes (694). On the other hand, disorder of hematopoietic cell
proliferation has the highest F1 score with relatively few training
examples (N= 7294). This disease code has only 22 subtypes.

Similarly autoimmune diseases has few training examples (N=
1280) but it still has a relatively high F1, and it also has only
11 subtypes.
The number of subtypes—i.e., the number of different lower-

level SNOMED-CT codes that are mapped to each of the 42 higher-
level disease code—can serve as an indicator for the diversity or
specificity of the text descriptions. For a disease like disorder of
digestive system, it subsumes many different types of diseases such

Table 1. Report of DeepTag performance on the CSU test data and PP data

CSU PP (Cross-hospital)

Disease code N Prec Rec F1 AUC Sub N Prec Rec F1 AUC Sub

Autoimmune disease 1280 94 72.3 81.4 0.86 11 1 0 0 0 0.5 1(1)

Congenital disease 3345 72.9 35.9 47.3 0.68 224 17 46.7 3.5 6.4 0.52 8(6)

Propensity to adverse reactions 5105 89.1 70.2 78.1 0.85 8 43 67.2 12.6 19.5 0.56 7(2)

Metabolic disease 5265 68.9 55.4 61 0.77 82 26 56.6 48.5 51.1 0.73 12(9)

Disorder of auditory system 5393 81 66.2 72.8 0.83 67 64 78.8 70.3 73.8 0.84 12(6)

Hypersensitivity condition 6871 85.7 74.6 79.5 0.87 31 50 67.7 22.4 31.6 0.61 11(4)

Disorder of endocrine system 7009 79.2 66.7 72.2 0.83 84 46 44.4 21.7 28.7 0.6 8(8)

Disorder of hematopoietic cell proliferation 7294 95.1 87.4 91 0.94 22 16 62.7 25 34.5 0.62 6(1)

Disorder of nervous system 7488 76.1 63.8 69.2 0.81 243 27 40.4 26.7 30.8 0.62 19(14)

Disorder of cardiovascular system 8733 79.3 62.5 69.7 0.81 351 53 44.1 52.1 46.4 0.73 30(24)

Disorder of the genitourinary system 8892 77.7 62.6 69.3 0.81 317 44 47.8 39.1 42.2 0.68 19(12)

Traumatic AND/OR nontraumatic injury 9027 72.8 57.2 63.5 0.78 536 19 50.5 15.8 23.1 0.58 13(8)

Visual system disorder 10139 84.3 81.1 82.6 0.9 413 62 65 62.6 63.2 0.79 39(34)

Infectious disease 11304 71.2 53.7 60.8 0.76 260 88 63.8 23 32.3 0.6 20(10)

Disorder of respiratory system 11322 79.5 65.5 71.8 0.82 274 27 38.3 42.2 38.2 0.69 16(14)

Disorder of connective tissue 17477 75.4 67 70.7 0.81 567 24 30.4 24.2 26.3 0.61 15(11)

Disorder of musculoskeletal system 20060 77 73.4 74.8 0.84 670 56 54 41.4 46.1 0.69 31(19)

Disorder of integument 21052 84.2 71.6 77.3 0.84 360 156 65.7 60.1 62.6 0.74 58(32)

Disorder of digestive system 22589 76.8 67.1 71.5 0.81 694 195 58 47.9 51.3 0.65 47(36)

Neoplasm and/or hamartoma 36108 92.2 88.9 90.5 0.93 749 59 26.1 72.5 37.8 0.74 18(7)

This table reports the DeepTag’s performance (precision, recall, F1 and AUC) for the 20 most frequent disease codes (from a total of 42 disease codes). N

indicates the total number of examples in the dataset. AUC refers to area under the receiver operator curve. Sub indicates the number of lower-level disease

codes that are present in the dataset that are binned into one of the disease level codes. For the PP dataset, the Sub number in parentheses indicate the

number of subtypes that are also present in CSU dataset.

Fig. 2 Per-disease code F1 score plotted with log of number of
examples in the training dataset. Results shown here are from the
DeepTag model. Each point represents a disease code, its
corresponding number of training examples in CSU, and the per-
disease code F1 score from the DeepTag model
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as periodontal disease, hepatic disease, and disease of stomach,
which all have different diagnoses. Similarly, neoplasm and/or
hamartoma encapsulates many different histologic types and be
categorized as benign, malignant, or unknown, thus resulting in
many different lower-level codes (749 codes) being mapped into
the same top-level disease code. DeepTag needs to associate
diverse descriptions to the same high-level disease code,
increasing the difficulty of the prediction task.
We hypothesize that disease codes with many subtypes will be

difficult for the system to predict. This hypothesis suggests that
the number of subtypes a disease code contains could explain
some of the heterogeneity in DeepTag’s performance beyond the
heterogeneity due to the training sample size.
We conduct a multiple linear regression test with both the

number of training examples as well as number of subtypes each
disease code contains as covariates and the F1 score as the
outcome. In the regression, the coefficient for number of subtypes
is negative with p < 0.001. This indicates that, controlling for the
number of training examples, having more subtypes in a disease
code makes tagging more challenging and decreases DeepTag’s
performance on the disease code.

Performance on PP. Next we investigate DeepTag’s performance
discrepancy between the CSU and PP test data. A primary
contributing factor to the discrepancy is that the underlying text
in PP is stylistically and functionally different from the text in CSU.
Note that DeepTag was only trained on the CSU text and was not
fine-tuned on PP. The example texts in Fig. 1 illustrate the striking
difference. In particular, PP uses many more abbreviations that are
not observed in CSU.
After filtering out numbers, 15.4% of words in PP are not found

in CSU. Many of the PP specific words appear to be medical
acronyms that are not used in CSU or terms that describe test
results or medical procedures. Since these vocabulary has no
trained word embedding from the CSU dataset, DeepTag can not
leverage them in the disease tagging process.
Despite having many training examples, DeepTag performs

poorly on some very frequent diseases, for example, neoplasm
and/or hamartoma. On the opposite end of the spectrum, the
tagger does well for disorder of auditory system on both CSU and
PP dataset, despite only having a moderate amount of training
examples. Besides the main issue of vocabulary mismatch, many
subtypes (lower-level disease codes) that get mapped to a disease
code in CSU do not exist in PP, and subtypes in PP also might not
exist in CSU. We refer to this as the subtype distribution shift. For
example, In CSU, neoplasm and/or hamartoma has 749 observed
subtypes. Only 7 out of 749 subtypes are present in PP. Moreover,
there are 11 subtypes are unique to the PP dataset and are not
observed in the CSU training set.
In addition to the subtype analysis, we note that for rarer

diseases, the precision drop between CSU and PP is not as deep as
the recall drop. This can be interpreted as the model is fairly
confident and precise about the key phrases it discovered from
the CSU dataset. The drop in recall in the PP dataset could be
partially due the fact that PP uses many terms and phrases that
are not in the CSU data.

Improvements from disease similarity

The 42 disease codes can be naturally grouped into 18 meta-
diseases; each meta-disease corresponds to a subset of diseases
that are related to each other (see the Supplementary). For

example, the disease codes for “Disease caused by Arthropod” and
“Disease caused by Annelida” belong to the same meta-disease:
“Infectious and parasitic diseases”. We designed DeepTag to

leverage this hierarchical structure amongst the disease codes.
Intuitively, suppose the true disease associated with a note is A
and DeepTag mistakenly predicts disease code B. Then its penalty

should be larger if B is very different from A—i.e., they are in
different meta-diseases—than if B and A are in the same meta-
disease. More precisely, we use the grouping of similar codes into
meta-diseases as a regularization in the training objective of
DeepTag. Basic deep learning systems like LSTM and BLSTM do
not incorporate this information.
DeepTag uses a L2-based distance objective to place this

constraint between disease code embeddings, which are the
parameters in the final layer of the DeepTag neural network. The
objective encourages the embeddings of disease codes that are in
the same meta-disease to be closer to each other than the
embeddings of disease codes across different meta-diseases. In
addition, we investigated another approach that can also leverage
disease similarity: DeepTag-M. This method computes the
probability of a meta-disease based on the probability of the
disease codes that are grouped into it. Instead of forcing similarity
constraints on disease code embeddings, DeepTag-M encourages
the model to make correct prediction on the meta-diseases as well
as on the disease codes (see the Supplementary).
In Table 2, we compare the performance of DeepTag and

DeepTag-M with the standard LSTM, BLSTM, text convolutional
neural network (CNN), MetaMap-SVM, and MetaMap-MLP. Meta-
Map is a nondeep learning approach that processes each

Table 2. Evaluation of trained classifiers on the CSU and PP data

Model EM Precision Recall F1

unwgt wgt unwgt wgt unwgt wgt

CSU data

MetaMap-SVM 32.2 52.2 74.8 54.8 75 53.2 74.8

MetaMap-MLP 41.2 64.7 82.6 48.5 71.8 55 76.4

CNN 45.1 73.1 84.4 57.2 78.4 62.2 80.9

LSTM 47.4 76.6 85.9 59.3 78.7 65.3 81.7

BLSTM 48.2 76.1 86 57.6 79.4 63.5 82.2

DeepTag-M 48.6 76.8 86.3 58.7 79.6 64.6 82.4

DeepTag 48.4 79.9 86.1 62.1 79.8 68 82.4

PP data (cross-hospital)

MetaMap-SVM 3.2 26.5 57.3 37.7 53.1 24.8 51.6

MetaMap-MLP 13.8 30.6 56.4 24.9 47.7 26.2 50.5

CNN 13.5 52.8 68.5 31.8 54 34.8 56

LSTM 13.8 48.1 65.7 31.8 51.9 33.8 54.4

BLSTM 13.8 47.3 66 35.6 57.9 36.9 58.4

DeepTag-M 17.1 53.4 68 37.9 59.9 40.6 61.1

DeepTag 17.4 56.5 70.3 41.4 62.4 43.2 63.4

Aggregate prediction performance across the 42 disease codes. We trained

a multilayer perceptron (MetaMap-MLP) algorithm and support vector

machines (MetaMap-SVM) algorithm on discrete features generated by the

MetaMap, which processes a document and extracts medically relevant

terms.25 CNN refers to a text convolution neural network implementation

from Kim.28 BLSTM refers to the multitask bidirectional LSTM. DeepTag is

our best model, and DeepTag-M is the variation with a meta-disease loss.

EM indicates the exact match ratio, which is the percentage of the clinical

notes where the algorithm perfectly predicts all of the disease codes. For

example, if a note has three true disease codes, then the algorithm

achieves an exact match if it predicts exactly these three disease codes, no

more and no less. For each precision, recall and F1 score, there are two

ways to compute an algorithm’s performance. First we can take an

unweighted average of the score across all the disease codes (unwgt) or

we can take an average weighted by the number of test examples in each

disease code (wgt). All the algorithms are trained on CSU and tested on a

held-out CSU data and the PP data

The bold values indicate the highest value for each evaluation metric
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document to extract a set of medically relevant terms.25 We then
train a SVM (MetaMap-SVM) or a multilayer perceptron (MetaMap-
MLP) to use the extracted terms to predict disease codes.
On the CSU dataset, DeepTag and DeepTag-M perform slightly

better compared to the baseline deep learning models (CNN,
LSTM, and BLSTM). All the deep learning models performed
substantially better than MetaMap-SVM and MetaMap-MLP on
CSU. DeepTag has higher unweighted precision, recall, and F1
score compared to the other models, indicating its ability to have
good performance on a wide spectrum of diseases. The
importance of leveraging similarity is shown on the PP dataset
(Fig. 3). Since it is out-of-domain, expert defined disease similarity
provide much-needed regularization to make both DeepTag and
DeepTag-M out-perform baseline models by a substantial margin,
with DeepTag being the overall best model.

Learning to abstain

Augmenting a tagging system with the ability to abstain (decline
to assign codes) can foster human-machine collaboration. When
the system does not have enough confidence to make decisions, it
has the option to defer to its human counterparts. This aspect is
important in DeepTag because after tagging the documents,
further analysis from various parties might be conducted on the
tagged documents such as investigating the prevalence of certain
specific diseases. In order to not mislead further clinical research,
having the ability to abstain from making very erroneous
predictions and ensuring highly precise tagging is an important
feature.
A natural approach to decide whether to abtain on a given

document is to check whether the DeepTag prediction confidence
—i.e., the output of the final logistic regression—is above a set
threshold. We use this approach as the baseline abstention
method. This could be suboptimal if DeepTag is over-confident in
its predictions. Therefore, we also developed an additional
abstention wrapper on top of DeepTag that we call DeepTag-
abstain. DeepTag-abstain takes the prediction confidence of the
original DeepTag for each of the 42 codes and learns a nonlinear
function in order to decide whether to abstain. This learning to

abstain approach gives DeepTag-abstain more flexibility to assess
the multilabel prediction confidence. See the Supplementary for
more details about DeepTag-abstain and the baseline.
In order to evaluate how well DeepTag-abstain performs

compared to the baseline, we compute an abstention priority
score for each document. A document with higher abstention
priority score will be removed earlier than a document with lower
score. We then compute the weighted average of F1 and exact
match ratio for all the documents that are not removed.
For both baseline and DeepTag-abstain, we specify a proportion

of the documents that need to be removed. We adjust the
dropped portion from 0 to 0.9 (dropping 90% of the examples at
the high end). An abstention method that can drop more
erroneously tagged documents earlier will observe a faster
increase in its performance, corresponding to a curve with steeper
slope.
DeepTag-abstain demonstrates a substantial improvement over

the baseline in Fig. 4. We note that not all learning to abstain
schemes are able to out-perform the baseline. The details of
module design and improvement curve for the rest of the
modules can be seen in the Supplementary Fig. 2.

DISCUSSION

In this study, we developed a multilabel classification algorithm for
veterinary clinical text, which represents a medical domain with an
under-resourced medical coding infrastructure. In order to
improve the performance of DeepTag on diseases with rare
occurrences, we investigated with loss augmentation strategies
that leverage the similarity and dissimilarity between the disease
codes. These augmentations provide gains over the LSTM and
BLSTM baselines, which are common methods used for these
types of prediction tasks. We also experimented with different
methodologies to allow the model to learn to abstain on examples
where the model is not confident in the predictions. We
demonstrate that learned abstention rules out-perform manually
set rules.
Our work demonstrates novel methods for applying broad

disease codes to clinical records as well as applying those trained
algorithms to an external dataset in order to examine cross-

Fig. 3 Performance comparison on PP. We compare the per-disease
code F1 score between baseline LSTM model and DeepTag model
on the PP dataset. The disease codes are sorted from the least
frequent to the most frequent in the training dataset, which comes
from CSU

Fig. 4 Comparison of the abstention models. DeepTag-abstain is
the abstention priority score estimator that uses confidence scores
as input and estimate per-document accuracy of a given document.
Baseline refers to the abstention scheme where the per-document
abstention priority score is computed from individual disease code
confidence scores without any learning. As a greater proportion of
the examples are abstained from, the performance—F1 and Exact
Match (EM)—of both methods improve. DeepTag-abstain shows
faster improvement, indicating that it learns to abstain in more
difficult cases
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hospital generalization. We also demonstrate means to allow
human domain experts to use their judgment when automated
taggers have a high level of uncertainty in order to improve the
overall workflow. We confirm that cross-hospital generalization is
a significant concern for learned tagging systems to be deployed
in real world implementations that may vary substantially from the
data on which they were trained. Even though our work attempts
to mitigate this problem, there is significant research to be done
to optimize methods for domain adaptation. Our current work is
important not only for veterinary medical records, which are rarely
coded, but also may have implications for human medical records
in countries with limited coding infrastructure and which are
important regions of the world for public health surveillance and
clinical research.
There are several aspects of the data that may have limited our

ability to apply methods from our training set to our external
validation set. Private veterinary practices often have data records
that closely resemble the PP dataset used to evaluate our
methods here. However, the large annotated dataset we used
for training is from an academic institution (as these are, largely,
the institutions that have dedicated medical coding staff). As can
be seen from Table 2, the performance drop due to domain
mismatch is non-negligible. The domain shift comes from two
parts. First, text style mismatch—private commercial notes use
more abbreviations and tend to include many procedural
examinations (even though many are non-informative or
nondiagnostic).
Second, disease code distribution mismatch—the CSU training

dataset focuses largely on neoplasm and several other tumor-
related diseases, largely due to the fact that the CSU hospital is a
regional tertiary referral center for cancer and cancer represents
nearly 30% of the caseload. Other practices will have datasets
composed of disease codes that appear with different frequencies,
depending on the specializations of that particular practice. A very
important path forward is to use learning algorithms that are
robust to domain shift, and experimenting with unsupervised
representation learning to mitigate the domain shift between
academic datasets and private practice datasets.
Currently we are predicting top-level SNOMED-CT disease

codes, which are not the SNOMED-CT codes that have been
directly annotated on the dataset. Many of the SNOMED-CT codes
that are applied to clinical records are coded as “Findings” that are
not actual “Disorders” as the actual diagnosis of a patient may not
be clear at the time the codes are applied. One example is an
animal that is evaluated for “vomiting” and the actual cause is not
determined, may have a code of “vomiting(finding)” (300359004)
applied and not “vomiting(disorder)” (422400008) and these “non-
disorder” disease codes are not evaluated in our current work.
However, these are an important subset of codes and represent
another means to identify particular patient cohorts with
particular clinical signs or presentations, vs. diagnosed disorders.
Another future direction for the abstention branch of this work

is to factor human cost and annotation accuracy into the model
and only defer when the model believes that human experts will
bring improvement to the result within an acceptable amount of
cost. This is an interesting direction for experimentation.

METHODS

Datasets

Colorado State University dataset. The CSU dataset contains discharge
summaries as well as applied diagnostic codes for clinical patients from the
Colorado State University College of Veterinary Medicine and Biomedical
Sciences. This institution is a tertiary referral center with an active and
nationally recognized cancer center. Because of this, the CSU dataset over-
represents cancer-related diseases. Rare diseases in the CSU dataset are
diseases like perinatal and mental disorders, but these are also rare in the
larger veterinary population as a whole and do not represent a dataset

bias. Overall, there are 112,558 unique discharge summaries in CSU
dataset. We split this dataset into training, validation, and test set by 0.9/
0.05/0.05.

Private practice dataset. An external validation dataset was obtained from
a regional PP. These records did not have diagnostic codes available and
only approximately 3% of these records had a diagnosis placed in the
“Problem List” for a particular patient on a particular visit. Out of 352,597
patient records obtained that had Subjective, Objective, Assessment, Plan
(SOAP) notes (i.e., notes in the “Subjective, Objective, Assessment, Plan”
format), only 13,843 (3.9%) had at least one specific clinical diagnosis listed
in the problem list. These diagnoses were free text and not coded to
SNOMED-CT by the primary clinicians. Within the SOAP notes, additional
diagnoses were frequently found within the “Assessment” field, but were
not applied in a consistent standard and by using different levels of
evidence, i.e., some of these diagnosis were presumptive, tentative or
historical.
Two veterinary domain experts applied SNOMED-CT codes to a subset of

these records and achieved consensus on the records used for validation.
This dataset (PP) is used for external validation of algorithms developed
using the CSU dataset. There are 586 documents in this external validation
dataset.

Data processing

Documents in our corpus have been tagged with SNOMED-CT codes that

describe the clinical conditions present at the time of the visit being

annotated. Annotations are applied from the SNOMED-CT veterinary

extension (SNOMEDCT_VET), which is fully compatible to and is an

extension of the International SNOMED-CT edition. It can be accessed in a

dedicated browser and is maintained by the Veterinary Terminology

Services Laboratory at the Virginia-Maryland Regional College of Veterinary

Medicine. Medical coders applying diagnostic codes are either veterinar-

ians or trained medical coders with expertize in the veterinary domain and

the SNOMED terminology. The medical coding staff at CSU utilize post-

coordinated expressions, where required, for annotations to fully describe

a diagnosed condition. For this work, we only considered the core disease

codes and not the subsequent modifiers for training our models. The PP

dataset was similarly coded using post-coordinated terms following

consultation with coding staff at multiple academic institutions that

annotate records using SNOMED-CT. We further grouped the 42 disease

codes into 18 meta-diseases. More details of this grouping are provided in

the Supplementary.

Difference in data structures

Due to the inherent differences in clinical notes/discharge summaries

prepared for patients in an academic setting compared to the shorter

“SOAP” format notes prepared in private practice, there are substantial

differences in the format as well as the writing style and level of detail

between these two datasets. In addition, the private practice records

exhibit significant differences in record styles between clinicians, as some

clinicians use standardized forms while others use abbreviated clinical

notes containing only references to abnormal clinical findings.
As can be seen in Supplementary Fig. 1, both dataset have more than

80% documents associated with more than one disease code, and in terms

of document length distribution, PP dataset document is much shorter

than CSU dataset, while the average PP document length is 191 words. The

average CSU document length is 325 words.

Algorithm development and analysis

We trained our modeling algorithm on CSU dataset and evaluated on a

held-out portion of data from the CSU dataset as well as the PP dataset. We

formulated our base model to be a recurrent neural network with LSTM.

We additionally decided to run this recurrent neural network on both the

forward direction and backward direction of the document (bidrectional),

as is found beneficial in Graves et al.26 We then built 42 independent

binary classifiers to predict the existence of each disease code. This is the

architecture found most useful in multilabel classification literature.21 The

model is trained jointly with binary cross entropy loss. We then augmented

this baseline model with two losses: cluster penalty27 and a novel meta-

disease prediction loss to leverage human expert knowledge in how

semantically related these disease codes are.

DeepTag: inferring diagnoses from veterinary clinicaly

A Nie et al.

7

Scripps Research Translational Institute npj Digital Medicine (2018)  60 



Code availability

DeepTag is freely available at https://github.com/windweller/DeepTag.

DATA AVAILABILITY

The data that support the findings of this study are available from Colorado State

University College of Veterinary Medicine and a private practice veterinary hospital

near San Francisco, but restrictions apply to the availability of these data, which were

made available to Stanford for the current study, and so are not publicly available.

Data are however available from the authors upon reasonable request and with

permission of Colorado State University College of Veterinary Medicine and the

private hospital.
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