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The Tox21 Data Challenge has been the largest effort of the scientific community

to compare computational methods for toxicity prediction. This challenge comprised

12,000 environmental chemicals and drugs which were measured for 12 different

toxic effects by specifically designed assays. We participated in this challenge to

assess the performance of Deep Learning in computational toxicity prediction. Deep

Learning has already revolutionized image processing, speech recognition, and language

understanding but has not yet been applied to computational toxicity. Deep Learning

is founded on novel algorithms and architectures for artificial neural networks together

with the recent availability of very fast computers and massive datasets. It discovers

multiple levels of distributed representations of the input, with higher levels representing

more abstract concepts. We hypothesized that the construction of a hierarchy of

chemical features gives Deep Learning the edge over other toxicity prediction methods.

Furthermore, Deep Learning naturally enables multi-task learning, that is, learning of all

toxic effects in one neural network and thereby learning of highly informative chemical

features. In order to utilize Deep Learning for toxicity prediction, we have developed

the DeepTox pipeline. First, DeepTox normalizes the chemical representations of the

compounds. Then it computes a large number of chemical descriptors that are used

as input to machine learning methods. In its next step, DeepTox trains models, evaluates

them, and combines the best of them to ensembles. Finally, DeepTox predicts the toxicity

of new compounds. In the Tox21 Data Challenge, DeepTox had the highest performance

of all computational methodswinning the grand challenge, the nuclear receptor panel, the

stress response panel, and six single assays (teams “Bioinf@JKU”). We found that Deep

Learning excelled in toxicity prediction and outperformed many other computational

approaches like naive Bayes, support vector machines, and random forests.

Keywords: Deep Learning, deep networks, Tox21, machine learning, tox prediction, toxicophores, challenge

winner, neural networks

1. INTRODUCTION

Humans are exposed to an abundance of chemical compounds via the environment, nutrition,
cosmetics, and drugs. To protect humans from potentially harmful effects, these chemicals must
pass reliable tests for adverse effects and, in particular, for toxicity. A compound’s effects on human
health are assessed by a large number of time- and cost-intensive in vivo or in vitro experiments.
In particular, numerous methods rely on animal tests, trading off additional safety against ethical
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concerns. The aim of the “Toxicity testing in the Twenty-first
century” initiative is to develop more efficient and less time-
consuming approaches to predicting how chemicals affect human
health (Andersen and Krewski, 2009; Krewski et al., 2010). The
most efficient approaches employ computational models that can
screen large numbers of compounds in a short time and at low
costs (Rusyn and Daston, 2010). However, computational models
often suffer from insufficient accuracy and are not as reliable
as biological experiments. In order for computational models
to replace biological experiments, they must achieve comparable
accuracy. Within the “Tox21 Data Challenge” (Tox21 challenge),
the performance of computational methods for toxicity testing
was assessed in order to judge their potential to reduce in vitro
experiments and animal testing.

The Tox21 challenge organizers invited participants to build
computational models to predict the toxicity of compounds for
12 toxic effects (see Figure 1). These toxic effects comprised stress
response effects (SR), such as the heat shock response effect (SR-
HSE), and nuclear receptor effects (NR), such as activation of the
estrogen receptor (NR-ER). Both SR and NR effects are highly
relevant to human health, since activation of nuclear receptors
can disrupt endocrine system function (Chawla et al., 2001; Grün
and Blumberg, 2007), and activation of stress response pathways
can lead to liver injury or cancer (Bartkova et al., 2005; Labbe
et al., 2008; Jaeschke et al., 2012). For constructing computational
models, high-throughput screening assay measurements of these
twelve toxic effects were provided. The training set consisted of
the Tox21 10K compound library, which includes environmental
chemicals and drugs (Huang et al., 2014). For a set of 647 new
compounds, computational models had to predict the outcome

FIGURE 1 | Overview of the Tox21 challenge dataset.

of the high-throughput screening assays (see Figure 1). The assay
measurements for these test compounds were withheld from
the participants and used to evaluate the performance of the
computational methods. The “area under ROC curve” (AUC) was
used as a performance criterion that reflects how well a method
can rank toxic compounds higher than non-toxic compounds.

The participants in the Tox21 challenge used a broad range
of computational methods for toxicity prediction, most of
which were from the field of machine learning. These methods
represent the chemical compound by chemical descriptors, the
features, which are fed into a predictor. Methods for predicting
biological effects are usually categorized into similarity-based
approaches and feature-based approaches. Similarity-based
methods compute a matrix of pairwise similarities between
compounds which is subsequently used by the prediction
algorithms. These methods, which are based on the idea that
similar compounds should have a similar biological effect include
nearest neighbor algorithms (e.g., Kauffman and Jurs, 2001;
Ajmani et al., 2006; Cao et al., 2012) and support vector
machines (SVMs, e.g., Mahé et al., 2005; Niu et al., 2007;
Darnag et al., 2010). SVMs rely on a kernel matrix which
represents the pairwise similarities of objects. In contrast to
similarity based methods, feature based methods either select
input features (chemical descriptors) or weight them by a
score or a model parameter. Feature-based approaches include
(generalized) linear models (e.g., Luco and Ferretti, 1997;
Sagardia et al., 2013), random forests, (e.g., Svetnik et al.,
2003; Polishchuk et al., 2009), and scoring schemes based on
naive Bayes (Bender et al., 2004; Xia et al., 2004). Choosing
informative features for the task at hand is key in feature-
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based methods and requires deep insights into chemical and
biological properties and processes (Verbist et al., 2015), such
as interactions between molecules (e.g., ligand-target), reactions
and enzymes involved, and metabolic modifications of the
molecules. Similarity-based approaches, in contrast, require
a proper similarity measure between two compounds. The
measure may use a feature-based, a 2D graph-based, or a 3D
representation of the compound. Graph-based compound and
molecule representations led to the invention of graph and
molecule kernels (Kashima et al., 2003, 2004; Ralaivola et al.,
2005; Mahé et al., 2006; Mohr et al., 2008; Vishwanathan et al.,
2010; Klambauer et al., 2015). These methods are not able
to automatically create task-specific or new chemical features.
Deep Learning, however, excels in constructing new, task-
specific features that result in data representations which enable
Deep Learning methods to outperform previous approaches,
as has been demonstrated in various speech and vision
tasks.

Deep Learning (LeCun et al., 2015; Schmidhuber, 2015) has
emerged as a highly successful field of machine learning. It
has already impacted a wide range of signal and information
processing fields, redefining the state of the art in vision (Cireşan
et al., 2012a; Krizhevsky et al., 2012), speech recognition (Dahl
et al., 2012; Deng et al., 2013; Graves et al., 2013), text
understanding and natural language processing (Socher and
Manning, 2013; Sutskever et al., 2014), physics (Baldi et al., 2014),
and life sciences (Cireşan et al., 2013). MIT Technology Review
selected it as one of the 10 technological breakthroughs of 2013.
Deep Learning has already been applied to predict the outcome of
biological assays (Dahl et al., 2014; Unterthiner et al., 2014, 2015;
Ma et al., 2015), which made it our prime candidate for toxicity
prediction.

Deep Learning is based on artificial neural networks with
many layers consisting of a high number of neurons, called deep
neural networks (DNNs). A formal description of DNNs is given
in Section 2.2.1. In each layer Deep Learning constructs features
in neurons that are connected to neurons of the previous layer.
Thus, the input data is represented by features in each layer,
where features in higher layers code more abstract input concepts
(LeCun et al., 2015). In image processing, the first DNN layer
detects features such as simple blobs and edges in raw pixel data
(Lee et al., 2009; see Figure 2). In the next layers these features are
combined to parts of objects, such as noses, eyes and mouths for
face recognition. In the top layers the objects are assembled from
features representing their parts such as faces.

The ability to construct abstract features makes Deep
Learning well suited to toxicity prediction. The representation
of compounds by chemical descriptors is similar to the
representation of images by DNNs. In both cases the
representation is hierarchical and many features within a
layer are correlated. This suggests that Deep Learning is
able to construct abstract chemical descriptors automatically.
The constructed features can indicate functional groups or
toxicophores (Kazius et al., 2005) as visualized in Figure 3.

The construction of indicative abstract features by Deep
Learning can be improved by Multi-task learning. Multi-task
learning incorporates multiple tasks into the learning process
(Caruana, 1997). In the case of DNNs, different related tasks
share features, which therefore capture more general chemical
characteristics. In particular, multi-task learning is beneficial for
a task with a small or imbalanced training set, which is common
in computational toxicity. In this case, due to insufficient
information in the training data, useful features cannot be
constructed. However, multi-task learning allows this task to

FIGURE 2 | Hierarchical composition of complex features. DNNs build a feature from simpler parts. A natural hierarchy of features arises. Input neurons

represent raw pixel values which are combined to edges and blobs in the lower layers. In the middle layers contours of noses, eyes, mouths, eyebrows and parts

thereof are built, which are finally combined to abstract features such as faces. Images adopted from Lee et al. (2011) with permission from the authors.
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borrow features from related tasks and, thereby, considerably
increases the performance.

Deep Learning thrives on large amounts of training data in
order to construct indicative features (Krizhevsky et al., 2012)
and, thereby, well-performing models. Recently, the availability
of high-throughput toxicity assays provides sufficient data to use
Deep Learning for toxicity prediction (Andersen and Krewski,
2009; Krewski et al., 2010; Shukla et al., 2010). In summary,
Deep Learning is likely to perform well with the following
prerequisites:

Large dataset: “Big data” Several thousand data points must be

available to allow the Deep Learning

method to learn hierarchical

representations of the data.

Many related input features Multiple similar, i.e., correlated, inputs must

be available. This allows very robust hidden

representations.

Multi-task setting Each data point has multiple possible

output classes. The hidden representations

can be shared across tasks, enhancing

performance.

These three conditions are fulfilled for the Tox21 dataset: (1)
High throughput toxicity assays have provided vast amounts of
data. (2) Chemical compound descriptors are correlated. (3) A
Multi-task setting is natural as different assays measure different
but related toxic effects for the same compound (see Figure 4).
To conclude, Deep Learning seems promising for computational
toxicology because of its ability to construct abstract chemical
features.

2. MATERIALS AND METHODS

For the Tox21 challenge, we used Deep Learning as key
technology, for which we developed a prediction pipeline
(DeepTox) that enables the use of Deep Learning for toxicity
prediction. The DeepTox pipeline was developed for datasets
with characteristics similar to those of the Tox21 challenge
dataset and enables the use of Deep Learning for toxicity
prediction.We first introduce the challenge dataset in Section 2.1.
In Section 2.2 we then present, howwe utilized Deep Learning for
Toxicity prediction, while in Section 2.3 the DeepTox pipeline is
explained.

2.1. Tox21 Challenge Data
In the Tox21 challenge, a dataset with 12,707 chemical
compounds was given. This dataset consisted of a training
dataset of 11,764, a leaderboard set of 296, and a test set of
647 compounds. For the training dataset, the chemical structures
and assay measurements for 12 different toxic effects were fully
available to the participants right from the beginning of the
challenge, as were the chemical structures of the leaderboard
set. However, the leaderboard set assay measurements were
withheld by the challenge organizers during the first phase of
the competition and used for evaluation in this phase, but
were released afterwards, such that participants could improve
their models with the leaderboard data for the final evaluation.

FIGURE 3 | Representation of a toxicophore by hierarchically related

features. Simple features share chemical properties coded as reactive

centers. Combining reactive centers leads to toxicophores that represent

specific toxicological effects.

Table 1 lists the number of active and inactive compounds in
the training and the leaderboard sets of each assay. The final
evaluation was done on a test set of 647 compounds, where
only the chemical structures were made available. The assay
measurements were only known to the organizers and had to be
predicted by the participants. In summary, we had a training set
consisting of 11,764 compounds, a leaderboard set consisting of
296 compounds, both available together with their corresponding
assay measurements, and a test set consisting of 647 compounds
to be predicted by the challenge participants (see Figure 1). The
chemical compounds were given in SDF format, which contains
the chemical structures as undirected, labeled graphs whose
nodes and edges represent atoms and bonds, respectively. The
outcomes of the measurements were categorized (i.e., that is
labeled) as “active,” “inactive,” or “inconclusive/not tested.” Not
all compounds were measured on all assays (see Figure 4A).

2.2. Deep Learning for Toxicity Prediction
Deep Learning is a highly successful machine learning technique
that has already revolutionized many scientific areas. Deep
Learning comprises an abundance of architectures such as deep
neural networks (DNNs) or convolutional neural networks. We
propose a DNNs for toxicity prediction and present the method’s
details and algorithmic adjustments in the following. First we
introduce neural networks, and in particular DNNs, in Section
2.2.1. In Section 2.2.2, we then discuss key techniques that
led to the success of DNNs compared to shallow and small
neural networks. The objective that was minimized for the DNNs
for toxicity prediction and the corresponding optimization
algorithms are discussed in Section 2.2.3. We explain DNN
hyperparameters and the DNN architectures used in Section
2.2.4. In Section 2.2.5, we describe the hardware that was
employed to optimize the objectives of the DeepTox DNNs.

2.2.1. Deep Neural Networks
A neural network, and a DNN in particular, can be considered
as a function that maps an input vector to an output vector.
The mapping is parameterized by weights that are optimized in
a learning process. In contrast to shallow networks, which have
only one hidden layer and only few hidden neurons per layer,
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FIGURE 4 | Assay correlation. (A) Histogram showing the number of unambiguous assay label assignments per compound. Only ≈500 compounds had a label for

just one assay, more than half (54%) of the compounds had labels for 10 or more tasks. (B) Absolute correlation coefficient between the different assays of the Tox21

challenge.

TABLE 1 | Number of active and inactive compounds in the training (Train) and the leaderboard (Leader) sets of each assay.

Set Class A
h
R

A
R

A
R
-L
B
D

A
R
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ta
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e

A
T
A
D
5

E
R

E
R
-L
B
D

H
S
E

M
M
P

p
5
3

P
P
A
R
.g

Train Inactive 7219 8982 8296 6069 6866 8753 6760 8307 7722 6178 8097 7962

Train Active 950 380 303 1098 360 338 937 446 428 1142 537 222

Leader Inactive 241 289 249 186 196 247 238 277 257 200 241 252

Leader Active 31 3 4 48 18 25 27 10 10 38 28 15

FIGURE 5 | Schematic representation of a DNN.

DNNs comprise many hidden layers with a great number of
neurons. A DNN may have thousands of neurons in each layer
(Cireşan et al., 2012b), which is in contrast to traditional artificial
neural networks, that employ only a small number of neurons.
The goal is no longer to just learn the main pieces of information,
but rather to capture all possible facets of the input.

A neuron can be considered as an abstract feature with
a certain activation value that represents the presence of this

feature. A neuron is constructed from neurons of the previous
layer, that is, the activation of a neuron is computed from the
activation of neurons one layer below. The first layer is the
“input layer,” in which neuron activations are set to the value of
the input vector. The last layer is the “output layer,” where the
activations represent the output vector. The intermediate layers
are the “hidden layers,” which give intermediate representations
of the input vector.

Figure 5 visualizes the neural network mapping of an input
vector to an output vector. A compound is described by the
vector of its input features x. The neural network NN maps the
input vector x to the output vector y. The activation value hlj
of a neuron j in a layer l of the neural network is computed as

the weighted sum over the values hl−1
i of all neurons i in layer

(l − 1), followed by the application of an activation function f .

The weightwl
ji scales the activation h

l−1
i of neuron i in layer (l−1)

before it is summed to compute the activation of neuron j in layer
l. If the neural network hasm layers, then the formulas are

y = NN(x) ,

h0 = x ,

hlj = f
(

∑

i

wl
ji h

l−1
i

)

,

y = hm .
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In matrix notation, the activation of neurons is

hl = f
(

Wl hl−1
)

.

The output layer often has a special activation function, which
is denoted by σ instead of f in Figure 5. Each neuron has a bias
weight (i.e., a constant offset), that is added to the weighted sum
for computing the activation of a neuron. To keep the notation
uncluttered, these bias weights are not written explicitly, although
they are model parameters like other weights.

2.2.2. Key Techniques for Deep Neural Networks
Recent algorithmic improvements in training DNNs enabled the
success of Deep Learning: (1) “rectified linear units” (ReLUs)
enforce sparse representations and counteract the vanishing
gradient, (2) “dropout” for regularization, and (3) a cross-entropy
objective combined with softmax or sigmoid activation.

One of the most successful inventions in the context of DNNs
are rectified linear units (ReLUs) as activation functions (Nair
and Hinton, 2010; Glorot et al., 2011). A ReLU f is the identity
for positive values and zero otherwise. This activation function is
called the “ramp function”:

f (x) = max (0, x) .

Using ReLUs in DNNs leads to sparse input representations,
which are robust against noise and advantageous for classifiers
because classification is more likely to be easier in higher-
dimensional spaces (Ranzato et al., 2008). Probably the most
important advantage of ReLUs is that they are a remedy for the
vanishing gradient (Hochreiter, 1991; Hochreiter et al., 2000),
from which networks with sigmoid activation functions and
many layers suffer. “Vanishing” means in this context that the
length of a gradient decreases exponentially when propagated
through the layers, ultimately becoming too small for learning in
the lower(/est) layers. Another enabling technique is “dropout,”
which is one of the new regularization schemes that arose with
the advent of DNNs in order to prevent overfitting—a serious
problem for DNNs, as the number of hidden neurons is large
and the complexity of the model class is very high. Dropout
avoids co-adaption of units by randomly dropping units during
training, that is, setting their activations and derivatives to zero
(Hinton et al., 2012; Srivastava et al., 2014). The third technique
that paved the way for the success of DNNs is the application
of error functions such as cross-entropy and logistic-loss as
objectives to be minimized. These error functions are combined
with softmax or sigmoid activation functions in the output
neurons.

2.2.3. DNN Learning, Objective and Optimization
The goal of neural network learning is to adjust the network
weights such that the input-output mapping has a high predictive
power on future data. We want to explain the training data, that
is, to approximate the input-outputmapping on the training data.
Our goal is therefore to minimize the error between predicted
and known outputs on that data. The training data consists of

the output vector t for input vector x, where the input vector
is represented using d chemical features, and the length of the
output vector is n, the number of tasks. Let us consider a
classification task. For classification, the output component tk
for task k is binary, that is, tk ∈ {0, 1}. In the case of toxicity
prediction, the tasks represent different toxic effects, where zero
indicates the absence and one the presence of a toxic effect. The
neural network predicts the outputs yk. In the output layer of the
neural network a sigmoid activation function is used. Therefore,
the neural network predicts outputs yk, that are between 0 and
1, and the training data are perfectly explained if for all training
examples all outputs k are predicted correctly, i.e., yk = tk.
To penalize non-matching output-target pairs, an error function
or objective is defined. Minimizing this error function means
better aligning network outputs and targets. Typically, the cross-
entropy is used as an error function for multi-class classification.
In our case, we deal withmulti-task classification, where multiple
outputs can be one (multiple different toxic effects for one
compound) or none can be one (no toxic effect at all). For the
multi-task setting we use a logistic error function −tk log(yk) −
(1 − tk) log(1 − yk) for each output component k. If tk = yk,
then only terms (1 log 1) or (0 log 0) appear, and the logistic
error function is zero (note that (0 log 0) is defined to be zero).
Otherwise, the logistic error function gives a positive value. The
overall error function is the sum of these logistic error functions
across all output components:

−

n
∑

k=1

tk log(yk) + (1− tk) log(1− yk) .

To cope with missing labels, we introduce a binary vector m for
each sample, where mk is one if the sample has a label for task
k and zero otherwise. This leads to a slight modification to the
above objective:

−

n
∑

k=1

mk

(

tk log(yk) + (1− tk) log(1− yk)
)

.

Learning minimizes this objective with respect to the weights, as
the outputs yk are parametrized by the weights. The optimization
problem is usually solved by gradient descent, which aims
to minimize an objective function by iteratively adapting the
parameters of the optimization problem in the direction of the
steepest descent (the negative gradient) until a stationary point is
found. A critical parameter is the step size or learning rate, i.e.,
how strongly the parameters are changed in the update direction.
If a small step size is chosen, the parameters converge slowly to
the local optimum. If the step size is too high, the parameters
oscillate.

For neural networks, gradient descent can be applied with
high computational efficiency by using the backpropagation
algorithm (Werbos, 1974; Rumelhart et al., 1986). A
computational simplification to computing a gradient over
all training samples is stochastic gradient descent (Bottou, 2010).
Stochastic gradient descent computes a gradient for an equally-
sized set of randomly chosen training samples, a mini-batch, and
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updates the parameters according to this mini-batch gradient
(Ngiam et al., 2011). The advantage of stochastic gradient descent
is that the parameter updates are faster. The main disadvantage
of stochastic gradient descent is that the parameter updates are
more imprecise. For large datasets the increase in speed clearly
outweighs the imprecision.

2.2.4. Hyperparameter Settings and DNN Network

Architectures
The DeepTox pipeline assesses a variety of DNN architectures
and hyperparameters. The networks consist of multiple layers
of ReLUs, followed by a final layer of sigmoid output units, one
for each task. One output unit is used for single-task learning.
In the Tox21 challenge, the numbers of hidden units per layer
were 1024, 2048, 4096, 8192, or 16,384. DNNs with up to four
hidden layers were tested. Very sparse input features that were
present in fewer than 5 compounds were filtered out, as these
features would have increased the computational burden, but
would have included too little information for learning. DeepTox
uses stochastic gradient descent learning to train the DNNs
(see Section 2.2.3), employing mini-batches of 512 samples.
To regularize learning, both dropout (Srivastava et al., 2014)
and L2 weight decay were implemented for the DNNs in the
DeepTox pipeline. They work in concert to avoid overfitting
(Krizhevsky et al., 2012; Dahl et al., 2014). Additionally, DeepTox
uses early stopping, where the learning time is determined by
cross-validation.

Table 2 shows a list of hyperparameters and architecture
design parameters that were used for the DNNs, together with
their search ranges. The best hyperparameters were determined
by cross-validation using the AUC score as quality criterion. Even
thoughmulti-task networks were employed, the hyperparameters
were optimized individually for each task. The evaluation of
the models by cross-validation as implemented in the DeepTox
pipeline is described in Section 2.3.4.

2.2.5. GPU Implementation
Graphics Processor Units (GPUs) have become essential tools for
Deep Learning, because the many layers and units of a DNN give
rise to a massive computational load, especially regarding CPU
performance. Only through the recent advent of fast accelerated
hardware such as GPUs has training a DNN model become
feasible (Schmidhuber, 2015). As described in Section 2.2.1,
the main equations of a neural net can be written in terms
of matrix/vector operations, which are prime candidates for

TABLE 2 | Hyperparameters considered for the neural networks.

Hyperparameter Values considered

Scaling of predefined features {standard-deviation, tanh, sqrt}

Number of Hidden Units {1024, 2048, 4096, 8192, 16,384}

Number of Layers {1, 2, 3, 4}

Backpropagation Learning Rate {0.01, 0.05, 0.1}

Dropout usage/rate {no, yes (50% Hidden Dropout, 20% Input

Dropout)}

L2 Weight Decay {0, 10−6, 10−5, 10−4}

execution on massively parallel hardware architectures. Using
state-of-the-art GPU hardware speeds up the training process
by several orders of magnitude compared to using an optimized
multi-core CPU implementation (Raina et al., 2009). Hence, we
implemented the DNNs using the CUDA parallel computing
platform and employed NVIDIA Tesla K40 GPUs to achieve
speed-ups of 20–100x compared to CPU implementations (see
Supplementary Section 5 for an overview on the computational
resources that were used).

2.3. The DeepTox Pipeline
As mentioned above, we developed a pipeline, which enables
the usage of DNNs for toxicity prediction. The pipeline receives
raw training data and supplies predictions for new data. In
detail “DeepTox” consists of: (1) cleaning and quality control of
the data containing the chemical description of the compounds
(Section 2.3.1), (2) creating chemical descriptors as input features
for the models (Section 2.3.2), (3) model selection including
feature selection if required by the model class (Section 2.3.3), (4)
evaluating the quality of models in order to choose the best ones
(Section 2.3.4), and (5) combiningmodels to ensemble predictors
(Section 2.3.5). The individual steps of the pipeline are visualized
as boxes in Figure 6.

2.3.1. Data Cleaning and Quality Control
In the first step, DeepTox improves the quality of the training
data. We had observed that the chemical substances in question
are often mixtures of distinct chemical structures that are
not connected by covalent bonds. Therefore, we introduced

FIGURE 6 | DeepTox pipeline for toxicity prediction.
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a fragmentation step to the DeepTox pipeline. In this step,
these distinct structures are split into individual “compound
fragments.” Examples of frequently recurring compound
fragments are Na+ and Cl− ions. Upon fragmentation,
identical compound fragments can appear multiple times,
which are merged by DeepTox. In this merging step, DeepTox
semi-automatically labels merged compound fragments,
removing contradictory and keeping agreeing measurements.
Compound fragments that appear in multiple mixtures can
have varying toxicity measurements since Tox21 testing was
based on mixtures. If all measurements agree, the fragments
are automatically labelled. For disagreeing measurements, an
operator has to disentangle the contradictory measurements
by assigning activities to compounds in the mixture. If this is
impossible, the label is marked to be unknown. All fragments are
then normalized by making “H”-atoms explicit and representing
aromatic bonds/tautomers consistently, by calculating a
canonical formula (Thalheim et al., 2010) using the software
Chemaxon. After merging and normalization, the size of the
dataset might be reduced. In the case of the Tox21 challenge
dataset, 12,707 compounds were reduced to 8694 distinct
fragments. To counteract the reduction in the training set size,
an optional augmentation step was introduced to DeepTox:
kernel-based structural and pharmacological analoging (KSPA),
which has been very successful in toxicogenetics (Eduati et al.,
2015). The central idea of KSPA is that public databases already
contain toxicity assays that are similar to the assay under
investigation. KSPA identifies these similar assays by high
correlation values and adds their compounds and measurements
to the given dataset. Thus, the dataset is enriched with both
similar structures and similar assays from public data (see
Supplementary Section 2). This typically leads to a performance
improvement of Deep Learning methods due to increased
datasets. Overall, the data cleaning and quality control procedure
improves the predictive performance of the DNNs.

2.3.2. Chemical Descriptors
For Deep Learning, a large number of correlated features is
favorable to achieve high performance (see Sections 1 and
Krizhevsky et al., 2012). Hence, DeepTox calculates as many
types of features as possible, which can be grouped into two
basic categories: static and dynamic features. Static features
are typically identified by experts as promising properties for
predicting biological activity or toxicity. Examples are atom
counts, surface areas, and the presence or absence of a predefined
substructure in a compound. Since static features are defined a
priori, the number of static features that represent a molecule
is fixed. For the static features, DeepTox calculates a number
of numerical features based on the topological and physical
properties of each compound using off-the-shelf software (Cao
et al., 2013). These static features include weight, Van der Waals
volume, and partial charge information. DeepTox also calculates
the presence and absence of 2500 predefined toxicophore
features, i.e., patterns of substructures previously reported as
toxicophores in the literature (e.g., Kazius et al., 2005), and
standard binary and count features such as MACCS and PCFP.
Dynamic features are extracted on the fly from the chemical

structure of a compound in a prespecified way (e.g., ECFP
fingerprint features, Rogers and Hahn, 2010) The DeepTox
pipeline uses JCompoundMapper (Hinselmann et al., 2011) to
create dynamic features. Dynamic features are often highly
specific and therefore sparse. Even if a huge (possibly infinite)
number of different dynamic features exists, handling the dataset
would remain feasible, as absent features are not reported.
Normally, either the presence of a feature (binary) or the count of
a feature (discrete) is reported for each compound. While many
of these sparse features may be uninformative, some dynamic
features may be specific to toxic effects.

The DeepTox pipeline uses a large number of different types
of static or dynamic features (see Supplementary Section 1).
Different types of input features have substantially different scales
and distributions which poses a problem for DNNs. To make all
of them available in the same range, DeepTox both standardizes
real-valued and count features and applies the tanh nonlinearity.
If the software libraries fail to compute a particular feature,
median-imputation is performed to substitute the missing
value before standardization. The Tox21 dataset in particular
comprised several thousands of static features and hundreds of
millions of dynamic features that were sparsely coded.

2.3.3. DeepTox Model Selection and Complementary

Models
Model Selection is the key step in the DeepTox pipeline. Its goal
is to find a model that describes the training data (i.e., assay
measurements of compounds) well and can be used to predict
assay outcomes of unmeasured compounds.

The main workhorses in the model building part of the
DeepTox pipeline are Deep Neural Networks (DNNs), which
are described above. Here, we present complementary learning
techniques that are included in the DeepToxmodel building part.
These techniques include SVMs, random forests (RF), and elastic
nets. These methods are used for cross-checking, supplementing
the Deep Learning models, and for ensemble learning to
complement DNNs. DeepTox considers both similarity-based
method, such as SVMs, and feature-based methods, such as
random random forests and elastic nets.

2.3.3.1. Support vector machines
SVMs are large-margin classifiers that are based on the
concept of structural risk minimization. They are widely used
in chemoinformatics (Mohr et al., 2010; Rosenbaum et al.,
2011). SVMs are similarity-based machine learning methods
and therefore depend on a kernel function that determines the
similarity of two compounds.

The choice of similarity measure is crucial to the performance
of SVMs. DeepTox uses a linear kernel as a similarity measure
between two compounds x and z, and variations of the Tanimoto
kernel:

• Klinear(x, z) =
∑

p∈P N(p, x) · N(p, z),

• KMinmax(x, z) =

∑

p∈P min N(p,x),N(p,z)
∑

p∈P max N(p,x),N(p,z)
,

• KMinmax_new(x, z) =

∑

p∈P N(p,x)+N(p,z)>0
min(N(p,x),N(p,z))
max(N(p,x),N(p,z))

∑

p∈P N(p,x)+N(p,z)>0 1
,
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where N(p, x) quantifies feature p for compound x, and P

features are considered for a set of compounds. For binary input
features, N(p, x) indicates whether a substructure p occurs in
the molecule x. For integer-valued input features, N(p, x) is the
standardized occurrence count of p in x. For real-valued input
features, N(p, x) is the standardized value of a feature p for
molecule x.

Our novel MinMax kernel KMinmax_new(x, z) allows
continuous features (e.g., partial charges) to be combined with
with discrete (e.g., atom counts) and binary (e.g., substructure
indicators) features. Since only positive values are allowed,
DeepTox splits continuous and count features into positive and
negative parts after centering them by the mean or the median.

The hyperparameters for learning SVM models are the
SVM regularization parameter, a shrinkage/growth parameter
for the kernel similarity, and weights of kernel matrices.
Hyperparameters were selected as for DNNs.

2.3.3.2. Random forests
Random forest (Breiman, 2001) approaches construct decision
trees for classification, and average over many decision trees for
the final classification. Each individual tree uses only a subset of
samples and a subset of features, both chosen randomly. In order
to construct decision trees, features that optimally separate the
classes must be chosen at each node of the tree. Optimal features
can be selected based on the information gain criterion or the
Gini coefficient. The hyperparameters for random forests are the
number of trees, the number of features considered in each step,
the number of samples, the feature choice, and the feature type.
Random forests require a preprocessing step that reduces the
number of features. The t-test and Fisher’s exact test were used
for real-valued and binary features, respectively.

2.3.3.3. Elastic net
Elastic nets (Friedman et al., 2010; Simon et al., 2011) learn
linear regression functions. They basically compute least-square
solutions. However, in contrast to ordinary least squares the
objective includes a penalty term—a weighted combination
between the pure L1 and the pure L2 norm on the coefficients
of the linear function. The L1 and L2 regularization leads to
sparse solutions via the L1 term and to solutions without large
coefficients via the L2 term. The L1 term selects features, and
the L2 term prevents model overfitting due to over-reliance on
single features. In the Tox21 challenge DeepTox used only static
features for elastic net. Since elastic nets built this way typically
showed poorer performance than Deep Learning, SVMs and
random forests, they were rarely included in the ensembles of the
Tox21 challenge.

2.3.4. Model Evaluation
DeepTox determines the performance of our methods by
cluster cross-validation. In contrast to standard cross-validation,
in which the compounds are distributed randomly across
cross-validation folds, clusters of compounds are distributed.
Concretely, we used Tanimoto similarity based on ECFP4
fingerprints and single linkage clustering to identify compound
clusters. A similarity threshold of 0.7 gave us many small clusters

that we then distributed randomly across the folds. DeepTox
considers two aspects for defining the cross-validation folds: the
ratio of actives to inactives and the similarity of compounds.

The ratio of actives to inactives in the cross-validation folds
should be close to the ratio expected in future data. In the Tox21
challenge training dataset, a certain number of compounds
were measured in only a few assays, whereas we expected the
compounds in the final test set to be measured in all twelve
assays. Therefore, in the cross-validation folds, only compounds
with labels from at least eight of the twelve assays were included.
Thus, we ensured that the ratios of actives to inactives in the
cross-validation folds were similar to that in the final test data.

The compounds in different cross-validation folds should not
be overly similar. A compound in the test fold that is similar to a
compound in the training folds could easily be classified correctly
by all methods simply based on the overall similarity. In this case,
information about the performance of the methods is lost. To
avoid that excessively similar compounds are in the test and in
the training fold during model evaluation, DeepTox performs
cluster cross-validation, which guarantees a minimum distance
between compounds of all folds (even across all clusters) if single-
linkage clustering is performed. In the challenge, the clusters
that resulted from single-linkage clustering of the compounds
were distributed among five cross-validation folds. The similarity
measure for clustering was the chemical similarity given by
ECFP4 fingerprints. In cluster cross-validation, cross-validation
folds contain structurally similar compounds that often share the
same scaffold or large substructures.

For the Tox21 challenge, the compounds of the leaderboard
set were considered to be an additional cross-validation fold.
Aside from computing a mean performance over the cross-
validation folds, DeepTox also considered the performance on
the leaderboard fold as an additional criterion for performance
comparisons.

2.3.5. Ensembles of Models
DeepTox constructs ensembles that contain DNNs and
complementary models. For the ensembles, the DeepTox
pipeline gives high priority to DNNs, as they tend to perform
better than other methods. The pipeline selects ensemble
members based on their cross-validation performance and,
for the Tox21 challenge dataset, their performance on the
leaderboard set. DeepTox uses a variety of criteria to choose
the methods that form the ensembles, which led to the different
final predictions in the challenge. These criteria were the
cross-validation performances and the performance on the
leader board set, as well as independence of the methods. The
performance criteria ensure that very high-performing models
form the ensembles, while the independence criterion ensures
that ensembles consist of models built by different methods, or
that ensembles are built from different sets of features.

A problem that arises when building ensembles is that values
predicted by different models are on different scales. To make
the predictions comparable, DeepTox employs Platt scaling
(Platt, 1999) to transform them into probabilistic predictions.
Platt scaling uses a separate cross-validation run to supply
probabilities. Note that probabilities predicted by models such
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as logistic regression are not trustworthy as they can overfit to
the training set. Therefore, a separate run with predictions on
unseen data must be performed to calibrate the predictions of
a model in such a way that they are trustworthy probabilities.
Since the arithmetic mean is not a reasonable choice for
combining the predictions of different models, DeepTox uses a
probabilistic approach with similar assumptions as naive Bayes
(see Supplementary Section 3) to fully exploit the probabilistic
predictions in our ensembles.

3. RESULTS

3.1. Benefit of Multi-Task Learning
We were able to apply multi-task learning in the Tox21 challenge
becausemost of the compounds were labeled for several tasks (see
Section 1). Multi-task learning has been shown to enhance the

TABLE 3 | Comparison: multi-task (MT) with single-task (ST) learning and

SVM baseline evaluated on the leaderboard-set.

Task AUC MT AUC ST AUC SVM

NR.AhR 0.8409 0.8487 0.8289

NR.AR 0.3459 0.3755 0.3344

NR.AR.LBD 0.9289 0.8799 0.8771

NR.Aromatase 0.7921 0.7523 0.7710

NR.ER 0.6949 0.6659 0.6962

NR.ER.LBD 0.7272 0.6532 0.6895

NR.PPAR.gamma 0.7102 0.6367 0.6653

SR.ARE 0.8017 0.7927 0.8201

SR.ATAD5 0.7958 0.7972 0.7310

SR.HSE 0.8101 0.7354 0.6697

SR.MMP 0.8489 0.8485 0.8256

SR.p53 0.7487 0.6955 0.6662

performance of DNNs when predicting biological activities at the
protein level (Dahl et al., 2014). Since the twelve different tasks of
the Tox21 challenge data were highly correlated, we implemented
multi-task learning in the DeepTox pipeline.

To investigate whether multi-task learning improves the
performance, we compared single-task and multi-task neural
networks on the Tox21 leaderboard set. Furthermore, we
computed an SVM baseline (linear kernel). Table 3 lists the
resulting AUC values and indicates the best result for each task in
italic font. The results for DNNs are the means over 5 networks
with different random initializations. Both multi-task and single-
task networks failed on an assay with a very unbalanced class
distribution. For this assay, the data contained only 3 positive
examples in the leaderboard set. For 10 out of 12 assays, multi-task
networks outperformed single-task networks.

3.2. Learning of Toxicophore
Representations
As mentioned in Section 1, neurons in different hidden layers
of the network may encode toxicophore features. To check
whether Deep Learning does indeed construct toxicophores,
we performed separate experiments. In the challenge models,
toxicophores (see Section 2.3.2) were used as input features.
We removed these features to withhold all toxicophore-related
substructures from the network input, and were thus able to
check whether toxicophores were constructed automatically by
DNNs.

We trained a multi-task deep network on the Tox21 data
using exclusively ECFP4 fingerprint features, which had similar
performance as a DNN trained on the full descriptor set
(see Supplementary Section 4, Supplementary Table 1). ECFP
fingerprint features encode substructures around each atom in a
compound up to a certain radius. Each ECFP fingerprint feature
counts how many times a specific substructure appears in a
compound. After training, we looked for possible associations

FIGURE 7 | Quantity of neurons with significant associations to toxicophores. (A) The histogram shows the fraction of neurons in a layer that yield significant

correlations to a toxicophore. With an increasing level of the layer, the number of neurons with significant correlation decreases . (B) The histogram shows the number

of neurons in a layer that exceed a correlation threshold of 0.6 to their best correlated toxicophore. Contrary to (A) the number of neurons increases with the network

layer. Note that each layer consisted of the same number of neurons.
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between all neurons of the networks and 1429 toxicophores, that
were available as described in Section 2.3.2. We checked the
associations using a U-test, in which a neuron was characterized
by its activation over the compounds of the training set
and a toxicophore was characterized by its presence/absence
in the training set compounds. The alternative hypothesis
for the test was that compounds containing the toxicophore
substructure have different activations than compounds that do
not contain the toxicophore substructure. Bonferroni multiple
testing correction was applied afterwards, that is the p-values
from the U-test were multiplied by the number of hypothesis,
concretely the number of toxicophores (1429) times the number
of neurons of the network (16,384). After this correction, 99% of
neurons in the first hidden layer had a significant association with
at least one toxicophore feature using a significance threshold
of 0.05. The number of neurons with significant associations
decreases with increasing level of the layer. In the second layer,
there are 97% neurons with a significant association and 90 and
87% in the third and fourth layer, respectively (see Figure 7A).
Next we investigated the correlation of known toxicophores to

neurons in different layers to quantify their matching. To this
end, we used the rank-biserial correlation which is compatible
to the previously used U-test. To limit false detections, we
constrained the analysis to estimates with a variance <0.01.
We observed that higher layers have a higher number of
neurons with rank-biserial correlation above 0.6 (see Figure 7B).
This means features in higher layers match toxicophores
more precisely.

The decrease in the number of neurons with significant
associations with toxicophores through the layers and the
simultaneous increase of neurons with high correlation can be
explained by the typical characteristics of a DNN: In lower
layers, features code for small substructures of toxicophores,
while in higher layers they code for larger substructures or
whole toxicophores. Features in lower layers are typically part
of several higher layer features, and therefore correlate with
more toxicophores than higher level features, which explains the
decrease of neurons with significant associations to toxicophores.
Features in higher layers are more specific and are therefore
correlated more highly with toxicophores, which explains the

FIGURE 8 | Feature Construction by Deep Learning. Neurons that have learned to detect the presence of toxicophores. Each row shows a particular hidden unit

in a learned network that correlates highly with a particular known toxicophore feature. The row shows the three chemical compounds that had the highest activation

for that neuron. Indicated in red is the toxicophore structure from the literature that the neuron correlates with. The first row and the second row are from the first

hidden layer, the third row is from a higher-level layer.
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increase of neurons with high correlation values. Our findings
underline that deep networks can indeed learn to build
complex toxicophore features with high predictive power for
toxicity.

Visual inspection of the results also confirmed that lower
layers tended to learn smaller features, often focusing on single
functional groups, such as sulfonic acid groups (see row 1 and

2 of Figure 8), while in higher layers the correlations tended to

be with larger toxicophore clusters (row 3 of Figure 8). Most
importantly, these learned toxicophore structures demonstrated

that Deep Learning can support finding new chemical knowledge

that is encoded in its hidden units.

3.3. Comparison of DNN and
Complementary Methods
We selected the best-performing models from each method in
the DeepTox pipeline based on an evaluation of the DeepTox
cross-validation sets and evaluated them on the final test set. The
methods we compared were DNNs, SVMs (Tanimoto kernel),
random forests (RF), and elastic net (ElNet). Table 4 shows the
AUC values for each method and each dataset. We also provided
the mean AUC over the NR and SR panel, and the mean AUC
over all datasets. The results confirm the superiority of Deep
Learning over complementary methods for toxicity prediction by
outperforming other approaches in 10 out of 15 cases.

TABLE 4 | AUC Results for different learning methods as part of DeepTox evaluated on the final test set.
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p
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P
P
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R
.g

DNN 0.837 0.827 0.851 0.923 0.778 0.825 0.829 0.804 0.775 0.791 0.811 0.863 0.930 0.860 0.856

SVM 0.832 0.819 0.849 0.919 0.822 0.748 0.818 0.819 0.781 0.799 0.798 0.848 0.946 0.854 0.827

RF 0.820 0.805 0.840 0.917 0.776 0.812 0.810 0.806 0.786 0.770 0.746 0.826 0.945 0.835 0.805

ElNet 0.803 0.787 0.826 0.897 0.788 0.692 0.778 0.763 0.768 0.765 0.805 0.844 0.924 0.818 0.799

TABLE 5 | The leading teams’ AUC Results on the final test set in the Tox21 challenge.
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our method 0.846 0.826 0.858 0.928 0.807 0.879 0.840 0.834 0.793 0.810 0.814 0.865 0.942 0.862 0.861

AMAZIZ 0.838 0.816 0.854 0.913 0.770 0.846 0.805 0.819 0.828 0.806 0.806 0.842 0.950 0.843 0.830

dmlab 0.824 0.811 0.850 0.781 0.828 0.819 0.768 0.838 0.800 0.766 0.772 0.855 0.946 0.880 0.831

T 0.823 0.798 0.842 0.913 0.676 0.848 0.801 0.825 0.814 0.784 0.805 0.811 0.937 0.847 0.822

microsomes 0.810 0.785 0.814 0.901 – – 0.804 – 0.812 0.785 0.827 – – 0.826 0.717

filipsPL 0.798 0.765 0.817 0.893 0.736 0.743 0.758 0.776 – 0.771 – 0.766 0.928 0.815 –

Charite 0.785 0.750 0.811 0.896 0.688 0.789 0.739 0.781 0.751 0.707 0.798 0.852 0.880 0.834 0.700

RCC 0.772 0.751 0.781 0.872 0.763 0.747 0.761 0.792 0.673 0.781 0.762 0.755 0.920 0.795 0.637

frozenarm 0.771 0.759 0.768 0.865 0.744 0.722 0.700 0.740 0.726 0.745 0.790 0.752 0.859 0.803 0.803

ToxFit 0.763 0.753 0.756 0.862 0.744 0.757 0.697 0.738 0.729 0.729 0.752 0.689 0.862 0.803 0.791

CGL 0.759 0.720 0.791 0.866 0.742 0.566 0.747 0.749 0.737 0.759 0.727 0.775 0.880 0.817 0.738

SuperTox 0.743 0.682 0.768 0.854 – 0.560 0.711 0.742 – – – – 0.862 0.732 –

kibutz 0.741 0.731 0.731 0.865 0.750 0.694 0.708 0.729 0.737 0.757 0.779 0.587 0.838 0.787 0.666

MML 0.734 0.700 0.753 0.871 0.693 0.660 0.701 0.709 0.749 0.750 0.710 0.647 0.854 0.815 0.645

NCI 0.717 0.651 0.791 0.812 0.628 0.592 0.783 0.698 0.714 0.483 0.703 0.858 0.851 0.747 0.736

VIF 0.708 0.702 0.692 0.827 0.797 0.610 0.636 0.671 0.656 0.732 0.735 0.723 0.796 0.648 0.666

Toxic Avg 0.644 0.659 0.607 0.715 0.721 0.611 0.633 0.671 0.593 0.646 0.640 0.465 0.732 0.614 0.682

Swamidass 0.576 0.596 0.593 0.353 0.571 0.748 0.372 0.274 0.391 0.680 0.738 0.711 0.828 0.661 0.585
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3.4. Tox21 Data Challenge Results
The DeepTox pipeline, which is dominated by DNNs,
consistently showed very high performance compared to
all competing methods. It won a total of 9 of the 15 challenges
and did not rank lower than fifth place in any of the subchallenges
In particular, it achieved the best average AUC in both the SR
and the NR panel, and additionally the best average AUC across
the whole set of sub-challenges. It was thus declared winner of
the Nuclear Receptor and the Stress Response panel, as well as
the overall Tox21 Grand Challenge.

The leading teams’ results (team names abbreviated) from
all 12 subchallenges and the average results over the 12
subchallenges and the subchallenges that were part of the
“Nuclear Receptor” and the “Stress Response” panel, respectively,
are given in Table 5. The best results are indicated in bold
with gray background, the second-best results with light gray
background.

The Tox21 challenge result can be summarized as follows: The
Deep-Learning-based DeepTox pipeline clearly outperformed all
competitors.

4. DISCUSSION

In this paper, we have introduced the DeepTox pipeline for
toxicity prediction based on Deep Learning.

Deep Learning is known to learn abstract representations
of the input data with higher levels of abstractions in higher
layers (LeCun et al., 2015). This concept has been relatively
straightforward to demonstrate in image recognition, where
simple objects, such as edges and simple blobs, in lower layers
are combined to abstract objects in higher layers (Lee et al.,
2009). In toxicology, however, it was not known how the data
representations from Deep Learning could be interpreted. We
could show that many hidden neurons represent previously
known toxicophores (Kazius et al., 2005)—proven concepts
which have formerly been handcrafted over decades by experts
in the field. Naturally, we conclude that these representations
also include novel, previously undiscovered toxicophores that
are latent in the data. Using these representations, our
pipeline outperformed methods that were specifically tailored to
toxicological applications.

Successful deep learning is facilitated by Big Data and the
use of graphical processing units (GPUs). In this case, Big Data
is a blessing rather than a curse. However, Big Data implies a
large computational demand. GPUs alleviate the problem of large

computation times, typically by using CUDA kernels on Nvidia
cards (Raina et al., 2009; Unterthiner et al., 2014, 2015; Clevert
et al., 2015). Concretely, training a single DNN on the Tox21
dataset takes about 10 min on an Nvidia Tesla K40 with our
optimized implementation. However, we had to train thousands
of networks in order to investigate different hyperparameter
settings via our cross-validation procedure, which is crucial
for the performance of DNNs. The hyperparameter search was
parallelized across multiple GPUs. Concluding, we consider the
use of GPUs a necessity and recommend the use of multiple GPU
units.

Similar to the successes in other fields (Dahl et al., 2012;
Krizhevsky et al., 2012; Deng et al., 2013; Graves et al., 2013;
Socher and Manning, 2013; Baldi et al., 2014; Sutskever et al.,
2014), Deep Learning has increased the predictive performance
of computational methods in toxicology. As confirmed by
the NIH1, the high quality of the models in the Tox21
challenge makes them suitable for deployment in leading-edge
toxicological research. We believe that Deep Learning is highly
suited to predicting toxicity and is capable of significantly
influencing this field in the future.
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