
LI, LI, AND PORIKLI: DEEPTRACK 1

DeepTrack: Learning Discriminative Feature

Representations by Convolutional Neural

Networks for Visual Tracking

Hanxi Li12

hanxi.li@nicta.com.au

Yi Li1

http://users.cecs.anu.edu.au/~yili/

Fatih Porikli1

http://www.porikli.com/

1 NICTA and ANU,

Canberra, Australia
2 Jiangxi Normal University,

Jiangxi, China

Abstract

Defining hand-crafted feature representations needs expert knowledge, requires time-

consuming manual adjustments, and besides, it is arguably one of the limiting factors of

object tracking.

In this paper, we propose a novel solution to automatically relearn the most useful

feature representations during the tracking process in order to accurately adapt appear-

ance changes, pose and scale variations while preventing from drift and tracking failures.

We employ a candidate pool of multiple Convolutional Neural Networks (CNNs) as a

data-driven model of different instances of the target object. Individually, each CNN

maintains a specific set of kernels that favourably discriminate object patches from their

surrounding background using all available low-level cues. These kernels are updated

in an online manner at each frame after being trained with just one instance at the ini-

tialization of the corresponding CNN. Given a frame, the most promising CNNs in the

pool are selected to evaluate the hypothesises for the target object. The hypothesis with

the highest score is assigned as the current detection window and the selected models are

retrained using a warm-start back-propagation which optimizes a structural loss function.

In addition to the model-free tracker, we introduce a class-specific version of the pro-

posed method that is tailored for tracking of a particular object class such as human faces.

Our experiments on a large selection of videos from the recent benchmarks demonstrate

that our method outperforms the existing state-of-the-art algorithms and rarely loses the

track of the target object.

1 Introduction

Tracking objects across video frames has long been a fundamental challenge in computer

vision. In a typical setting, the object location is initialized in the first frame, and the object

windows in subsequent frames are reported as tracking results.

In general, there are three core tasks to be carried out by an object tracking method: 1)

mathematical modelling of the object of interest, 2) searching for the best location of this

c© 2014. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.

2 LI, LI, AND PORIKLI: DEEPTRACK

model in a new frame, and 3) updating the model according to the newly acquired object

location. The performance of all these three tasks highly depends on how the underlying

object region is modelled into a mathematical form, i.e. feature representation. While there

is a plethora of existing methods exploring various combinations of preferred approaches for

these tasks, finding automatically an optimal set of discriminative feature representations to

obtain the most robust and accurate tracking performance is still an unsolved problem.

In many early methods, features are manually defined and combined [1, 5, 9, 16]. Even

though these methods report satisfactory results on individual datasets, hand-crafted se-

lection of feature representations would limit the performance of visual tracking. For in-

stance, color histogram feature, which would be discriminative when the lighting condition

is favourable, might become ineffective when the object moves under shadow. It is prefer-

able to learn a representation, e.g. a filter applied to a low-level cue, from the current data

rather than predefining a generic filter for all possible scenarios.

Recently, deep neural networks have gained attention as an alternative solution for var-

ious computer vision tasks. Here, deep indicates a multi-layer neural network architecture

that can efficiently capture sophisticated hierarchies describing the raw data. Making the

network deeper will raise the learning capacity significantly [3]. In particular, the Convolu-

tional Neural Network (CNN) has shown superior performance on standard object recogni-

tion benchmarks [13], [14], [4]. With a deep structure, CNN can effectively learn compli-

cated mappings while utilizing minimal domain knowledge.

Using offline trained CNN for tracking has been proposed in the past [8], [18]. In [18],

the CNN learns filters from a large dataset of natural images. However, this method uses an

off-line trained single CNN and embeds it into an off-the-shelf tracking framework, treating

CNN as a predefined feature extractor.

Immediate adoption of an online CNN idea for visual tracking, however, is not straight-

forward. First of all, CNN requires a large number of training samples, which unfortunately

may not be available in visual tracking as there exist only a few number of positive instances

of the target object particularly at the beginning of the video. Secondly, CNN tends to eas-

ily overfit to the most recent observation, e.g. most recent instance kidnapping the model,

which may result in drift problem. Besides, CNN training is computationally very intensive

for online visual tracking.

Here, we propose a novel solution to automatically relearn the most useful feature rep-

resentations by taking advantage of the deep neural networks while addressing the above

issues. Our motivation is that by employing a candidate pool of multiple CNNs we can

capture and adapt to the underlying changes in object appearance and pose without over-

fitting to the data. While it is plausible to use a single CNN as the object model, training

a pool of separate appearance models for individual instances provides much more flexible

and computationally advantageous representation. We consider object tracking as a consec-

utive object-background labelling process. In this spirit, we use CNN to learn discriminative

representations that discriminate object and background regions.

Typically, tracking-by-detection approaches rely on predefined heuristics to sample from

the estimated object location and construct a set of positive or negative samples. Often these

samples have binary labels, which causes model deterioration in case of a slight inaccuracy

during tracking [9]. To overcome this, our method employs a structural loss function, which

allows us to use a large number of training samples that have different significance levels, to

achieve robustness of the model while preventing from the model deterioration. Individually,

each CNN maintains a specific set of kernels that favourably discriminate object patches

from their surrounding background using all available low-level cues. These kernels are

LI, LI, AND PORIKLI: DEEPTRACK 3

Cue-1

Cue-2

Cue-3

Cue-4

Training patches

Normalized patches

Learned filters in Layer-1

Training faces

Pre-learn

Class-Specific Cue

Layer-1 9, 20 × 20

Input Patch 32 × 32

Layer-2 9, 10 × 10

Layer-3 18, 2 × 2

Feature Vector 18 × 1

Output

Label

Label 2 × 1

Convolution 13 × 13

Subsampling 2 × 2

Convolution 9 × 9

Subsampling 2 × 2

Fully

Connected

Input-

Image 32 × 32

Input-

Image 32 × 32

Feature

Maps 20 × 20

Feature

Maps 20 × 20

Feature

Maps 20 × 20

Input-

Image 32 × 32

Input-

Image 32 × 32

Input-

Image 32 × 32

Image 32× 32

32× 32

e Maps 20 ×20

e Maps 20 ×20
32× 32
32× 32

 32× 32

Class-

Specific

Cue

Current frame

Input-

Image 32 × 32

Input-

Image 32 × 32

Feature

Maps 20 × 20

Feature

Maps 20 × 20

Feature

Maps 20 × 20

Input-

Image 32 × 32

Input-

Image 32 × 32

Input-

Image 32 × 32

Image 32× 32

32× 32

e Maps 20 ×20

e Maps 20 ×20
32× 32
32× 32

 32× 32

Cue-1

Input-

Image 32 × 32

Input-

Image 32 × 32

Feature

Maps 20 × 20

Feature

Maps 20 × 20

Feature

Maps 20 × 20

Input-

Image 32 × 32

Input-

Image 32 × 32

Input-

Image 32 × 32

Image 32× 32

32× 32

e Maps 20 ×20

e Maps 20 ×20
32× 32
32× 32

 32× 32

Cue-4

Figure 1: Overall architecture with (red box) and without (rest) the class-specific version.

updated in an online manner at each frame after being trained by just one instance at the

initialization of the corresponding CNN.

For a given frame, we apply a subset of CNNs from the pool to the patches surrounding

the previous object location. For each patch, we determine the best matching CNNs using

the k-NN and assign the best score as the score of the patch. And the patch with the highest

score is assigned as the current detection. The selected CNN corresponding to the current de-

tection is retrained with a warm-start back-propagation scheme using all the labelled patches

from the current frame. This enables us to significantly reduce the computational complexity

and not distort the other CNNs in the pool. Since we use different cues, we apply an iterative

training procedure each cues independently then jointly train their fully-connected layers.

This makes the training efficient. Empirically we observed that this two-stage iterative pro-

cedure is more accurate than jointly training for all cues.

In addition to be able to track any image region, we introduce a class-specific version of

the proposed method that is tailored for tracking of a particular object class such as face. In

this version, the corresponding kernels of the specific object category cue is pretrained and

fixed during the tracking.

Our experiments on 16 videos from recent benchmarks demonstrate that our method con-

sistently outperforms 9 state-of-the-art algorithms and rarely loses the track of the objects.

2 DeepTrack: CNN Architecture

Effective object tracking requires multiple cues, which may include color, image gradients

and different pixel-wise filter responses. These cues are weakly correlated yet contain com-

plementary information. Therefore, it is preferable to consider them simultaneously in a

scalable neural network. Below, we present the CNN structure for a single cue. Then, we

couple multiple CNNs and construct our CNN architecture. We then introduce the structural

4 LI, LI, AND PORIKLI: DEEPTRACK

learning concept, which takes both patch similarities and their spatial relations into account.

2.1 CNN for a single cue

Our CNN for a single cue consists of two convolutional layers1, corresponding sigmoid

functions as activation neurons and average pooling operators. The dashed gray block in

Fig. 1 shows the structure of our single cue network, which can be expressed as (32×32)−
(10×10×9)− (1×1×18)− (2) in conventional neural network notation.

The input is 32× 32 image patches, which draws a balance between the representation

power and computational load. The first convolutional layer contains 9 kernels each of size

13× 13 (an empirical trade-off between overfitting due to a very large number of kernels

and discrimination power), followed by a pooling operation that reduces the obtained feature

map (filter response) to a lower dimension. The second convolutional layer contains 162

kernels with size 9× 9. This leads to a 18 dimensional feature vector in the second layer,

after the pooling operation in this layer.

The fully connected layer is a logistic regression operation. It takes the feature vector

θ ∈ R18 and generates the score vector s = [s1,s2]
T ∈ R2, with s1 and s2 corresponding

to the positive score and negative score respectively. In order to increase the score margin

between the positive and negative samples, we calculate the final CNN score of patch n as

Sn = s1 · exp(s1− s2).

2.2 CNN for multiple cues

In this work, we use 4 image cues generated from the given gray-scale image, i.e., three

locally normalized images with different parameter configurations and a gradient image.

The locally normalized image is usually employed in CNNs as the normalization not only

alleviates the saturation problem but also makes the CNN robust to illumination changes. On

the other hand, the gradient images capture the shape information of the object and is a good

complementary feature to the normalized gray-scale images. In specific, two parameters rµ

and rσ determine a local contrast normalization process and we use three configurations, i.e.,

{rµ = 3,rσ = 1}, {rµ = 3,rσ = 3} and {rµ = 5,rσ = 5}, respectively. We let CNN to select

the most informative cues in a data driven fashion.

By concatenating the final responses of these 4 cues, we build a fully connected layer to

the binary output vector (the green dashed block in Fig. 1).

2.3 Structural loss function

Let xn and ln ∈ {[0,1]
T, [1,0]T} denote the cue of the input patch and its ground truth label

(background or foreground) respectively, and f (xn;Ω) be the predicted score of xn with

network weights Ω, in the conventional setting of CNN learning, the objective function of N

samples in the batch is

L=
1

N

N

∑
n=1

‖ f (xn;Ω)− ln‖2 (1)

when the CNN is trained in the batch-mode. Equation 1 is a commonly used loss function

and performs well in binary classification problems. However, for object localization tasks,

usually higher performance can be obtained by ‘structurizing’ the binary classifier. The

1Note that here the “convolutional layer” refers to the convolution process, rather than the layers defined in Fig.1

LI, LI, AND PORIKLI: DEEPTRACK 5

advantage of employing the structural loss is the larger number of available training samples,

which is crucial to the CNN training. In the ordinary binary-classification setting, one can

only use the training samples with high importance to avoid class ambiguity. In contrast, the

structural CNN is learned based upon all the sampled patches.

In our CNN framework, we modify the original CNN’s output to f (φ〈Γ,yn〉;Ω) ∈ R,

where Γ is the current frame, yn ∈ R
o is the motion hypothesis vector of the target object,

which determines the object’s location in Γ and o is the freedom degree2 of the transforma-

tion. The operation φ〈Γ,yn〉 suffices to crop the features from Γ using the motion yn.

The associated structural loss is defined as

L=
1

N

N

∑
n=1

[∆(yn,y
∗) · ‖ f (φ〈Γ,yn〉;Ω)− ln‖2] , (2)

where y∗ is the (estimated) motion state of the target object in the current frame. To define

∆(yn,y
∗) we first calculate the overlapping score Θ(yn,y

∗) [7] as

Θ(yn,y
∗) =

area(r(yn)
⋂

r(y∗))

area(r(yn)
⋃

r(y∗))
(3)

where r(y) is the region defined by y,
⋂

and
⋃

denotes the intersection and union operations

respectively. Finally we have

∆(yn,y
∗) =

∣

∣

∣

∣

2

1+ exp(−(Θ(yn,y∗)−0.5))
−1

∣

∣

∣

∣

∈ [0,1]. (4)

And the sample label ln is set to [1,0] if Θ(yn,y
∗) > 0.5 while [0,1] otherwise. From 4

we can see that ∆(yn,y
∗) actually measures the importance of the training patch n. For

instance, patches that are very close to object center and reasonably far from it may play

more significant roles in training the CNN, while the patches in between are less important.

3 Tracking with DeepTrack

It is possible to train jointly the above CNN architecture (shown in Fig. 1) as a whole using

the patches described in Sec. 2.3. However, to make the tracking robust and computationally

efficient, we train each cue and the fully-connected layer iteratively. We also maintain a pool

of CNN models for modelling changes over time.

3.1 Online learning: a coordinate-descent approach

We used Stochastic Gradient Decent (SGD) for learning the parameters Ω. Using multiple

image cues leads to a CNN with higher complexity, which implies a low training speed and a

high possibility of overfitting. Notice that each image cue may be weakly independent, thus

we train the network iteratively.

In particular, we define the model parameters as Ω = {w1
cov, · · · ,w

K
cov,w

1
f c, · · · ,w

K
f c},

where wk
cov denotes the filter parameters in cue-k while wk

f c corresponds to the fully-connected

layer. After we complete the training on wk
cov, we evaluate the filter responses from all the

2In this paper, we set o = 3, i.e., the object bounding box changes in its xy location and the scale.

6 LI, LI, AND PORIKLI: DEEPTRACK

cues in the fully-connected layer and then jointly update {w1
f c, · · · ,w

K
f c} with a small learn-

ing rate (see Algorithm 1). This can be regarded as a coordinate-descent variation of SGD. In

practice, we found this strategy effectively curbs the overfitting while increases the training

speed. An empirical comparison between the traditional SGD and the proposed coordinate-

descent variation is also reported in 4.3.

Algorithm 1 Iterative SGD-based training

1: Inputs: Frame image Γ; CNN model (K cues) f (φ〈Γ, ·〉;Ω = {w1
cov, · · · ,w

K
cov,w

1
f c, · · · ,w

K
f c}).

2: Given/Estimated y∗; Sample labels l1, l2, · · · , lN ; Sample motion hypotheses y1,y2, · · · ,yN .

3: Learning rates r̂ = r
K ; minimal loss ε; training step budget M≫ K.

4: for m← 1, M do

5: Calculate loss L= 1
N

N

∑
n=1

[∆(yn,y
∗) · ‖ f (φ〈Γ,yn〉;Ω)− ln‖2]

6: If L≤ ε , break;

7: k = mod(m,K)+1;

8: Update wk
cov using SGD with learning rate r;

9: Jointly update {w1
f c, · · · ,w

K
f c} using Gradient Decent with step length r̂;

10: end for

11: Outputs: New CNN model.

3.2 Temporal adaptation with a CNN pool

Instead of learning one complicated and powerful CNN model for all the appearance ob-

servations in the past, we chose a relatively small number of filters in the CNN within a

framework equipped with a temporal adaptation mechanism. Assuming we buffer the mod-

els of the CNN during each update, we build a pool of CNN models F = { f1, f2, . . . , fQ}
associated with a prototype set X = {x̂1, x̂2, . . . , x̂Q}, where prototype x̂q is a typical positive

sample cue3 when the CNN model fq is learned and Q is the size limit of the pool4.

Given a new frame, we randomly generate 1500 motion hypothesisesY = {y1,y2, . . . ,yN}
of the object around its previous motion state. For each hypothesis yn, we select k nearest

CNN models in the pool by measuring the similarities between its cue xn and all the pro-

totypes in X 5. Then we perform k nearest CNNs for each yn and the hypothesis with the

highest maximal score is chosen as the detected result, i.e.,

y∗ = argmax
yn∈Y

(

max
f j∈Nn

f j(φ〈Γ,yn〉;Ω)

)

, (5)

where Nn is a subset of Y and contains the k nearest CNNs of yn.

After detection, we update the selected model f ∗ = argmax f j∈Ny∗
f j(φ〈Γ,yn〉;Ω) and

increase its rank according to its test error on the current frame. The system will then decide

whether to update f ∗ or add a new CNN into the pool, based on the training error. When the

pool size reaches the budget Q, the CNN candidates with the lowest rank is replaced. The

details of the temporal adaptation mechanism are illustrated in Figure 2. This temporal adap-

tation strategy has two advantages: 1) we can accommodate as many as possible appearance

3In this work we use image gradient as the prototype cue and set k = 5, Q = 50.
4The idea of using template pool has already shown its superiority for long term visual tracking, see [15]
5In this work the similarity is measured in the space obtained via a PCA mapping

LI, LI, AND PORIKLI: DEEPTRACK 7

#34 #162 #208

CNN-1 CNN-2 CNN-3 CNN-20 CNN-4 … CNN-Pool

Prototypes …

… …

Test Est. Train

① Nearest CNNs via

prototype matching

② Perform

Nearest CNNs

④ Train

from CNN-3

⑥ Update CNN-3

⑥ Add a new CNN

⑤ New CNN?
No

Yes

Time axis

Test Est. Train Test Est. Train

③ Select

& rank

Figure 2: Illustration of the temporal adaptation mechanism. In the middle row, the test,

estimation and training operations are marked in blue, yellow and green blocks respectively.

The numbers 1© to 6© indicates the operation order. The bottom row shows the three-stages

operations on a frame: test, estimation and training. In the frame images, the green bounding-

boxes are the negative samples while the red ones denote the positiv samples.

variations without learning an ensemble of CNNs or a very complicated CNN, which is time

consuming, 2) the associated ranking mechanism can explicitly refine the model pool and

discard CNNs with low ranking.

3.3 Class-specific tracking

In certain applications, the target object is from a known class of objects such as human faces.

Our method can use this prior information to leverage the performance of tracking by training

a class-specific detector. In the tracking stage, given the particular instance information, one

needs to combine the class-level detector and the instance-level tracker in a certain way,

which usually leads to higher model complexity.

The proposed multiple-cue CNN and the coordinate-descent optimization method nat-

urally allow class-specific tracking. We first learn a class-level detector by the CNN. The

CNN detector is then used as a special cue in the DeepTrack. In the tracking stage, all

the parameters in the class-cue is fixed except the ones in the fully-connected layer. The

information from the class-level and the instance-level are naturally merged via update the

fully-connected layer of the joint model.

4 Experiments

4.1 Data and comparison methods

We evaluate our method on 16 benchmark video sequences that cover most challenging

tracking scenarios such as scale changes, illumination changes, occlusions, cluttered back-

grounds and fast motion. The first frames of these sequences are listed in Figure 3. We

8 LI, LI, AND PORIKLI: DEEPTRACK

compare our method with 9 other state-of-the-art trackers including TLD [12], CXT [6],

ASLA [11], Struck [9], SCM [20], and the classical tracking algorithms, e.g., Frag [1], CPF

[16], IVT [17] and MIL [2].

Figure 3: The first frames of the selected video sequences. Top row, from left to right:

David, Jumping, David2, Trellis, Fish, Car4, CarDark, Singer2. Bottom row, from left to

right: Skating1, Shaking, FaceOcc2, FaceOcc1, Singer1, Deer, Dudek, Sylvester.

The tracking results are evaluated via the following two measurements: 1) Tracking

Precision (TP), the percentage of the frames whose estimated location is within the given

distance-threshold τd to the ground truth, and 2) Tracking Success Rate (TSR), the percent-

age of the frames in which the overlapping score defined in Equation 3 between the estimated

location and the ground truth is larger than a given overlapping-threshold τo. For a fair com-

parison, we run our algorithm for 5 times and then report the average TP/TSR scores. The

results of other visual trackers are obtained from [19]. We run our algorithm in Matlab with

an unoptimized code mixed with CUDA-PTX kernels for the CNN implementation. In aver-

age, it takes 1.3 seconds for tracking the target object in one frame on a PC with a 3.2G Hz

CPU, 16G memory and a middle-level consumer graphics card (NVIDIA GTX770).

4.2 Results

Firstly, we evaluate using fixed thresholds τd = 15, τo = 0.5, which is a common setting in

tracking evaluations (shown in Table 1). In particular, the score of TP and TSR are shown

together in each table block. The average scores are also reported for all the trackers. We can

see that, the proposed method achieves better average results compared with other trackers,

with the performance gap 10% for TP and 12% for TSR. It is possible to see our DeepTrack

is very robust to dramatic appearance changes, e.g. due to motion blurs (Jumping and Deer)

or illumination variations (Fish, Trellis and Singer2).

In addition to evaluations with fixed thresholds, we also analyse tracking performance

with varying ones. In specific, for TP, we evaluate the trackers with the thresholds τd =
1,2, · · · ,50 while for TSR, we use the thresholds τo = 0 to 1 at the step of 0.05. According

to the scores under different criteria, we generate the precision curves and the success-rate

curves for each tracking method, which is shown in Figure 4.

From the score plots we can see that, DeepTrack ranks the first (red curves) for both TP

and TSR evaluations. Our algorithm is very robust as for τo < 0.72 and τd > 7 as it outper-

form all other trackers. DeepTrack rarely misses the target completely. Having mentioned

that when the overlap thresholds are tight (e.g. τo > 0.8 or τd < 5), our tracker has similar

response to rest of the trackers we tested.

LI, LI, AND PORIKLI: DEEPTRACK 9

David Jumping David2 Trellis Fish Car4 CarDark Singer2

TLD 1.00/0.97 0.98/0.85 1.00/0.95 0.48/0.47 0.98/0.96 0.86/0.79 0.61/0.53 0.04/0.10

CXT 1.00/0.83 0.86/0.29 1.00/1.00 0.88/0.81 1.00/1.00 0.30/0.30 0.71/0.69 0.05/0.04

ASLA 1.00/0.96 0.29/0.17 1.00/0.95 0.86/0.86 1.00/1.00 1.00/1.00 1.00/1.00 0.03/0.04

Struck 0.32/0.24 1.00/0.80 1.00/1.00 0.83/0.78 1.00/1.00 0.97/0.40 1.00/1.00 0.03/0.04

SCM 1.00/0.91 0.14/0.12 1.00/0.91 0.86/0.85 0.84/0.86 0.97/0.97 1.00/1.00 0.11/0.16

Frag 0.13/0.12 0.96/0.85 0.31/0.30 0.35/0.36 0.52/0.55 0.18/0.21 0.39/0.25 0.16/0.20

CPF 0.11/0.03 0.14/0.11 1.00/0.46 0.22/0.17 0.09/0.10 0.03/0.02 0.11/0.02 0.08/0.14

IVT 0.95/0.79 0.18/0.10 1.00/0.93 0.32/0.31 1.00/1.00 1.00/1.00 0.77/0.70 0.04/0.04

MIL 0.42/0.23 0.76/0.48 0.69/0.32 0.17/0.24 0.34/0.39 0.35/0.28 0.27/0.18 0.18/0.48

CNN 0.98/0.95 1.00/0.99 1.00/0.97 0.99/0.97 0.99/1.00 0.97/0.79 1.00/1.00 0.80/0.91

Skating1 Shaking FaceOcc2 FaceOcc1 Singer1 Deer Dudek Sylvester Overall

TLD 0.26/0.23 0.33/0.40 0.69/0.83 0.04/0.83 0.98/0.99 0.73/0.73 0.50/0.84 0.94/0.93 0.65/0.71

CXT 0.20/0.12 0.05/0.11 0.98/0.95 0.19/0.77 0.80/0.32 0.94/0.92 0.73/0.92 0.76/0.75 0.65/0.61

ASLA 0.76/0.69 0.25/0.38 0.67/0.81 0.13/0.31 1.00/1.00 0.03/0.03 0.61/0.90 0.78/0.75 0.65/0.68

Struck 0.29/0.37 0.08/0.17 0.99/1.00 0.24/1.00 0.56/0.30 1.00/1.00 0.78/0.98 0.93/0.93 0.69/0.69

SCM 0.72/0.42 0.70/0.90 0.74/0.87 0.65/1.00 1.00/1.00 0.03/0.03 0.80/0.98 0.89/0.89 0.72/0.74

Frag 0.14/0.12 0.07/0.07 0.54/0.75 0.83/1.00 0.23/0.22 0.18/0.21 0.48/0.59 0.68/0.68 0.38/0.40

CPF 0.20/0.19 0.14/0.12 0.29/0.35 0.18/0.52 0.94/0.32 0.04/0.04 0.45/0.69 0.79/0.71 0.30/0.25

IVT 0.08/0.07 0.01/0.01 0.91/0.91 0.34/0.98 0.81/0.48 0.03/0.03 0.84/0.97 0.68/0.68 0.56/0.56

MIL 0.12/0.10 0.18/0.23 0.55/0.94 0.15/0.76 0.33/0.28 0.08/0.13 0.57/0.86 0.54/0.55 0.36/0.40

CNN 0.60/0.46 0.39/0.42 0.89/0.79 0.50/0.97 0.76/0.92 0.98/1.00 0.43/0.77 0.91/0.90 0.82/0.86

Table 1: The tracking scores of the proposed method and other visual trackers. The reported

results are shown in the order of “TP/TSR”.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots

CNN

SCM

Struck

CXT

ASLA

TLD

IVT

MIL

Frag

CPF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots

CNN

SCM

TLD

Struck

ASLA

CXT

IVT

Frag

MIL

CPF

Figure 4: The Precision Plot (left) and the Success Plot (right) of the comparing visual track-

ing methods. Note that, the color of one curve is determined by the rank of the corresponding

tracker, not the tracker’s name.

4.3 Class specific tracking

On the 8 video sequences that contain human faces, we analysed the class-specific version

of the DeepTrack. We first learn a general face detector using CNN, based on the data

set proposed in [10]. Then, the CNN-based face detector is embedded into the DeepTrack

to track the faces on the sequences. The performance scores are shown in Table 2, we

can see that, with prior knowledge carried by the detector, the class-specific CNN tracker

significantly outperforms the original one on most of the sequences. Based on the face

videos, we also verify the effectiveness of the proposed iterative-SGD method by reporting

the results of the CNN-trackers, which is trained in the ordinary SGD manner.

From Table 2 and Figure 5 we can see that, equipped with the class-specific information,

the CNN tracker achieves better performance under both TP and TSR criteria. The class-

specific cue significantly improves the performance of DeepTrack on some sequences on

which the ordinary DeepTrack performs poorly (Shaking and Dudek). In contrast, without

10 LI, LI, AND PORIKLI: DEEPTRACK

David Jumping David2 Trellis Shaking FaceOcc2 FaceOcc1 Dudek Overall

CNN 0.98/0.95 1.00/0.99 1.00/0.97 0.99/0.97 0.39/0.42 0.89/0.79 0.50/0.97 0.43/0.77 0.77/0.84

Class-CNN 1.00/0.98 0.99/0.78 1.00/0.73 1.00/1.00 0.60/0.65 0.84/0.92 0.56/0.94 0.73/0.95 0.84/0.87

Normal-SGD 0.52/0.50 0.76/0.68 0.97/0.72 0.65/0.62 0.04/0.05 0.80/0.81 0.20/0.95 0.30/0.68 0.53/0.63

Table 2: The comparison between the DeepTrack and the class-specific DeepTrack. The

reported results are shown in the order of “TP/TSR”. For each video sequence, the best

result is shown in bold font.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots

Class−CNN

CNN

Normal−SGD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots

Class−CNN

CNN

Normal−SGD

Figure 5: The Precision Plot (left) and the Success Plot (right) of the comparing visual

tracking methods.

the proposed iterative SGD method, the average performance of the CNN tracker drops by

around 20%.

5 Conclusion

We introduced DeepTrack, a CNN based online object tracker. We employed a CNN ar-

chitecture and a structural loss function that handles multiple input cues and class-specific

tracking. We also proposed an iterative procedure, which speeds up the training process

significantly. Together with the CNN pool, our experiments demonstrate that DeepTrack

performs very well on 16 sequences.

References

[1] Amit Adam, Ehud Rivlin, and Ilan Shimshoni. Robust fragments-based tracking using

the integral histogram. In CVPR 2006, volume 1.

[2] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Visual tracking with online

multiple instance learning. Transactions on Pattern Analysis and Machine Intelligence,

August 2011.

[3] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new

perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(8):

1798–1828, 2013.

LI, LI, AND PORIKLI: DEEPTRACK 11

[4] Dan Claudiu Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural

networks for image classification. In CVPR 2012.

[5] Robert T. Collins, Yanxi Liu, and Marius Leordeanu. Online selection of discriminative

tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27

(10):1631–1643, 2005. ISSN 0162-8828.

[6] Thang Ba Dinh, Nam Vo, and Gérard Medioni. Context tracker: Exploring support-

ers and distracters in unconstrained environments. In CVPR 2011, pages 1177–1184.

IEEE.

[7] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew

Zisserman. The pascal visual object classes (voc) challenge. Intl J. of Comp. Vis., 88

(2):303–338, 2010.

[8] Jialue Fan, Wei Xu, Ying Wu, and Yihong Gong. Human tracking using convolutional

neural networks. Trans. Neur. Netw., 21(10):1610–1623, October 2010. ISSN 1045-

9227.

[9] Sam Hare, Amir Saffari, and Philip HS Torr. Struck: Structured output tracking with

kernels. In ICCV 2011, pages 263–270. IEEE.

[10] Vidit Jain and Erik Learned-Miller. Fddb: A benchmark for face detection in uncon-

strained settings. Technical Report UM-CS-2010-009, University of Massachusetts,

Amherst, 2010.

[11] Xu Jia, Huchuan Lu, and Ming-Hsuan Yang. Visual tracking via adaptive structural

local sparse appearance model. In CVPR 2012, pages 1822–1829. IEEE.

[12] Zdenek Kalal, Jiri Matas, and Krystian Mikolajczyk. Pn learning: Bootstrapping binary

classifiers by structural constraints. In CVPR 2010, pages 49–56. IEEE.

[13] Koray Kavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol Gregor, Michaël Mathieu,

and Yann LeCun. Learning convolutional feature hierachies for visual recognition. In

NIPS 2010.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification with

deep convolutional neural networks. In NIPS 2012.

[15] Karel Lebeda, Simon Hadfield, Jiri Matas, and Richard Bowden. Long-term tracking

through failure cases. In Computer Vision Workshops (ICCVW), 2013 IEEE Interna-

tional Conference on, pages 153–160. IEEE, 2013.

[16] Patrick Pérez, Carine Hue, Jaco Vermaak, and Michel Gangnet. Color-based proba-

bilistic tracking. In ECCV 2002.

[17] David A. Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. Incremental

learning for robust visual tracking. Intl. J. Comp. Vis, 77(1-3):125–141, May 2008.

ISSN 0920-5691.

[18] Naiyan Wang and Dit-Yan Yeung. Learning a deep compact image representation for

visual tracking. In NIPS 2013.

12 LI, LI, AND PORIKLI: DEEPTRACK

[19] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object tracking: A benchmark.

CVPR 2013.

[20] Wei Zhong, Huchuan Lu, and Ming-Hsuan Yang. Robust object tracking via sparsity-

based collaborative model. In CVPR 2012, pages 1838–1845. IEEE.

