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Abstract

Background: Breast cancer is a collection of multiple tissue pathologies, each with a distinct molecular signature

that correlates with patient prognosis and response to therapy. Accurately differentiating between breast cancer

sub-types is an important part of clinical decision-making. Although this problem has been addressed using machine

learning methods in the past, there remains unexplained heterogeneity within the established sub-types that cannot

be resolved by the commonly used classification algorithms.

Methods: In this paper, we propose a novel deep learning architecture, called DeepTRIAGE (Deep learning for the

TRactable Individualised Analysis of Gene Expression), which uses an attention mechanism to obtain personalised

biomarker scores that describe how important each gene is in predicting the cancer sub-type for each sample. We

then perform a principal component analysis of these biomarker scores to visualise the sample heterogeneity, and use

a linear model to test whether the major principal axes associate with known clinical phenotypes.

Results: Our model not only classifies cancer sub-types with good accuracy, but simultaneously assigns each patient

their own set of interpretable and individualised biomarker scores. These personalised scores describe how important

each feature is in the classification of any patient, and can be analysed post-hoc to generate new hypotheses about

latent heterogeneity.

Conclusions: We apply the DeepTRIAGE framework to classify the gene expression signatures of luminal A and

luminal B breast cancer sub-types, and illustrate its use for genes as well as the GO and KEGG gene sets. Using

DeepTRIAGE, we calculate personalised biomarker scores that describe the most important features for classifying an

individual patient as luminal A or luminal B. In doing so, DeepTRIAGE simultaneously reveals heterogeneity within the

luminal A biomarker scores that significantly associate with tumour stage, placing all luminal samples along a

continuum of severity.
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Background

Breast cancer is a collection of multiple tissue pathologies

with a joint genetic and environmental aetiology, and is a

leading cause of death among women worldwide. During

the progression of cancer, inherited or acquired muta-

tions in the DNA change the sequence (or amount) of the

messenger RNA (mRNA) produced by the cell, thereby

changing the structure (or amount) of functional protein.

As such, mRNA can serve as a useful proxy for evalu-

ating the functional state of a cell, with its abundance

being easily measured by microarray or high-throughput

RNA sequencing (RNA-Seq). Indeed, mRNA abundance

has already been used as a biomarker for cancer diagno-

sis and classification [1, 2], cancer sub-type classification

[3, 4], and for clustering gene expression signatures [5].

For a comprehensive comparison of the supervised and

unsupervised methods used with gene expression data,

see [6].

Despite advancements in the field, mRNA-based clas-

sifiers still present unique challenges. First, these data-

sets contain many more features (10,000s) than samples

(100s), a p ≫ n problem that is usually addressed by

feature selection or feature engineering [7, 8]. Second,

it is often difficult to interpret mRNA-based classifiers

because the predictive genetic features do not necessarily

make sense to biologist experts without explicit contextu-

alisation. Third, the routine use of discriminative methods

(e.g., support vector machines [9] or random forests [8,

10]) only provide information with regard to the impor-

tance of a feature for an entire class. For cancer data, this

means that these methods cannot suggest the importance

of a feature for a specific patient, but instead only provide

such information at the level of cancer type or sub-type.

This is important given that a substantial amount of het-

erogeneity remains unaddressed within cancer sub-types

[4, 11].

In this paper, we propose a deep learning method

for the stratification of clinical samples that not only

offers interpretability through feature importance at the

level of the cancer sub-type, but also at the level of the

individual patient. As such, our method offers a finer

level of interpretation than existing methods by captur-

ing the heterogeneity of samples within each sub-type.

To achieve this goal, we use an attention mechanism, a

deep learning technique first proposed for machine trans-

lation and automatic image captioning [12, 13]. Attention

allows salient features to come dynamically to the fore-

front for each patient as needed. As a result, the global

knowledge of the model, obtained from the discriminat-

ing classes, is enhanced by the local knowledge that each

patient provides. In other words, the attention mecha-

nism offers an insight into the model’s decision-making

process by revealing a set of individualised importance

scores that describe how important each feature is for

the classification of that patient. Further analysis of these

importance scores reveals valuable insights into sub-type

heterogeneity that are not directly apparent in the unat-

tended data.

Machine learning techniques have been successfully

applied to gene expression data for decades. More

recently, deep learning, especially unsupervised deep

learning, has influenced several approaches to gene

expression analysis. These unsupervised models have

been used to learn meaningful abstractions of biol-

ogy from unlabelled gene expression data. For exam-

ple, [14] extracted biological insights from the Pseu-

domonas aeruginosa gene expression compendium using

shallow auto-encoders. Similarly, stacked auto-encoders

have been adopted to capture a hierarchical latent space

from yeast gene expression data [15], showing that the

first layer correctly captures yeast transcription factors,

while deeper layers conform to the existing knowledge of

biological processes. More related to our work, it has been

shown that shallow denoising auto-encoders are capable

of extracting clinical information and molecular signa-

tures from the gene expression data of patients with breast

cancer [16]. Later, [17] coupled representations obtained

from stacked denoising auto-encoders with a traditional

classifier to achieve discriminatory power, applying it to

classify cancerous samples from healthy ones.

Although the classification of cancer is an important

task, breast cancer is not a monolithic entity. It is com-

prised of distinct molecular sub-types, each with a distinct

molecular signature that correlate with patient progno-

sis and response to therapy [18]. This is especially true

when considering the luminal sub-types: luminal A can-

cers have a much better prognosis than luminal B cancers

and can be treated with endocrine therapy alone [18]. Yet,

luminal A remains one of the most diverse cancer sub-

types in terms of its molecular signature and severity [19].

As a case study, we focus our analysis on the difficult

problem of classifying breast cancer sub-types based on

gene expression signatures, and approach it using an end-

to-end supervised deep learning model. Using publicly

available data from The Cancer Genome Atlas (TCGA),

we develop and apply a novel deep learning architecture,

called DeepTRIAGE (Deep learning for the TRactable Indi-

vidualised Analysis of Gene Expression). TheDeepTRIAGE

architecture achieves two key outcomes.

First, our architecture extends the attention mechanism

tomodel data where the number of features is much larger

than the number of observations.

Second, our architecture facilitates a new interpre-

tation of feature importance by providing individu-

alised patient-level importance scores. These patient-

level importance scores can be analysed directly using

multivariate methods to reveal and describe latent intra-

class heterogeneity.
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Taken together, our work establishes a computational

framework for calculating interpretable and individu-

alised biomarker scores that can accurately classify lumi-

nal sub-types, while simultaneously revealing and describ-

ing intra-class heterogeneity. Using DeepTRIAGE, we cal-

culate personalised biomarker scores that describe the

most important features for classifying an individual

patient as luminal A or luminal B. In doing so, Deep-

TRIAGE simultaneously reveals heterogeneity within the

luminal A biomarker scores that significantly associate

with tumour stage, placing all luminal samples along a

continuum of severity.

Methods

Data acquisition

We retrieved the unnormalised gene-level RNA-Seq data

for the TCGA breast cancer (BRCA) cohort [20] using

the TCGAbiolinks package in Bioconductor [21]. After

filtering any genes with zero counts across all samples,

we performed an effective library size normalisation of

the count data using DESeq2 [22]. To retrieve lumi-

nal A (LumA) and luminal B (LumB) sub-type status for

the TCGA BRCA samples, we downloaded the “PAM50”

labels from the supplementary data of [19]. With 1148

PAM50 labels retrieved, we excluded patients that had

more than one tumour sample sequenced. This left us

with 528 LumA and 201 LumB samples. Of these, 176

LumA and 67 LumB samples were set aside as a test set.

Engineering annotation-level expression from genes

To reduce the dimensionality of the raw feature space, we

transformed raw features from “gene expression space”

into an “annotation space”. For this, we elected to use

the Gene Ontology (GO) Biological Process and Kyoto

Encyclopedia of Genes and Genomes (KEGG) annotation

databases. Pathways with less than ten associated genes

were removed before estimating pathway-level expression

by taking the sum of counts for all genes in each pathway,

as described and validated in [23]. This results in 3942GO

features and 302 KEGG features that are then used for

model training.

Model architecture

Gene expression data-sets usually have many more

features than samples. Using a standard deep learn-

ing architecture with such data leads to a parame-

ter explosion in the model that can cause over-fitting

and reduce generalizability. Instead, our model aims

to (i) reduce the number of free parameters of the

model, (ii) encode global knowledge in the data by

finding discriminatory features at the cancer sub-type

level (akin to a logistic regression), and (iii) encode

local information provided by each individual patient

using an attention mechanism. These innovations make

the attention mechanism tractable for high-dimensional

data.

The deepTRIAGEmodel

Let d be the dimension of the raw feature space and let

xj =
[

xj1, . . . , xjd
]

be the representation of sample j in this

space. Our goal is to train a binary classifier that learns

whether sample j belongs to the LumA class (yj = 1) or

the LumB class (yj = 0).

LetEd×m be an embedding matrix and let ei =

[ei1, . . . , eim] be the embedding vector for feature i ∈

{1 : d}. Using Eq. 1, we define x̂
(i)
j , the m-dimensional

embedded vector of feature i for sample j:

x̂
(i)
j = fe

(

xji, ei;�e

)

=
[

x̂
(i)
j1 , . . . , x̂

(i)
jm

]

(1)

where fe, parametrised by �e, is the function that cap-

tures the relationship between the scalar value xji and

the embedding vector ei. Note that the same embedding

matrix is used for all samples.

Now, we can define a new representation for sample j

using its embedded vectors, as shown in Eq. 2:

x̄j =

d
∑

i=1

βjifx

(

x̂
(i)
j ;�x

)

=
[

x̄ji, . . . , x̄jp
]

(2)

where x̄j is a p-dimensional representation of the raw fea-

ture data, fx : Rm → R
p is parametrised by �x, and βji

is a scalar value denoting the individualised importance

that feature i has in the classification of sample j. Note

that m ≪ d and usually p ≪ m. In other words, the

dimensionality of the embedding space is much smaller

than the dimensionality of the raw feature space, and the

dimensionality of the final representation x̄j is smaller

than the dimensionality of the embedding space, allow-

ing the attention mechanism to work successfully for such

high-dimensional data. By viewing Eq. 2 in a deep learning

framework, one can interpret βji as the attention of sample

j to feature i and compute it using Equations 3, 4, and 5:

αji = fα

(

x̂
(i)
j ;�α

)

(3)

αj =
[

αj1, . . . ,αjd

]

(4)

β j = softmax
(

αj

)

=

[

exp(αj1), . . . , exp(αjd)
]

∑d
i=1 exp

(

αji

)
(5)

where fα : Rm → R is parametrised by �α . Equation 5

is simply a normalisation to ensure that the attention

weights sum to one for each sample.

Now, given the fixed size representation of sample j as

x̄j, we can train the binary classifier fy for LumA vs. LumB

classification:

Pr
(

yj = 1|x̄j
)

= fy
(

x̄j;�y

)

(6)
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where �yis the set of parameters for fy.

Given the embedding matrix E, we have defined our

model through Equations 1–6. Figure 1 shows a schematic

overview of the DeepTRIAGE model architecture. In the

next section, we discuss how we learn the parameters of

this model.

Remark 1 There are different approaches to construct-

ing the embedding matrix E. For instance: end-to-end

learning with an unsupervised component added to the

model, estimation using auto-encoders, or dimensional-

ity reduction using PCA. We chose to use random vec-

tors because it has been shown that their performance is

comparable with the aforementioned techniques [24, 25].

Therefore, ei is an m-dimensional random vector.

Remark 2 There are many ways to compute the atten-

tion weights.We used a definition inspired by the concept of

self-attention which means that the attention to a feature

is only influenced by that feature [26].

Learningmodel parameters

In the previous section, we defined our model through

Equations 1–6. Now we discuss how to specify its com-

ponents
{

fe, fx, fα , fy
}

and how to learn their parameters
{

�e,�x,�α ,�y

}

. Since we want to learn the model end-

to-end, we choose these components to be differentiable.

Fig. 1 This figure shows a schematic overview of the DeepTRIAGE

model architecture

In order to compute x̂
(i)
j , we capture the relationship

between the feature value xji and the embedding vector

ei via multiplicative interaction using Eq. 7. Therefore, �e

is a null set. One could, however, choose a more complex

function.

x̂
(i)
j = fe

(

xji, ei
)

(7)

= xjiei

We choose fx and fα to be two feed-forward neu-

ral networks with weights �x and �α respectively. See

Equations 8 and 9:

fx

(

x̂
(i)
j ;�x

)

= nnetx

(

x̂
(i)
j

)

(8)

fα

(

x̂
(i)
j ;�α

)

= nnetα

(

x̂
(i)
j

)

(9)

where both can be thought of as a non-linear transform;

nnetx : R
m → R

p and nnetα : Rm → R.

Given x̄j, any differentiable classifier can be placed on

top to predict the cancer sub-type (Eq. 6). We use a feed-

forward network with a sigmoid activation function in the

last layer to calculate the probability of sample j belonging

to a sub-type:

fy
(

x̄j;�y

)

= nnety
(

x̄j
)

(10)

where �y represents the weights of this network. To limit

the model complexity, we choose fx to be a single-layer

neural network with tanh nonlinearity, fα to be a network

with one hidden layer and tanh nonlinearity, and fy to be

a network with one hidden layer, batch normalisation and

ReLu nonlinearity. Dropout with p = 0.5 is also applied to

these three functions. Again, one can use more complex

functions as long as they are differentiable.

Since all components are fully differentiable, the entire

model can be learnt by minimising the log-loss function

employing automatic differentiation and gradient-based

methods. In this case, we used the Adam optimiser [27].

Analysis of importance scores

What we have described so far focuses on the discrimina-

tory mechanism of our model.When viewed from the top,

our proposed model is capable of separating cancer sub-

types, like many other classification algorithms. However,

one important distinction is that our model also generates

an individualised importance score for each feature at the

sample-level. This aspect is highly useful as it opens new

opportunities for post-classification analyses of individual

patients, making our method both hypothesis-testing and

hypothesis-generating.

Given β j =
[

βj1, . . . ,βjd

]

, where βji is the individualised

importance score for sample j and feature i, we can con-

struct an importance score matrix B by stacking β j for

all samples.
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Table 1 This table shows the F1-score performance of the

DeepTRIAGE attention model for luminal sub-type classification

according to a single test set

Logistic Regression Linear SVM DeepTRIAGE

GO (BP) annotations 0.87 0.89 0.90

KEGG annotations 0.86 0.84 0.87

Ensembl genes 0.85 0.85 0.87

We benchmark its performance as compared to a logistic regression and support

vector machine (SVM), using both gene and gene set annotation features. From this,

we see that our model, which adds a level of interpretability at the individual level,

does not sacrifice classification accuracy. The objective of DeepTRIAGE is to improve

interpretability, not accuracy. Yet, this method appears to perform marginally better

for the given test set

To detect emerging patterns within the individualised

importance scores, we perform non-negative matrix

factorisation (NMF) and principal component analysis

(PCA) of the importance score matrix B. As a point of

reference, we also perform an ordination of the raw fea-

ture space from “Engineering annotation-level expression

from genes” section. Note that all individualised per-

sample importance scores were calculated on the withheld

test set.

Results and discussion

GINS1 drives luminal sub-type classification in test set

Table 1 shows the performance of the DeepTRIAGEmodel

for luminal sub-type classification according to a sin-

gle test set. When applying this model to Ensembl gene

expression features, we obtain personalised biomarker

scores that describe how important each gene is in pre-

dicting the cancer sub-type for each sample. The objective

of DeepTRIAGE is to improve interpretability, not accu-

racy. Yet, this method appears to perform marginally

better for the given test set.

We can interpret the resultant importance score matrix

directly using multivariate methods. Figure 2 shows the

NMF factor which best discriminates between the breast

cancer sub-types. Here, we see that a single gene, GINS1

(ENSG00000101003), contributes most to this factor. This

gene has a role in the initiation of DNA replication, and

has been associated with worse outcomes for both lumi-

nal A and luminal B sub-types [28]. Interestingly, this

is not a PAM50 gene, suggesting that our model does

not merely re-discover the PAM50 signature. We posit

that the model performance, along with this biologically

plausible result, validates its use for gene expression data.

Kinetochore organisation associates with tumour severity

within and between luminal sub-types

To reduce the number of features and to facilitate the

interpretation of feature importance, we transformed the

gene-level expression matrix into an annotation-level

expression matrix using the Gene Ontology (GO) anno-

tation set (cf. “Engineering annotation-level expression

from genes” section). Table 1 shows that GO annota-

tion features perform as well as gene features for all

Fig. 2 This figure presents the results of non-negative matrix factorisation applied to the importance score matrix computed from Ensemble gene

expression data using DeepTRIAGE. Shown here is the factor which best discriminates between the two breast cancer sub-types. a shows the

relative contribution of each gene term to the most discriminative factor, with the top 3 components labelled explicitly. b shows a box plot of the

distribution of all samples across the composite factor score. This figure is produced using the test set only
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models. Although annotation features do not improve

performance, they do improve the interpretability of the

model by representing the data in a way that reflects

domain-specific knowledge [29]. By applyingDeepTRIAGE

to the GO features, we obtain personalised biomarker

scores that describe how important each GO term is in

predicting the cancer sub-type for each sample.

Figure 3 shows the most discriminative NMF factor of

the GO-based importance score matrix. The left panel

shows the relative contribution of each term to this fac-

tor, while the right panel shows the distribution of samples

with regard to this factor. From this, we see that a sin-

gle factor cleanly delineates the luminal A samples from

the luminal B samples, and is comprised mostly by the

GO:0051383 (kinetochore organisation) gene set. Figure 4

shows a PCA of the same importance score matrix, along

with a biplot of the 5 most variable GO terms, offering

another perspective into the structure of the importance

score matrix.

Both visualisations show that the kinetochore organisa-

tion gene set can meaningfully discriminate between the

luminal A and luminal B cancer sub-types. This gene set

contains 5 members: SMC4, NDC80, SMC2, CENPH, and

CDT1. Figure 5 shows the expression of these genes in

the test data, showing that the prioritised gene set con-

tains genes with significant mean differences between the

two sub-types (p-value < 0.01). Interestingly, only one of

these (NDC80) is a member of the PAM50 gene set used

to define the luminal A and B sub-types. The kinetochore

organisation gene set is involved in the assembly and dis-

assembly of the chromosome centromere, an attachment

point for spindle microtubules during cell division. The

dysregulation of this gene set would be expected to asso-

ciate with luminal sub-typing because centromere insta-

bility drives genomic instability, and luminal B cancers are

more unstable than luminal A cancers (as evidenced by Ki-

67 staining [30] and tumour severity). Indeed, NDC80 and

CENPH dysregulation has already been associated with

worse breast cancer outcomes, with luminal A exhibit-

ing less centromere and kinetochore dysregulation in

general [31].

However, the real added value of our attention model

is that it projects all samples according to a distribution

of importance scores, implicitly revealing and describing

heterogeneity within the cancer sub-types. While Fig. 4

shows how GO:0051383 distinguishes between the lumi-

nal sub-types, it also shows how GO:0031668 (cellular

response to extra-cellular stimulus) and GO:0061158 (3’-

UTR-mediated mRNA destabilisation) explain much vari-

ance within the luminal A group. These axes are not

arbitrary. A linear model predicting each PCA axis as a

function of the tumour (T), node (N), and metastasis (M)

stage (as nominal factors) among the luminal A samples

only, reveals that small values in the first axis (PC1) sig-

nificantly associate with the lower T stages, while large

values significantly associate with the N2 stage (p < 0.05).

Fig. 3 This figure presents the results of non-negative matrix factorisation applied to the GO-based importance score matrix. Shown here is the

factor which best discriminates between the two breast cancer sub-types. a shows the relative contribution of each GO term to the most

discriminative factor, with the top 3 components labelled explicitly. b shows a box plot of the distribution of all samples across the composite factor

score. This figure is produced using the test set only
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Fig. 4 This figure shows a PCA biplot of the GO-based importance score matrix (a) and the GO annotation features (b), with the top 5 most variable

terms labelled explicitly. For the importance scores, we see that the first principal axis describes much of the variance between the breast cancer

sub-types, while the second principal axis describes much of the variance within the luminal A sub-type. By super-imposing the features as arrows,

we can see which annotations best describe the origin of this variance. This level of structure is not evident when looking at the PCA biplot of the

annotation feature space. This figure is produced using the test set only

Meanwhile, large values in the second axis (PC2) sig-

nificantly associate with the T4 stage (p < 0.05). This

suggests that the luminal A samples which are closest to

luminal B samples in the PCA tend to be worse tumours.

This is consistent with the literature which describes

luminal B cancer as a more severe disease [18], as well

as Netanely et al’s observation that luminal cancers exist

along a phenotypic continuum of severity [19]. Thus, our

method provides a biological explanation for some of

the variance associated with the diagnostically-relevant

Fig. 5 This figure shows the test set gene expression for 5 genes found within the GO:0051383 (kinetochore) gene set. Here, we see that all 5 genes

are up-regulated in luminal B samples. This is relevant because our attention model prioritised this gene set when looking for feature importance

within the breast cancer test set
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Fig. 6 This figure presents the results of a non-negative matrix factorisation applied to the KEGG-based importance score matrix. Shown here is the

factor which best discriminates between the two breast cancer sub-types. a shows the relative contribution of each KEGG term to the most

discriminative factor, with the top 3 components labelled explicitly. b shows a box plot of the distribution of all samples across the composite factor

score. This figure is produced using the test set only

Fig. 7 This figure shows a PCA biplot of the KEGG-based importance scores (a) and the KEGG annotation features (b), with the top 5 most variable

terms labelled explicitly. For the importance scores, we see that the first principal axis describes much of the variance between the breast cancer

sub-types, while the second principal axis describes much of the variance within the luminal A sub-type. By super-imposing the features as arrows,

we can see which annotations best describe the origin of this variance. This level of structure is not evident when looking at the PCA biplot of the

annotation feature space. This figure is produced using the test set only
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differences in luminal sub-types. This level of resolution

is not provided by the other machine learning algorithms

used for RNA-Seq data, and is not evident in the ordi-

nation of the unattended GO annotation features (see

Fig. 4b).

DNAmismatch repair associates with tumour severity

within and between luminal sub-types

We repeated the same analysis above using the Kyoto

Encyclopedia of Genes and Genomes (KEGG) annota-

tion set which organises genes according to canonical

functional pathways (cf. “Engineering annotation-level

expression from genes” section). Like with GO annota-

tions, the DeepTRIAGEmodel performed well with KEGG

annotations (see Table 1). By applying DeepTRIAGE to the

KEGG features, we obtain personalised biomarker scores

that describe how important each KEGG term is for the

classification of each patient.

The NMF and PCA ordination of the KEGG-based

importance scores both show that hsa03430 (DNA mis-

match repair) explains much of the inter-group variabil-

ity (see Fig. 6 and Fig. 7). This is expected to separate

luminal A and B sub-types because errors in the DNA

mismatch repair mechanism allow mutations to propa-

gate, resulting in a more aggressive cancer. Yet, the PCA

biplot shows that there exists a large amount of intra-

class heterogeneity that is not explained by this pathway.

Along this axis, we see a contribution by hsa04670 (Leuko-

cyte transendothelial migration) and hsa04215 (Apopto-

sis), both relevant to tumour progression and metastasis.

Again, these axes are not arbitrary. A linear model pre-

dicting each PCA axis as a function of the tumour (T),

node (N), and metastasis (M) stage (as nominal factors)

among the luminal A samples only, reveals that small val-

ues in both axes (PC1 and PC2) significantly associate

with the T1 stage (p < 0.05). This suggests that the

heterogeneity uncovered by the DeepTRIAGE architecture

places patients along a diagnostically-relevant continuum

of tumour severity. Again, this level of resolution is not

provided by other machine learning algorithms and is not

evident in the ordination of the unattended annotation-

level data (see Figure 7b).

Conclusions

Breast cancer is a complex heterogeneous disorder with

many distinct molecular sub-types. The luminal breast

cancer class, comprised of the luminal A and luminal B

intrinsic sub-types, varies in disease severity, progno-

sis, and treatment response [18], and has been described

as existing along a vast phenotypic continuum of sever-

ity [19]. Stratifying individual cancerous samples along

this severity continuum could inform clinical decision-

making and generate new research hypotheses. In this

manuscript, we propose the DeepTRIAGE architecture as

a general solution to the classification and stratification

of biological samples using gene expression data. To the

best of our knowledge, this work showcases the first appli-

cation of the attention mechanism to the classification of

high-dimensional gene expression data.

In developing DeepTRIAGE, we also innovate the atten-

tion mechanism so that it extends to high-dimensional

data where there are many more features than samples.

Using DeepTRIAGE, we show that the attention mecha-

nism can not only classify cancer sub-types with good

accuracy, but can also provide individualised biomarker

scores that reveal and describe the heterogeneity within and

between cancer sub-types. While commonly used feature

selection methods prioritise features at the population-

level during training, our attention mechanism prioritises

features at the sample-level during testing. By applying

DeepTRIAGE to the gene expression signatures of lumi-

nal breast cancer samples, we identify canonical cancer

pathways that differentiate between the cancer sub-types

andexplain the variationwithin them, and find that some of

this intra-class variation associates with tumour severity.
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