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ABSTRACT

We propose DeepV2D, an end-to-end deep learning architecture for predicting
depth from video. DeepV2D combines the representation ability of neural net-
works with the geometric principles governing image formation. We compose a
collection of classical geometric algorithms, which are converted into trainable
modules and combined into an end-to-end differentiable architecture. DeepV2D
interleaves two stages: motion estimation and depth estimation. During inference,
motion and depth estimation are alternated and converge to accurate depth. Code
is available https://github.com/princeton-vl/DeepV2D.

1 INTRODUCTION

In video to depth, the task is to estimate depth from a video sequence. The problem has traditionally
been approached using Structure from Motion (SfM), which takes a collection of images as input,
and jointly optimizes over 3D structure and camera motion (Schonberger & Frahm, 2016b). The
resulting camera parameter estimates can be used as input to Multi-View Stereo in order to build a
more complete 3D representation such as surface meshes and depth maps (Furukawa et al., 2015;
Furukawa & Ponce, 2010).

In parallel, deep learning has been highly successful in a number of 3D reconstruction tasks. In
particular, given ground truth depth, a network can learn to predict depth from a single image (Eigen
et al., 2014; Eigen & Fergus, 2015; Laina et al., 2016), stereo images (Kendall et al., 2017; Mayer
et al., 2016a), or collections of frames (Zhou et al., 2018; Kar et al., 2017; Tang & Tan, 2018; Yao
et al., 2018). One advantage of deep networks is that they can use single-image cues such as tex-
ture gradients and shading as shown by their strong performance on depth estimation from a single
image (Eigen et al., 2014; Eigen & Fergus, 2015; Laina et al., 2016). Furthermore, differentiable
network modules can be composed so that entire pipelines (i.e. feature extraction, feature matching,
regularization) can be learned directly from training data. On the other hand, as recent work has
shown, it is often hard to train generic network layers to directly utilize multiview geometry (e.g.
using interframe correspondence to recover depth), and it is often advantageous to embed knowl-
edge of multiview geometry through specially designed layers or losses (Ummenhofer et al., 2017;
Kendall & Cipolla, 2017; Zhou et al., 2017; Vijayanarasimhan et al., 2017; Zhou et al., 2018).

In this work, we continue the direction set forth by recent works (Ummenhofer et al., 2017; Kendall
et al., 2017; Tang & Tan, 2018; Zhou et al., 2018; Kar et al., 2017; Wang et al., 2018) that combine
the representation ability of neural networks with the geometric principles underlying image forma-

Video

Motion

Depth

Motion

Depth Depth

Depth

Figure 1: DeepV2D predicts depth from video. It is the composition of classical geometric algo-
rithms, made differentiable, and combined into an end-to-end trainable network architecture. Video
to depth is broken down into the subproblems of motion estimation and depth estimation, which are
solved by the Motion Module and Depth Module respectively.
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tion. We propose DeepV2D, a composition of classical geometrical algorithms which we turn into
differentiable network modules and combine into an end-to-end trainable architecture. DeepV2D in-
terleaves two stages: camera motion estimation and depth estimation (Figure 1). The motion module
takes depth as input, and outputs an incremental update to camera motion. The depth module takes
camera motion as input, and performs stereo reconstruction to predict depth. At test time, DeepV2D
acts as block coordinate descent, alternating between updating depth and camera motion.

To estimate camera motion we introduce Flow-SE3, a new motion estimation architecture, which
outputs an incremental update to camera motion. Flow-SE3 takes depth as input, and estimates
dense 2D correspondence between pairs of frames. We unroll a single iteration of Perspective-
n-Point (PnP) (Lepetit et al., 2009; Li et al., 2012) performing Gauss-Newton updates over SE3
perturbations to minimize geometric reprojection error. The new estimate of camera motion can
then be fed back into Flow-SE3, which re-estimates correspondence for a finer grain pose update.

Our Depth Module builds upon prior work (Kendall et al., 2017; Yao et al., 2018) and formulates
multiview-stereo (MVS) reconstruction as a single feed-forward network. Like classical MVS, we
leverage geometry to build a cost volume over video frames, but use trainable network for both
feature extraction and matching.

Our work shares similarities with prior works (Ummenhofer et al., 2017; Kendall et al., 2017; Tang &
Tan, 2018; Zhou et al., 2018; Kar et al., 2017; Wang et al., 2018) that also combine deep learning and
multiview geometry, but is novel and unique in that it essentially “differentializes” a classical SfM
pipeline that alternates between stereopsis, dense 2D feature matching, and PnP. As a comparison,
DeMon (Ummenhofer et al., 2017) and DeepTAM (Zhou et al., 2018) differentialize stereopsis and
feature matching, but not PnP because they use a generic network to predict camera motion.

Another comparison is with BA-Net (Tang & Tan, 2018), whose classical analogue is performing
bundle adjustment from scratch to optimize feature alignment over camera motion and the coef-
ficients of a limited set of depth maps (depth basis). In other words, BA-Net performs one joint
nonlinear optimization over all variables, whereas we decompose the joint optimization into more
tractable subproblems and do block coordinate descent. Our decomposition is more expressive in
terms of reconstruction since we can optimize directly over per-pixel depth and are not constrained
by a depth basis, which can potentially limit the accuracy of the final depth.

In our experiments, we demonstrate the effectiveness of DeepV2D across a variety of datasets and
tasks, and outperform strong methods such as DeepTAM (Zhou et al., 2018), DeMoN (Ummenhofer
et al., 2017), BANet (Tang & Tan, 2018), and MVSNet (Yao et al., 2018). As we show, alternating
depth and motion estimation quickly converges to good solutions. On all datasets we outperform all
existing single-view and multi-view approaches. We also show superior cross-dataset generalizabil-
ity, and can outperform existing methods even when training on entirely different datasets.

2 RELATED WORK

Structure from Motion: Beginning with early systems designed for small image collections
(Longuet-Higgins, 1981; Mohr et al., 1995), Structure from Motion (SfM) has improved dramat-
ically in regards to robustness, accuracy, and scalability. Advances have come from improved fea-
tures (Lowe, 2004; Han et al., 2015), optimization techniques (Snavely, 2009), and more scalable
data structures and representations (Schonberger & Frahm, 2016a; Gherardi et al., 2010), culminat-
ing in a number of robust systems capable of large-scale reconstruction task (Schonberger & Frahm,
2016a; Snavely, 2011; Wu et al., 2011). Ranftl et al. (2016) showed that SfM could be extended to
reconstruct scenes containing many dynamically moving objects. However, SfM is limited by the
accuracy and availability of correspondence. In low texture regions, occlusions, or lighting changes
SfM can produce noisy or missing reconstructions.

Simultaneous Localization and Mapping (SLAM) jointly estimates camera motion and 3D structure
from a video sequence (Engel et al., 2014; Mur-Artal et al., 2015; Mur-Artal & Tardós, 2017; New-
combe et al., 2011; Engel et al., 2018). LSD-SLAM (Engel et al., 2014) is unique in that it relies
on a featureless approach to 3D reconstruction, directly estimating depth maps and camera pose by
minimizing photometric error. Our Motion Network behaves similarly to the tracking component in
LSD-SLAM, but we use a network which predicts misalignment directly instead of using intensity
gradients. We end up with an easier optimization problem characteristic of indirect methods (Mur-
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Artal et al., 2015), while retaining the flexibility of direct methods in modeling edges and smooth
intensity changes (Engel et al., 2018).

Geometry and Deep Learning: Geometric principles has motivated the design of many deep
learning architectures. In video to depth, we need to solve two subproblems: depth estimation and
motion estimation.

Depth: End-to-end networks can be trained to predict accurate depth from a rectified pair of stereo
images (Han et al., 2015; Mayer et al., 2016a; Kendall et al., 2017; Chang & Chen, 2018). Kendall
et al. (2017) and Chang & Chen (2018) design network architectures specifically for stereo matching.
First, they apply a 2D convolutional network to extract learned features, then build a cost volume
over the learned features. They then apply 3-D convolutions to the cost volume to perform feature
matching and regularization. A similar idea has been extended to estimate 3D structure from mul-
tiple views (Kar et al., 2017; Yao et al., 2018). In particular, MVSNet (Yao et al., 2018) estimates
depth from multiple images. However, these works require known camera poses as input, while our
method estimates depth from a video where the motion of the camera is unknown and estimated
during inference.

Motion: Several works have used deep networks to predict camera pose. Kendall et al. (2015) focus
on the problem of camera localization, while other work (Zhou et al., 2017; Vijayanarasimhan et al.,
2017; Wang et al., 2017) propose methods which estimate camera motion between a pairs of frames
in a video. Networks for motion estimation have typically relied on generic network components
whereas we formulate motion estimation as a least-squares optimization problem. Whereas prior
work has focused on estimating relative motion between pairs of frames, we can jointly update the
pose of a variable number of frames.

Depth and Motion: Geometric information has served as a self-supervisory signal for many recent
works (Vijayanarasimhan et al., 2017; Zhou et al., 2017; Wang et al., 2018; Yin & Shi, 2018; Yang
et al., 2018; Godard et al., 2017; Mahjourian et al., 2018). In particular, Zhou et al. (2017) and
Vijayanarasimhan et al. (2017) trained a single-image depth network and a pose network while
supervising on photometric consistency. However, while these works use geometric principles for
training, they do not use multiple frames to predict depth at inference.

DeMoN (Ummenhofer et al., 2017) and DeepTAM (Zhou et al., 2018) where among the first works
to combine motion estimation and multi-view reconstruction into a trainable pipeline. DeMoN (Um-
menhofer et al., 2017) operates on two frames and estimates depth and motion in separate network
branches, while DeepTAM (Zhou et al., 2018) can be used on variable number of frames. Like our
work and other classical SLAM framesworks (Engel et al., 2014; Newcombe et al., 2011), Deep-
TAM separates depth and motion estimation, however we maintain end-to-end differentiablity be-
tween our modules. A major innovation of DeepTAM was to formulate camera motion estimation in
the form of incremental updates. In each iteration, DeepTAM renders the keyframe from a synthetic
viewpoint, and predicts the residual motion from the rendered viewpoint and the target frame.

Estimating depth and camera motion can be naturally modeled as a non-linear least squares problem,
which has motivated several works to include an differentiable optimization layer within network
architectures (Tang & Tan, 2018; Wang et al., 2018; Clark et al., 2018; Bloesch et al., 2018). We
follow this line of work, and propose the Flow-SE3 module which introduces a direct mapping from
2D correspondence to a 6-dof camera motion update. Our Flow-SE3 module is different from prior
works such as DeMon (Ummenhofer et al., 2017) and DeepTAM (Zhou et al., 2018) which do not
impose geometric constraints on camera motion and use generic layers. BA-Net (Tang & Tan, 2018)
and LS-Net (Clark et al., 2018) include optimization layers, but instead optimize over photometric
error (either pixel alignment (Clark et al., 2018) or feature alignment (Tang & Tan, 2018)). Our
Flow-SE3 module still imposes geometric constraints on camera motion like BA-Net (Tang & Tan,
2018), but we show that in minimizing geometric reprojection error ( difference of pixel locations),
we end up with a well-behaved optimization problem, well-suited for end-to-end training.

An important difference between our approach and BA-Net is that BA-Net performs one joint opti-
mization problem by formulating Bundle-Adjustment as a differentiable network layer, whereas we
separate motion and depth estimation. With this separation, we avoid the need for a depth basis.
Our final reconstructed depth is the product of a cost volume, which can adapt the reconstruction as
camera motion updates improve, while the output of BA-Net is restricted by the initial quality of the
depth basis produced by a single-image network.
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Figure 2: The Depth Module performs stereo matching over multiple frames to estimate depth.
First each image is fed through a network to extract a dense feature map. The 2D features are
backprojected into a set of cost volumes. The cost volumes are processed by a set of 3D hourglass
networks to perform feature matching. The final cost volume is processed by the differentiable
arg-max operator to produce a pixelwise depth estimate.

3 APPROACH

DeepV2D predicts depth from a calibrated video sequence. We take a video as input and output
dense depth. We consider two subproblems: depth estimation and motion estimation. Both subprob-
lems are formulated as trainable neural network modules, which we refer to as the Depth Module
and the Motion Module. Our depth module takes camera motion as input and outputs an updated
depth prediction. Our motion module takes depth as input, and outputs a motion correction term. In
the forward pass, we alternate between the depth and motion modules as we show in Figure 1.

Notation and Camera Geometry: As a preliminary, we define some of the operations used within
the depth and motion modules. We define π to be the camera projection operator which maps a
3D point X = (X,Y, Z, 1)T to image coordinates x = (u, v). Likewise, π−1 is defined to be the
backprojection operator, which maps a pixel x and depth z to a 3D point. Using the pinhole camera
model with intrinsics (fx, fy, cx, cy) we have

π(X) = (fx
X

Z
+ cx, fy

Y

Z
+ cy), π−1(x, z) = (z

u− cx

fx
, z

v − cy

fy
, z, 1)T (1)

The camera pose is represented using rigid body transform G ∈ SE(3). To find the image coor-
dinates of point X in camera i, we chain the projection and transformation: (u, v)T = π(GiX),
where Gi is the pose of camera i.

Now, given two cameras Gi and Gj . If we know the depth of a point xi = (ui, vi) in camera i, we
can find its reprojected coordinates in camera j:

(

uj

vj

)

= π(GjG
−1
i π−1(x, z)) = π(Gijπ

−1(x, z)) (2)

using the notation Gij = GjG
−1
i for the relative pose between cameras i and j.

3.1 DEPTH MODULE

The depth module takes a collection of frames, I = {I1, I2, ..., IN}, along with their respective pose
estimates, G = {G1, G2, ..., GN}, and predicts a dense depth map D∗ for the keyframe (Figure 2).
The depth module works by building a cost volume over learned features. Information is aggregated
over multiple viewpoints by applying a global pooling layer which pools across viewpoints.

The depth module can be viewed as the composition of 3 building blocks: 2D feature extractor, cost
volume backprojection, and 3D stereo matching.

2D Feature Extraction: The Depth Module begins by extracting learned features from the input
images. The 2D encoder consists of 2 stacked hourglass modules (Newell et al., 2016) which maps
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each image to a dense feature map Ii → Fi. More information regarding network architectures is
provided in the appendix.

Cost Volume Backprojection: Take I1 to be the keyframe, a cost volume is constructed for each
of the remaining N-1 frames. The cost volume for frame j, Cj , is constructed by backprojecting 2D
features into the coordinate system defined by the keyframe image. To build the cost volume, we
enumerate over a range of depths z1, z2, ..., zD which is chosen to span the ranges observed in the
dataset (0.2m - 10m for indoor scenes). For every depth zk, we use Equation 2 to find the reprojected
coordinates on frame j, and then use differentiable bilinear sampling of the feature map Fj .

More formally, given a pixel x = (u, v) ∈ N
2 in frame I1 and depth zk:

C
j
uvk = Fj(π(GjG

−1
1 π−1(x, zk))) ∈ R

H×W×D×C (3)

where F (·) is the differentiable bilinear sampling operator (Jaderberg et al., 2015). Since the bilinear
sampling is differentiable, Cj is differentiable w.r.t all inputs, including the camera pose.

Applying this operation to each frame, gives us a set of N-1 cost volumes each with dimension
H×W×D×C. As a final step, we concatenate each cost volume with the keyframe image features
increasing the dimension to H×W×D×2C. By concatenating features, we give the network the
necessary information to perform feature matching between the keyframe/image pairs without dec-
imating the feature dimension.

3D Matching Network: The set of N-1 cost volumes are first processed by a series of 3D con-
volutional layers to perform stereo matching. We then perform view pooling by averaging over the
N-1 volumes to aggregate information across frames. View pooling leaves us with a single volume
of dimension H×W×D×C. The aggregated volume is then processed by a series of 3D hourglass
modules, each outputs an intermediate depth.

Each 3D hourglass module predicts an intermediate depth estimate. We produce an intermediate
depth representation by first applying a 1x1x1 convolution to a produce H×W×D volume. We then
apply the softmax operator over the depth dimension, so that for each pixel, we get a probability
distribution over depths. We map the probability volume into a single depth estimate using the
differentiable argmax function (Kendall et al., 2017) which computes the expected depth.

3.2 MOTION MODULE

The objective of the motion module is to update the camera motion estimates given depth as input.
Given the input poses, G = {G1, G2, ..., GN}, the motion module outputs a set of local perturba-
tions ξ = {ξ1, ξ2, ..., ξN}, ξi ∈ se(3) used to update the poses. The updates are found by setting up
a least squares optimization problem which is solved using a differentiable in-network optimization
layer.

Initialization: We use a generic network architecture to predict the initial pose estimates similiar to
prior work Zhou et al. (2017). We choose one frame to be the keyframe. The poses are initialized by
setting the keyframe pose to be the identity matrix, and then predicting the relative motion between
the keyframe and each of the other frames in the video.

Feature Extraction: Our motion module operates over learned features. The feature extractor
maps every frame to a dense feature map, Ii → Fi. The weights of the feature extractor are shared
across all frames. Network architecture details are provided in the appendix.

Error Term: Take two frames, (Ii, Ij), with respective poses (Gi,Gj) and feature maps (Fi, Fj).
Given depth Zi we can use Equation 2 we can warp Fj onto camera i to generate the warped feature

map F̃j . If the relative pose Gij = GjG
−1
i is correct, then the feature maps Fi and F̃j should align.

However, if the relative pose is noisy, then there will be misalignment between the feature images
which should be corrected by the pose update.

We concatenate Fi and F̃j , and send the concatenated feature map through an hourglass network to
predict the dense residual flow between the feature maps, which we denote R, and corresponding
confidence map W. Using the residual flow, we define the following error term:

e
ij
k (ξi, ξj) = rk − [π((eξjGj)(e

ξiGi)
−1

X
i
k)− π(GijX

i
k)], X

i
k = π−1(xk, zk) (4)
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Figure 3: The Motion Module updates the input pose estimates by solving a least squares optimiza-
tion problem. The motion module predicts the residual flow between pairs of frames, and uses the
residual terms to define the optimization objective. Pose increments ξ are found by performing a
single differentiable Gauss-Newton optimization step.

where rk is the residual flow at pixel xk predicted by the network, and zk is the predicted depth.
The weighting map W is mapped to (0, 1) using the sigmoid activation, and is used to determine
how the individual error terms are weighted in the final objective.

Optimization Objective: The previous section showed how two frames (i, j) can be used to define

a collection of error terms e
ij
k (ξi, ξj) for each pixel xk in image Ii. The final optimization objective

is a weighted combination of error terms:

E(ξ) =
∑

(i,j)∈C

∑

k

e
ij
k (ξi, ξj)

T diag(wk) e
ij
k (ξi, ξj), diag(wk) =

(

wu
k 0
0 wv

k

)

(5)

This leaves us with the question of which frames pairs (i, j) ∈ C to use when defining the optimiza-
tion objective. In this paper, we consider two different approaches which we refer to as Global pose
optimization and Keyframe pose optimization.

Global Pose Optimization: Our global pose optimization uses all pairs of frames C = (i, j), i 6= j
to define the objective function (Equation 5) and the pose increment ξ is solved for jointly over all
poses. Therefore, given N frames, dense pose optimization uses N×N-1 frame pairs. Since every
pair of frames is compared, this means that the global pose optimization requires the predicted depth
maps for all frames as input. Although each pair (i, j) only gives us information about the relative
pose Gij , considering all pairs allows us to converge to a globally consistent pose graph.

Keyframe Pose Optimization: Our keyframe pose optimization selects a given frame to be the
keyframe (i.e select I1 as the keyframe), and only computes the error terms between the keyframe
and each of the other frames: C = (1, j) for j = 2, ..., N .

Fixing the pose of the keyframe, we can remove ξ1 from the optimization objective. This means

that each error e
ij
k (0, ξj) term is only a function of a single pose increment ξj . Therefore, we can

solve for each of the N − 1 pose increments independently. Additionally, since i = 1 for all pairs
(i, j) ∈ C, we only need the depth of the keyframe as input when using keyframe pose optimization.

LS-Optimization Layer: Using the optimization objective in Equation 5, we solve for the pose
increments ξ by applying a Gauss-Newton update. We backpropogate through the Gauss-Newton
update so that the weights of the motion module (both feature extractor and flow network) can be
trained on the final objective function. In the appendix, we provide additional information for how
the update is derived and the expression for the Jacobian of Equation 4.

3.3 FULL SYSTEM

During inference, we alternate the depth and motion modules for a selected number of iterations.
The motion module uses depth to predict camera pose. As the depth estimates converge, the camera
poses become more accurate. Likewise, as camera poses converge, the depth module can estimate
more accurate depth.
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Figure 4: Visualization of predicted depth maps on NYU, ScanNet, and SUN3D. On ScanNet and
SUN3D (marked with *) we show the results of the model trained only on NYU data.

Initialization: We try two different strategies for initialization in our experiments: (1) self initial-
ization initializes DeepV2D with a constant depth map and (2) single image initialization uses the
output of a single-image depth network for initialization. Both methods give good performance.

3.4 SUPERVISION

Depth Supervision: We supervise on the L1 distance between the ground truth and predicted depth.
We additionally apply a small L1 smoothness penalty to the predicted depth map. Given predicted
depth Z and ground truth depth Z∗, the depth loss is defined as:

Ldepth(Z) =
∑

xi

|Z(xi)− Z∗(xi)|+ ws

∑

xi

|∂xZ(xi)|+ |∂yZ(xi)| (6)

Motion Supervision: We supervise pose using the geometric reprojection error. Given predicted
pose G and ground truth pose G

∗, the pose loss is defined

Lmotion(G) =
∑

xi

||π(Gπ−1(xi, Z(xi)))− π(G∗π−1(xi, Z(xi)))||δ (7)

where || · ||δ is the robust Huber loss; we set δ = 1.

Total Loss: The total loss is taken as a weighted combination of the depth and motion loss terms:
L = Ldepth + λLmotion, where we set λ = 1.0 in our experiments.

4 EXPERIMENTS

We test DeepV2D across a wide range of benchmarks to provide a thorough comparison to other
methods. While the primary focus of these experiments is to compare to other works which estimate
depth from multiple frames, often single-view networks still outperform multiview depth estimation.
To put our results in proper context, we include both multiview and state-of-the-art single-image
comparisons. Since it is not possible to recover the absolute scale of the scene through SfM, we
report all results (both ours and all other approaches) using scale matched depth (Tang & Tan, 2018).

Our primary experiments are on NYU, ScanNet, SUN3D, and KITTI, and we report strong results
across all datasets. We show visualization of our predicted depth maps in Figure 4. The figure
shows that DeepV2D can recover accurate and sharp depth even when applied to unseen datasets.
One aspect of particular interest is cross-dataset generalizability. Our results show that DeepV2D
generalizes very well—we achieve the highest accuracy on ScanNet and SUN3D even without train-
ing on either dataset.

4.1 DEPTH EXPERIMENTS

We evaluate depth on NYU (Silberman et al., 2012), ScanNet (Dai et al., 2017), SUN3D (Xiao
et al., 2013), and KITTI (Geiger et al., 2013). On all datasets, DeepV2D is given a video clip with
unknown camera poses and alternates depth and pose updates and is evaluated after 8 iterations.
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NYU: NYU depth (Silberman et al., 2012) is a dataset composed of videos taken in indoor settings
including offices, bedrooms, and libraries. We experiment on NYU using the standard train/test split
(Eigen et al., 2014) and report results in Table 1 using scaled depth (Zhou et al., 2017; Tang & Tan,
2018). We evaluate two different initialization methods of our approach. Self-init uses a constant
depth map for initialization, while fcrn-init uses the output of a FCRN (Laina et al., 2016)—a single-
view network for initialization. Using a single-image depth network for initialization gives a slight
improvement in performance.

NYUv2 δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ Abs Rel ↓ Sc Inv ↓ RMSE ↓ log10 ↓

si
n

g
le FCRN (Laina et al., 2016) 0.853 0.965 0.991 0.121 0.151 0.592 0.052

DORN (Fu et al., 2018) 0.875 0.966 0.989 0.109 - 0.464 0.047
Alhashim & Wonka (2018) 0.895 0.980 0.996 0.103 - 0.390 0.043

m
u

lt
i-

v
ie

w

COLMAP 0.619 0.760 0.829 0.312 1.512 1.381 0.153
DfUSMC 0.487 0.697 0.814 0.447 0.456 1.793 0.169
MVSNet + OpenMVG 0.766 0.913 0.965 0.181 0.212 0.917 0.072
DeMoN 0.776 0.933 0.979 0.160 0.196 0.775 0.067
DeMoN † 0.805 0.951 0.985 0.144 0.179 0.717 0.061
Ours (self-init) - Keyframe 0.940 0.985 0.995 0.072 0.105 0.459 0.031
Ours (fcrn-init) - Keyframe 0.955 0.990 0.996 0.062 0.095 0.405 0.027
Ours (self-init) - Global 0.942 0.986 0.995 0.070 0.104 0.454 0.030
Ours (fcrn-init) - Global 0.956 0.989 0.996 0.061 0.094 0.403 0.026

Table 1: Results on the NYU dataset. Our approach outperforms existing single-view and multi-
view depth estimation methods. Ours (self-init) uses a constant depth map for initialization while
ours(fcrn-init) uses a single-image depth network for initialization.

We compare to state-of-the-art single-image depth networks DORN (Fu et al., 2018) and
DenseDepth (Alhashim & Wonka, 2018) which are built on top of a pretrained ResNet (DORN)
or DenseNet-201 (DenseDepth). The results show that we can do much better than single-view
depth by using multiple views. We also include classical multiview approaches such as COLMAP
(Schonberger & Frahm, 2016a) and DfUSMC (Ha et al., 2016) which estimate poses with bundle
adjustment, followed by dense stereo matching. While COLMAP uses SIFT features, DfUSMC is
built on local-feature tracking and is designed for small baseline videos.

Table 1 also includes results using multi-view deep learning approaches. MVSNet (Yao et al., 2018)
is trained to estimate depth from multiple viewpoints. Unlike our approach which estimates camera
pose during inference, MVSNet requires ground truth poses as input. We train MVSNet on NYU
and use poses estimated from OpenMVG (Moulon et al.) during inference. Finally, we also evaluate
DeMoN (Ummenhofer et al., 2017) on NYU. DeMoN is not originally trained on NYU, but instead
trained on a combination of 5 other datasets. We also try a version of DeMoN which we retrain on
NYU using the code provided by the authors (denoted †).

In Appendix C, we include additional results on NYU where we test different versions of our model,
along with parameter counts, timing information, peak memory usage, and depth accuracy. A shal-
lower version of DeepV2D (replacing the stacked hourglass networks with a single hourglass net-
work) and lower resolution inference still outperform existing work on NYU. However, using a 3D
network for stereo matching turns out to be very important for depth accuracy. When the 3D stereo
network is replaced with a correlation layer (Dosovitskiy et al., 2015) and 2d encoder-decoder, depth
accuracy is worse increasing Abs-Rel from 0.062 to 0.135.

Figure 5 shows the impact of the number of iterations and views on the scale-invariant (sc-inv)
validation set accuracy. Figure 5 (left) shows that DeepV2D requires very few iterations to con-
verge, suggesting that block coordinate descent is effective for estimate depth from small video
clips. In Figure 5 (right) we test accuracy as a function of the number of input frames used. Al-
though DeepV2D is trained using a fixed number (4) frames as input, accuracy continues to improve
a more frames are added.

ScanNet: ScanNet is a large indoor dataset consisting of 1513 RGB-D videos in distinct scenes.
We use the train/test split proposed by Tang & Tan (2018) and evaluate depth and pose accuracy in
Table 2. While our primary focus is on depth, DeepV2D accurately predicts camera motion.

We use ScanNet to test cross-dataset generalization and report results from two versions of our
approach: ours (nyu) is our method trained only on nyu, ours (scannet) is our method trained on
ScanNet. As expected, when we train on the ScanNet training set we do better than if we train
only on NYU. But the performance of our NYU model is still good and outperforms BA-Net on
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Figure 5: Impact of the number of iterations (left) and frames (right) on sc-inv validation accuracy.
(left) shows that DeepV2D quickly converges within a small number of iterations. In (right) we see
that accuracy consistently improves as more views are added. DeepV2D can be applied to variable
numbers of views for a variable number of iterations without retraining.

ScanNet Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ sc inv ↓ rot.(deg) ↓ tr. (deg) ↓ tr. (cm) ↓
DeMoN 0.231 0.520 0.761 0.289 0.284 3.791 31.626 15.50
BA-Net (orig.) 0.161 0.092 0.346 0.214 0.184 1.018 20.577 3.390
BA-Net (5-view) 0.091 0.058 0.223 0.147 0.137 1.009 14.626 2.365

DSO (Engel et al., 2018) 0.925 19.728 2.174
DSO (fcrn-init) 0.946 19.238 2.165

Ours (nyu) 0.080 0.018 0.223 0.109 0.105 0.714 12.205 1.514
Ours (scannet) 0.057 0.010 0.168 0.080 0.077 0.628 10.800 1.373

Table 2: ScanNet experiments evaluating depth and pose accuracy and cross-dataset generalization.
Our approach trained on NYU (ours nyu) outperforms BA-Net despite BA-Net being trained on
ScanNet data; training on ScanNet (ours scannet) gives even better performance.

all metrics. The design of our approach is motivated by generalizability. Our network only needs
to learn feature matching and correspondence; this experiment indicates that by learning these low
level tasks, we can generalize well to new data.

Pose accuracy from DSO Engel et al. (2018) is also included in Table 2. We test DSO using both the
default initialization and single-image depth initialization using the output of FCRN (Laina et al.,
2016). DSO fails to initialize or loses tracking on some of the test sequences so we only evaluate
on sequences where DSO is successful. DSO fails on 335 of the 2000 test sequences while DSO
(fcrn-init) fails on only 271.

SUN3D: SUN3D (Xiao et al., 2013) is another indoor scenes dataset which we use for comparison
with DeepTAM. DeepTAM only evaluates their depth module in isolation using the poses provided
by dataset, while our approach is designed to estimate poses during inference. We provide results
from our SUN3D experiments in Table 3.

SUN3D Training Data L1-Inv ↓ L1-Rel ↓ Sc-Inv ↓
SGM - 0.197 0.412 0.340
DTAM - 0.210 0.423 0.374
DeMoN S11+RGBD+MVS+SUN3D - - 0.146
DeepTAM MVS+SUNCG+SUN3D 0.054 0.101 0.128

Ours NYU 0.056 0.106 0.134
Ours NYU + ScanNet 0.041 0.077 0.104

Table 3: Results on SUN3D dataset and comparison to DeepTAM. DeepTAM only evaluates depth in
isolation and uses the poses from the dataset during inference, while our approach jointly estimates
camera poses during inference. We outperform DeepTAM and DeMoN on SUN3D even when we
do not use SUN3D data for training.

We cannot train using the same data as DeepTAM since DeepTAM is trained using a combination
of SUN3D, SUNCG, and MVS, and, at this time, neither MVS nor SUNCG are publicly available.
Instead we train on alternate data and test on SUN3D. We test two different versions of our model;
one where we train only on NYU, and another where we train on a combination of NYU and ScanNet
data. Our NYU model performs similiar to DeepTAM; When we combine with ScanNet data, we
outperform DeepTAM even though DeepTAM is trained on SUN3D and is evaluated with ground
truth pose as input.

9
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KITTI: The KITTI dataset (Geiger et al., 2013) is captured from a moving vehicle and has been
widely used to evaluate depth estimation and odometry. We follow the Eigen train/test split (Eigen
et al., 2014), and report results in Table 4. We evaluate using the official ground truth depth maps.
We compare to the state-of-the-art single-view methods and also multiview approaches such as BA-
Net (Tang & Tan, 2018), and outperform previous methods on the KITTI dataset across all metrics.

KITTI Multi δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ Abs Rel ↓ Sq Rel ↓ Sq Rel † ↓ RMSE ↓ RMSE log ↓
DORN N 0.945 0.988 0.996 0.069 0.300 - 2.857 0.112
DfUSMC Y 0.617 0.796 0.874 0.346 5.984 - 8.879 0.454
BA-Net Y - - - 0.083 - 0.025 3.640 0.134
Ours Y 0.977 0.993 0.997 0.037 0.174 0.013 2.005 0.074

Table 4: Results on the KITTI dataset. We compare to state-of-the-art single-image depth network
DORN (Fu et al., 2018) and multiview BA-Net (Tang & Tan, 2018). BA-Net reports results using a
different form of the Sq-Rel metric which we denote by †.

Overall, the depth experiments demonstrates that imposing geometric constraints on the model ar-
chitecture leads to higher accuracy and better cross-dataset generalization. By providing a differ-
entiable mapping from optical flow to camera motion, the motion network only needs to learn to
estimate interframe correspondence. Likewise, the 3D cost volume means the the depth network
only needs to learn to perform stereo matching. These tasks are easy for the network to learn, which
leads to strong results on all datasets, and can generalize to new datasets.

4.2 TRACKING EXPERIMENTS

DeepV2D can be turned into a basic SLAM system. Using NYU and ScanNet for training, we test
tracking performance on the TUM-RGBD tracking benchmark (Table 5) using sensor depth as input.
We achieve a lower translational rmse [m/s] than DeepTAM on most of the sequences. DeepTAM
uses optical flow supervision to improve performance, but since our network directly maps optical
flow to camera motion, we do not need supervision on optical flow.

We use our global pose optimization in our tracking experiments. We maintain a fixed window of
8 frames during tracking. At each timestep, the pose of the first 3 frames in the window are fixed
and the remaining 5 are updated using the motion module. After the update, the start of the tracking
window is incremented by 1 frame. We believe our ability to jointly update the pose of multiple
frames is a key reason for our strong performance on the RGB-D benchmark.

360 desk desk2 plant room rpy xyz mean

DVO (Kerl et al., 2013) 0.125 0.037 0.020 0.062 0.042 0.082 0.051 0.060
DeepTAM (Zhou et al., 2018) 0.054 0.027 0.017 0.057 0.039 0.065 0.019 0.040
DeepTAM (w/o flow) (Zhou et al., 2018) 0.069 0.042 0.025 0.063 0.051 0.070 0.030 0.050

Ours 0.046 0.034 0.017 0.052 0.032 0.037 0.014 0.033

Table 5: Tracking results in the RGB-D benchmark (translational rmse [m/s]).

5 CONCLUSION

We propose DeepV2D, a deep learning architecture which is built by composing classical geometric
algorithms into a fully differentiable pipeline. DeepV2D is flexible and performs well across a
variety of tasks and datasets.
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A APPENDIX

A.1 LS-OPTIMIZATION LAYER:

In Equation 4 we defined the residual error to be:

e
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ξiGi)
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i
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and the objective function as the weighted sum of error terms:
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We apply a Gauss-Newton update to Equation 9. The Gauss-Newton update is computed by solving
for the minimum of the second order approximation of the objective function:

ξ∗ = −(JT
WJ)−1

J
T
Wr(ξ1, ..., ξN ), Jp =

∂rp(ǫ)

∂ǫ
|ǫ=0 (10)

where r(ξ1, ..., ξN ) is the stack of residuals and J is the Jacobian matrix. Each row Ji is the Jacobian
of the ith error term w.r.t to each of the parameters. Each ξ is 6-dimensional, so optimizing over N
poses means we are updating 6N variables.

Let rp = e
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k (ξi, ξj) be the pth residual, then
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Likewise, the Jacobian for ξj is
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using the adjoint to move the increment to the left of the transformation
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where the Jacobian of the action of a SE(3) element on a 3D point is computed

∂eξX

∂ξ
|ξ=0 =

[

1 0 0 0 −Z Y
0 1 0 Z 0 X
0 0 1 −Y X 0

]

(14)

During training, we propagate through the Gauss-Newton update. The update is found by solving
the linear system

Hξ = −b, H = J
T
WJ, b = J

T
Wr(ξ1, ..., ξN ) (15)

Since H is positive definite, we solve Equation 15 using Cholesky decomposition. In the backward
pass, the gradients can be found by solving another linear system.

∂L

∂H
= −(H−1 ∂L

∂ξ
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= H

−1 ∂L

∂ξ

T

(16)

B TRAINING DETAILS

DeepV2D is implemented in Tensorflow (Abadi et al., 2016). All components of the network are
trained from scratch without using any pretrained weights. We use gradient checkpointing (Chen
et al., 2016) to reduce memory usage and increase batch size.

When training on NYU and ScanNet, we train with 4 frame video clips. On KITTI, we use 5 frame
video clips. The video clips are created by first selecting a keyframe. The other frames are randomly
sampled from the set of frames within a specified time window of the keyframe. For example, on
NYU, we create the training video by sampling from frames within 1 second of the keyframe.

Training occurs in the following two stages:

Stage I: We train the Motion Module using the Lmotion loss with RMSProp (Tieleman & Hinton,
2012) and a learning rate of 0.0001. For the input depth, we use the ground truth depth with missing
values interpolated. We train Stage I for 20k iterations on NYU, 16k iterations on KITTI, and 30k
iterations on ScanNet.

Stage II: In stage II, we jointly train the motion and depth modules end-to-end on the combined
loss with RMSProp. The initial learning rate is set to .001 and decayed to .0002 after 100k training
steps. During the second stage we store depth predictions to be used during the next training epoch.
We train Stage II for a total of 120k iterations with a batch size of 2. In our ScanNet experiments,
we train for an additional 60k iterations.

Data Augmentation: We perform data augmentation by adjusting brightness, gamma, and per-
forming random scaling of the image channels. We also randomly perturb the input camera pose to
the Motion Module by sampling small perturbations.

C TIMING AND MEMORY USAGE

In the below table we provide timing and peak memory usage for different versions of our method.
All results are obtained using 8 frame video sequences as input with the exception of the basline
single-image network FCRN Laina et al. (2016) which uses a single frame as input.
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Abs-Rel ↓ Parameters Peak GPU Memory Iteration Time

FCRN (Laina et al., 2016) 0.121 64M 0.1G 0.05s
Ours (1/2 res) 0.083 32M 0.7G 0.22s
Ours (1-HG) 0.071 16M 2.8G 0.61s
Ours (corr) 0.135 25M 1.8G 0.32s

Ours 0.062 32M 2.8G 0.69s

Table 6: Timing and memory details for different versions of our approach.

In ours(1-HG) we replace the feature extractor with a single 2D-hourglass network, and replace
the stereo network with a single 3D-hourglass network. The shallower network still performs well,
but causes Abs-Rel to increase from 0.065 to 0.071, showing that stacking hourglass networks is
beneficial for performance. In ours (1/2 res) we test the performance of DeepV2D when images are
downsampled to 1/2 resolution for training and inference. Using lower resolution images decreases
memory usage and inference time but slightly decreases accuracy.

We also test a version where we replace the 3d stereo network with a correlation layer and 2d
encoder-decoder. In ours(corr), we take the correlation between features over the same depth range
as we use to build the 3D cost volume, then concatenate the correlation response with features
from the keyframe image, similar to DispNet (Mayer et al., 2016b). The correlation version per-
forms worse, increasing Abs-Rel from 0.065 to 0.135. This is consistent with prior work which has
demonstrated that 3D cost volumes give better performance than direct correlation (Kendall et al.,
2017; Chang & Chen, 2018).

D ADDITIONAL TRACKING INFORMATION

In Table 7 we report tracking results for all sequences in the Freiburg 1 dataset.

Sequence RGB-D SLAM DeepTAM Ours

360 0.119 0.063 0.056
360(v) 0.125 0.054 0.046
desk 0.030 0.033 0.029
desk(v) 0.037 0.027 0.034
desk2 0.055 0.046 0.041
desk2(v) 0.020 0.017 0.017
floor 0.090 0.081 0.064
plant 0.036 0.027 0.019
plant(v) 0.062 0.057 0.052
room 0.048 0.040 0.047
room(v) 0.042 0.039 0.032
rpy 0.043 0.046 0.039
rpy(v) 0.082 0.065 0.037
teddy 0.067 0.059 0.043
xyz 0.051 0.019 0.025
xyz(v) 0.024 0.017 0.016

Average 0.058 0.043 0.037

Table 7: Per-Sequence tracking results on the RGB-D benchmark evaluated using translational
RMSE [m/s]. We outperform DeepTAM and DVO on 12 of the 16 sequences and achieve a lower
translational RMSE averaged over all sequences. While DeepTAM requires optical flow supervi-
sion to achieve good performance, we do not require supervision on optical flow since the relation
between camera motion and optical flow is embedded into our network architecture.
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E CAMERA POSE ABLATIONS

The focus of this work on depth estimation, but we are interested in how different methods for
estimating camera pose impact the final performance. In Table 8, we test different methods for
estimating camera pose on NYU. In each experiment, we replace the motion module of our trained
network with the given alternative, and test the final results. We also report results from MVSNet
(trained on NYU) using each SfM implementation.

COLMAP (Schonberger & Frahm, 2016a) and OpenMVG (Moulon et al.) are publicly available
SfM implementations. They do not return results on all input sequences, so we only evaluate se-
quences were they converge without an error. PWCNet+Ceres takes the output of an optical flow
network, PWCNet (Sun et al., 2018), and performs joint optimization of depth and pose using the
Ceres solver (Agarwal et al., 2012). Finally, we evaluate MVSNet (Yao et al., 2018) when the pose
predicted by DeepV2D is given as input. Note that not all SfM implementations converge on all
sequences (success rate is reported in parenthesis) and we only evaluate the method on the frames
in which it converges.

Depth Motion Abs-Rel ↓ δ1 ↑ δ2 ↑ δ3 ↑
MVSNet Identity 0.419 0.382 0.681 0.859
DeepV2D Identity 0.362 0.460 0.756 0.901

MVSNet COLMAP (274/654) 0.244 0.724 0.857 0.925
DeepV2D COLMAP 0.199 0.741 0.878 0.940

MVSNet OpenMVG (422/654) 0.181 0.766 0.913 0.965
DeepV2D OpenMVG 0.173 0.774 0.913 0.963

MVSNet PWC+Ceres (654/654) 0.279 0.651 0.845 0.925
DeepV2D PWC+Ceres 0.274 0.664 0.846 0.925

MVSNet DeepV2D (654/654) 0.101 0.885 0.970 0.990
DeepV2D (ours) 0.062 0.955 0.990 0.996

Table 8: Impact of pose estimation method on depth accuracy. Replacing our motion module with
SfM degrades performance for both MVSNet and our approach.

We also show results of our method when the motion module is replaced with other methods for
estimation motion. In all cases, using SfM results in worse performance. We observe that classical
SfM is not robust enough to consistently produce accurate poses, which leads to large errors on the
test set. MVSNet performs better using the poses estimated by our network, but still underperforms
our full system, showing the importance of differentiable alternation between pose and stereo.
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F ADDITIONAL RESULTS

Figure 6: Visualizations of depth predictions on KITTI dataset.

Image GT FCRN DeMoN Ours

Figure 7: Additional results on the NYU depth dataset Silberman et al. (2012) using 7-frame video
clips. We show results compared with Laina et al. (2016) and Ummenhofer et al. (2017).
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G NETWORK ARCHITECTURES

conv7x7 (32)
conv7x7 (64) stride 2

conv5x5 (64)
conv5x5 (128) stride 2

conv3x3 (128)
conv3x3 (256) stride 2

conv3x3 (256)
conv3x3 (512) stride 2

conv3x3 (512)

transposed conv3x3 (256)

conv3x3 (256)

transposed conv3x3 (128)

conv3x3 (64)

transposed conv3x3 (64)

conv3x3 (32)

transposed conv3x3 (32)

conv3x3 (32)

transposed conv3x3 (32)

conv3x3 (2) conv3x3 (2)

conv7x7 (32)

ResConv (32)
ResConv (32)

ResConv (64) stride 2

ResConv (64)
ResConv (64)
ResConv (64)
Conv1x1 (64)

Residual Flow Weights

Encoder Residual Flow

Figure 8: Motion Module Architecture: The Encoder(left) extracts a dense 1/4 resolution feature
map for each of the input images. The Residual Flow Network (right) takes in a pair of feature maps
and estimates the residual flow and corresponding weights. This residual flow is estimated with an
encoder-decoder network, with skip connections formed by concatenating feature maps. Numbers
in parenthesis correspond to the number of output channels for each layer.
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Figure 9: Depth Module Architecture: The 2D encoder (top) is applied to each image in the video
sequence. The 2D Encoder consists of a series of residual convolutions and 2 Hourglass Networks.
The hourglass networks process the incoming features maps as multiple scales. The hourglass net-
work is defined recursively (i.e. HG(n) contains lower resolution hourglass HG(n-1)). We use 4
nested hourglass modules with feature dimension 64-128-192-256. The resulting feature maps from
the 2D encoder are used to construct the cost volumes. The 3D matching network (bottom) takes a
collection of cost volumes as input. After a 1x1x1 convolutional layer and a 3x3x3 residual convo-
lution, we perform view pooling, which aggregates information over all the frames in the video. The
aggregated volume is then processed by a series of 3D hourglass networks, each of which outputs
an intermediate depth estimate. The widths of the 3D hourglass is 32-80-128-176.

19


	Introduction
	Related Work
	Approach
	Depth Module
	Motion Module
	Full System
	Supervision

	Experiments
	Depth Experiments
	Tracking Experiments

	Conclusion
	Appendix
	LS-Optimization Layer: 

	Training Details
	Timing and Memory Usage
	Additional Tracking Information
	Camera Pose Ablations
	Additional Results
	Network Architectures

