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Abstract. Retinal vessel segmentation is a fundamental step for various
ocular imaging applications. In this paper, we formulate the retinal vessel
segmentation problem as a boundary detection task and solve it using
a novel deep learning architecture. Our method is based on two key
ideas: (1) applying a multi-scale and multi-level Convolutional Neural
Network (CNN) with a side-output layer to learn a rich hierarchical
representation, and (2) utilizing a Conditional Random Field (CRF) to
model the long-range interactions between pixels. We combine the CNN
and CRF layers into an integrated deep network called DeepVessel. Our
experiments show that the DeepVessel system achieves state-of-the-art
retinal vessel segmentation performance on the DRIVE, STARE, and
CHASE DB1 datasets with an efficient running time.

1 Introduction

Retinal vessels are of much diagnostic significance, as they are commonly exam-
ined to evaluate and monitor various ophthalmological diseases. However, man-
ual segmentation of retinal vessels is both tedious and time-consuming. To assist
with this task, many approaches have been introduced in the last two decades
to segment retinal vessels automatically. For example, Marin et al. employed the
gray-level vector and moment invariant features to classify each pixel using a
neural network [8]. Nguyen et al. utilized a multi-scale line detection scheme to
compute vessel segmentation [11]. Orlando et al. performed vessel segmentation
using a fully-connected Conditional Random Field (CRF) whose configuration is
learned using a structured-output support vector machine [12]. Existing meth-
ods such as these, however, lack sufficiently discriminative representations and
are easily affected by pathological regions, as shown in Fig. 1.

Deep learning (DL) have recently been demonstrated to yield highly dis-
criminative representations that have aided in many computer vision tasks. For
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Fig. 1. Retinal vessel segmentation results. Existing vessel segmentation methods (e.g.,
Nguyen et al. [11], and Orlando et al. [12]) are affected by the optic disc and pathological
regions (highlighted by red arrows), while our DeepVessel deals well with these regions.

example, Convolutional Neural Networks (CNNs) have brought heightened per-
formance in image classification and semantic image segmentation. Xie et al.

employed a holistically-nested edge detection (HED) system with deep supervi-
sion to resolve the challenging ambiguity in object boundary detection [16]. Zheng
et al. reformulated the Conditional Random Field (CRF) as a Recurrent Neural
Network (RNN) to improve semantic image segmentation [18]. These works inspire
us to learn rich hierarchical representation based on a DL architecture.

A DL-based vessel segmentation method is proposed in [9], which addressed
the problem as pixel classification using a deep neural network. In [7], Li et al.

employed cross-modality data transformation from retinal image to vessel map,
and outputted the label map of all pixels for a given image patch. These methods
has two drawbacks: first, it does not account for non-local correlations in classi-
fying individual pixels/patches, which leads to failures caused by noise and local
pathological regions; second, the classification strategy is computationally inten-
sive for both the training and testing phases. In our paper, we address retinal vessel
segmentation as a boundary detection task that is solved using a novel DL system
called DeepVessel, which utilizes a CNN with a side-output layer to learn discrim-
inative representations, and also a CRF layer that accounts for non-local pixel
correlations. With this approach, our DeepVessel system achieves state-of-the-art
performance on publicly-available datasets (DRIVE, STARE, and CHASE DB1)
with relatively efficient processing.

2 Proposed Method

Our DeepVessel architecture consists of three main layers. The first is a con-
volutional layer used to learn a multi-scale discriminative representation. The
second is a side-output layer that operates with the early layers to generate
a companion local output. The last one is a CRF layer, which is employed to
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Fig. 2. Architecture of our DeepVessel system, which consists of convolutional, side-
output, and CRF layers. The front network is a four-stage HED-like architecture [16],
where the side-output layer is inserted after the last convolutional layers in each stage
(marked in Bold). The convolutional layer parameters are denoted as “Conv<receptive
field size>-<number of channels>”. The CRF layer is represented as an RNN as done
in [18]. The ReLU activation function is not shown for brevity. The red blocks exist
only in the training phase.

further take into account the non-local pixel correlations. The overall architec-
ture of our DeepVessel system is illustrated in Fig. 2.

Convolutional Layer is used to learn local feature representations based

on patches randomly sampled from the image. Suppose L
(n)
j is the j-th output

map of the n-th layer, and L
(n−1)
i is the i-th input map of the n-th layer. The

output of the convolutional layer is then defined as:

L
(n)
j = f(

∑

i

L
(n−1)
i ∗ W

(n)
ij + b

(n)
j 1), (1)

where W
(n)
ij is the kernel linking the i-th input map to the j-th output map, ∗

denotes the convolution operator, and b
(n)
j is the bias element.

Side-output Layer acts as a classifier that produces a companion local
output for early layers [6]. Suppose W denotes the parameters of all the con-
volutional layers, and there are M side-output layers in the network, where the
corresponding weights are denoted as w = (w(1), ...,w(M)). The objective func-
tion of the side-output layer is given as:

Ls(W,w) =
M
∑

m=1

αmL(m)
s (W,w(m)), (2)

where αm is the loss function fusion-weight or each side-output layer, and L
(m)
s

denotes the image-level loss function, which is computed over all pixels in the



DeepVessel: Retinal Vessel Segmentation via Deep Learning and CRF 135

training retinal image X and its vessel ground truth Y . For the retinal image,
the pixels of the vessel and background are imbalanced, thus we follow HED [16]
to utilize a class-balanced cross-entropy loss function:

L(m)
s (W,w(m)) = −

|Y −|

|Y |

∑

j∈Y +

log σ(a
(m)
j ) −

|Y +|

|Y |

∑

j∈Y −

log(1 − σ(a
(m)
j )), (3)

where |Y +| and |Y −| denote the vessel and background pixels in the ground

truth Y , and σ(a
(m)
j ) is the sigmoid function on pixel j of the activation map

A
(m)
s ≡ a

(m)
j , j = 1, ..., |Y | in side-output layer m. Simultaneously, we can obtain

the vessel prediction map of each side-output layer m by Ŷ
(m)
s = σ(A

(m)
s ).

Conditional Random Field (CRF) Layer is used to model non-local
pixel correlations. Although the CNN can produce a satisfactory vessel prob-
ability map, it still has some problems. First, a traditional CNN has convolu-
tional filters with large receptive fields and hence produces maps too coarse for
pixel-level vessel segmentation (e.g., non-sharp boundaries and blob-like shapes).
Second, a CNN lacks smoothness constraints, which may result in small spuri-
ous regions in the segmentation output. Thus, we utilize a CRF layer to obtain
the final vessel segmentation result. Following the fully-connected CRF model
of [5], each node is a neighbor of each other, and it takes into account long-range
interactions in the whole image. We denote v = {vi} as a labeling over all pixels
of the image, with vi = 1 for vessel and vi = 0 for background. The energy of a
label assignment v is given by:

E(v) =
∑

i

ψu(vi) +
∑

i<j

ψp(vi, vj), (4)

with:

ψu(vi) =
1

M

M
∑

m=1

a
(m)
i , and, ψp(vi, vj) = µ(vi, vj)

D
∑

d=1

h(d)k(d)(fi, fj), (5)

where ψu(vi) and ψp(vi, vj) are the unary and pairwise terms, respectively. a
(m)
j

is the value at pixel i in the activation map A
(m)
s of side-output layer m, and k(d)

for d = 1, ..., D is the Gaussian kernel applied on feature vectors. The feature
vector of pixel i, denoted by fi, is derived from image features such as spatial
location and RGB values. An effective solution to minimize the CRF energy E(v)
in Eq. (4) is through mean-field approximation [5]. In our system, we employ the
implementation of [18], in which the CRF is reformulated as a Recurrent Neural
Network (RNN) layer and can be utilized in an end-to-end DL architecture.

Our DeepVessel Architecture is an end-to-end system illustrated in
Fig. 2, which contains four CNN stages and one CRF stage. Each CNN stage
includes multiple convolutional and ReLU layers, and one side-output layer.
The side-output layer is connected to the last convolutional layer in each stage
to support deep layer supervision. The objective function of the whole system is:

(W,w,h) = arg min
(

Ls(W,w) + LCRF
s (W,w,h)

)

, (6)
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Fig. 3. The vessel prediction map for each side-output layer in our architecture.

where h is a CRF layer parameter, Ls is the CNN layer loss function in Eq. (2),
and LCRF

s is the CRF layer loss function, specifically the class-balanced cross-
entropy loss function in Eq. (3). We minimize the objective function via stan-
dard stochastic gradient descent. In our DeepVessel architecture, we only employ
four CNN stages with side-output layers. The main reason is that retinal ves-
sels in fundus images are different from general object edges in natural images.
An object edge separates two regions of different appearance, which allows the
boundary to be detectable even at deeper layers. By contrast, a retinal vessel
appears merely as a curved line, which is too thin to respond in the higher stride
layers. Thus, we only employ four side-output layers. The vessel prediction map
example for each side-output layer is shown in Fig. 3, where earlier side-output
layers have a smaller receptive field size and respond to local details, while deeper
layers represent appearance at a larger scale.

3 Experiments

We implement our framework using the Caffe library and build on top of the
implementation of HED [16]. The model parameters follow the configuration
used in [16]. We employed a two-step fine-tuning approach that first utilizes
the ARIA dataset [2] to fine-tune the initial parameters, and then the DRIVE
training set [15] to obtain the final fine-tuning parameters. We rotate all training
images to eight different angles, and rescale the ARIA images to the same size
as the DRIVE images. The whole fine-tuning phase takes about two days on a
single NVIDIA K40 GPU (10, 000 iterations). For a 565× 584 image, it takes
about 1.3 s to generate the final vessel map.

3.1 Experimental Results

We evaluate our method1 on three publicly datasets: DRIVE [15], STARE [4],
and CHASE DB1 [3]. These datasets provide two manual segmentations gener-
ated by two different experts for each image. The first observer is selected as

1 Our results on all three datasets can be downloaded from http://hzfu.github.io/
subpage/deepvessel/deepvessel.html.

http://hzfu.github.io/subpage/deepvessel/deepvessel.html
http://hzfu.github.io/subpage/deepvessel/deepvessel.html
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ground truth and used for performance evaluation in the literature. We per-
formed the evaluation in terms of Accuracy (Acc = TP+TN

TP+FN+TN+FP
), and Sen-

sitivity (Sen = TP
TP+FN

), where TP , TN , FP and FN represent the number
of true positives, true negatives, false positives and false negatives, respectively.
Note that there is no training set in the STARE and CHASE DB1 datasets, thus
we only utilize the DRIVE training set to fine-tune the final parameters.

We compare our method with several state-of-the-art vessel segmentation
methods, and also report the ground truth labeling of the second observer as the
performance of a human observer. Our DeepVessel system outputs a probabil-
ity map, and Otsu’s thresholding method [13] is employed to obtain the binary
labeling result automatically in the experiments. Table 1 lists the performances
on the three datasets, where the reported performance scores from the origi-
nal papers are used. Our method obtains the best Accuracy scores among the
methods, which include the other DL method [9] on the DRIVE dataset. And
our method obtains Accuracy performance similar to the human observer on the
CHASE DB1 dataset and a better Accuracy score on the other two datasets.

We provide the results produced by the individual and average fusion
results of the side-output layers in Table 1. We also report our results without

Table 1. Performance of different segmentation methods on three datasets.

Methods DRIVE STARE CHASE DB1

Acc Sen Time Acc Sen Acc Sen

Human observer 0.9472 0.7761 - 0.9349 0.8952 0.9538 0.8092

Staal [15] 0.9441 0.7194 15 m 0.9516 0.6970 - -

Mendonca [10] 0.9452 0.7344 2.5 m 0.9440 0.6996 - -

Marin [8] 0.9452 0.7067 1.5 m 0.9526 0.6944 - -

Fraz [3] 0.9480 0.7406 2 m 0.9534 0.7548 0.9469 0.7224

Nguyen [11] 0.9407 0.7429 2.5 s 0.9326 0.8014 0.9213 0.7153

Zhao [17] 0.9477 0.7354 2 m 0.9509 0.7187 - -

Melinscak [9] 0.9466 0.7276 - - - - -

Azzopardi [1] 0.9442 0.7655 10 s 0.9497 0.7716 0.9387 0.7585

Roychowdhury [14] 0.9494 0.7395 2.5 s 0.9560 0.7317 0.9467 0.7615

HED [16] 0.9435 0.7364 1.5 s 0.9402 0.7116 0.9380 0.7151

Side-output 1 0.9151 0.5523 - 0.8934 0.6273 0.8102 0.5077

Side-output 2 0.9426 0.6872 - 0.9404 0.7415 0.9290 0.6138

Side-output 3 0.9410 0.7458 - 0.9490 0.7778 0.9468 0.7965

Side-output 4 0.9139 0.5744 - 0.9359 0.6451 0.9465 0.7323

Side-output fusion 0.9472 0.7298 - 0.9531 0.7469 0.9478 0.7485

DeepVessel w/o S 0.9335 0.7164 - 0.9438 0.7216 0.9365 0.7223

DeepVessel 0.9523 0.7603 1.3 s 0.9585 0.7412 0.9489 0.7130
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Fig. 4. Examples of results from the dataset. From top to bottom are the fundus images
from the DRIVE, STARE, and CHASE DB1 datasets. From left to right: (A) Fundus
images, (B) Ground truth, (C) Fusion results of side-output layers, (D) Our DeepVessel
results, (E) Thresholded DeepVessel results

side-output layers (DeepVessel w/o S). We observe that the second and third
side-output layers obtain better performance than the other two layers, which
is also observed in Fig. 3. The side-output fusion combines all the side-output
layer outputs and generally performs better than any of the individual layers
and the version without side-output layers. Figure 4 displays some results. It can
be observed that our DeepVessel with CRF produces a clearer vessel segmenta-
tion result than the fusion result from only the side-output layers, especially for
pathological regions as shown in the second row of Fig. 4.

4 Conclusion

In this paper, we have developed a retinal vessel segmentation method, called
DeepVessel, based on a novel deep learning architecture. A discriminative repre-
sentation is learned by a CNN with side-output layers, and a high quality vessel
probability map is produced using a CRF layer. We have demonstrated that our
system produces state-of-the-art results on three publicly available datasets.

References

1. Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters
for vessel delineation with application to retinal images. Med. Image Anal. 19(1),
46–57 (2015)



DeepVessel: Retinal Vessel Segmentation via Deep Learning and CRF 139

2. Farnell, D., Hatfield, F., Knox, P., Reakes, M., Spencer, S., Parry, D., Harding, S.P.:
Enhancement of blood vessels in digital fundus photographs via the application of
multiscale line operators. J. Franklin Inst. 345(7), 748–765 (2008)

3. Fraz, M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A., Owen, C.,
Barman, S.: An ensemble classification-based approach applied to retinal blood
vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)

4. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal
images by piecewise threshold probing of a matched filter response. IEEE Trans.
Med. Imaging 19(3), 203–210 (2000)
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