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We present DeepVesselNet, an architecture tailored to the challenges faced when

extracting vessel trees and networks and corresponding features in 3-D angiographic

volumes using deep learning. We discuss the problems of low execution speed and

high memory requirements associated with full 3-D networks, high-class imbalance

arising from the low percentage (<3%) of vessel voxels, and unavailability of

accurately annotated 3-D training data—and offer solutions as the building blocks of

DeepVesselNet. First, we formulate 2-D orthogonal cross-hair filters which make use

of 3-D context information at a reduced computational burden. Second, we introduce

a class balancing cross-entropy loss function with false-positive rate correction to

handle the high-class imbalance and high false positive rate problems associated with

existing loss functions. Finally, we generate a synthetic dataset using a computational

angiogenesis model capable of simulating vascular tree growth under physiological

constraints on local network structure and topology and use these data for transfer

learning. We demonstrate the performance on a range of angiographic volumes at

different spatial scales including clinical MRA data of the human brain, as well as CTA

microscopy scans of the rat brain. Our results show that cross-hair filters achieve over

23% improvement in speed, lower memory footprint, lower network complexity which

prevents overfitting and comparable accuracy that does not differ from full 3-D filters.

Our class balancing metric is crucial for training the network, and transfer learning

with synthetic data is an efficient, robust, and very generalizable approach leading to a

network that excels in a variety of angiography segmentation tasks. We observe that sub-

sampling and max pooling layers may lead to a drop in performance in tasks that involve

voxel-sized structures. To this end, the DeepVesselNet architecture does not use any

form of sub-sampling layer and works well for vessel segmentation, centerline prediction,

and bifurcation detection.Wemake our synthetic training data publicly available, fostering

future research, and serving as one of the first public datasets for brain vessel tree

segmentation and analysis.

Keywords: vascular network, cross-hair filters, deepvesselnet, bifurcation, vessel segmentation, centerline, class

balancing, vascular tree
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1. INTRODUCTION

Angiography offers insights into blood flow and conditions of
the vascular tree. Three dimensional volumetric angiography
information can be obtained using magnetic resonance
(MRA), ultrasound, or x-ray based technologies like computed
tomography (CT). A common first step in analyzing these data
is vessel segmentation. Still, moving from raw angiography
images to vessel segmentation alone might not provide enough
information for clinical use, and other vessel features like
centerline, diameter, or bifurcations of the vessels are also
needed to accurately extract information about the vascular
tree, for example, to characterize its structural properties or flow
pattern. In this work, we present a deep learning approach, called
DeepVesselNet, to perform vessel segmentation, centerline
prediction, and bifurcation detection tasks. We make the code
available (Tetteh, 2019a), and a ready-to-use implementation is
available as companion material to our study “Machine learning
analysis of whole mouse brain vasculature” (Todorov et al., 2020).
DeepVesselNet deals with challenges that result from speed and
memory requirements, unbalanced class labels, and the difficulty
of obtaining well-annotated data for curvilinear volumetric
structures by addressing the following three key limitations.

Processing 3-D medical volumes poses a memory
consumption and speed challenge. Using 3-D convolutional
neural networks (CNNs) leads to drastic increase in number of
parameters to be optimized and computations to be executed
when compared to 2-D CNNs. At the same time, applying a
2-D CNN in a slice-wise fashion discards valuable 3-D context
information that is crucial for tracking curvilinear structures
in 3-D. Inspired by the ideas of Rigamonti et al. (2013), Roth
et al. (2014), and Liu et al. (2017) who proposed separable
filters and used intersecting 2-D planes, we demonstrate the use
of cross-hair filters from three intersecting 2-D filters, which
helps to avoid the memory and speed problems of classical
3-D networks, while at the same time making use of 3-D
information in volumetric data. Unlike the existing ideas where
2-D planes are extracted at a pre-processing stage and used as
input channels (see discussion in section 2.1.2), our cross-hair
filters are implemented on a layer level which help to retain the
3-D information throughout the network (see section 2.1).

The vessel, centerline and bifurcation prediction tasks is
characterized by high class imbalances. Vessels account for <3%
of the total voxels in a patient volume, centerlines represent a
fraction of the segmented vessels, and visible bifurcations are
in the hundreds at best—even when dealing with volumes with
106 and more voxels. This bias toward the background class is a
common problem in medical data (Grzymala-Busse et al., 2004;
Christ et al., 2016; Haixiang et al., 2017). Unfortunately, current
class balancing loss functions for training CNNs turn out to be
numerically unstable in extreme cases as ours.We offer a solution
to this “extreme class imbalance” problem by introducing a new
loss function (see section 2.2) that we demonstrate to work well
with our vascular features of interest.

Manually annotating vessels, centerlines, and bifurcations
requires many hours of work and expertise. To this end, we
demonstrate the successful use of simulation based frameworks

(Szczerba and Székely, 2005; Schneider et al., 2012, 2014) that
can be used for generating synthetic data with accurate labels
(see section 2.3) for pre-training our networks, rendering the
training of our supervised classification algorithm feasible. The
transfer learning approach turns out to be a critical component
for training CNNs in a wide range of angiography tasks and
applications ranging from CT micrographs to TOF MRA. The
synthesized and the clinical MRA datasets are made available
publicly for future research and validation purposes. Further
description and download link is provided in section 3.1.

1.1. Prior Work and Open Challenges
1.1.1. Vessel Segmentation
Vessel enhancement and segmentation is a longstanding task in
medical image analysis (see reviews by Kirbas and Quek, 2004;
Lesage et al., 2009). The range of methods employed for vessel
segmentation reflect the development of image processing during
the past decades, including region growing techniques (Martínez-
Pérez et al., 1999), active contours (Nain et al., 2004), statistical
and shape models (Chung and Noble, 1999; Young et al., 2001;
Liao et al., 2013; Moreno et al., 2013), particle filtering (Florin
et al., 2006; Wörz et al., 2009; Dalca et al., 2011), and path
tracing (Wang et al., 2013). All of these examples are interactive,
starting from a set of seed labels as root and propagating
toward the branches. Other approaches aim at an unsupervised
enhancement of vascular structures: a popular multi-scale second
order local structure of an image (Hessian) was examined
by Frangi et al. (1998) with the purpose of developing a
vessel enhancement filter. A measure of vessel-likeliness is then
obtained as a function of all eigenvalues of the Hessian. A novel
curvilinear structure detector, called Optimally Oriented Flux
(OOF) was proposed by Law and Chung (2008) to find an
optimal axis on which image gradients are projected to compute
the image gradient flux. OOF has a lower computational load
than the calculation of the Hessian matrix proposed in Frangi
et al. (1998). A level-set segmentation approach with vesselness-
dependent anisotropic energy weights is presented and evaluated
in Forkert et al. (2013, 2011) for 3-D time-of-flight (TOF) MRA.
Phellan and Forkert (2017) presented a comparative analysis of
the accuracy gains in vessel segmentation generated by the use of
nine vessel enhancement algorithms on time-of-flight MRA that
includedmulti scale vesselness algorithms, diffusion-based filters,
and filters that enhance tubular shapes and concluded that vessel
enhancement algorithms do not always lead to more accurate
segmentation results compared to segmenting non-enhanced
images directly. An early machine learning approach for vessel
segmentation was proposed by Schneider et al. (2015), combining
joint 3-D vessel segmentation and centerline extraction using
oblique Hough forest with steerable filters. In a similar fashion,
Ciresan et al. (2012) used deep artificial neural network as a pixel
classifier to automatically segment neuronal structures in stacks
of electron microscopy images, a task somewhat similar to vessel
segmentation. One example using deep learning architecture is
the work of Phellan et al. (2017) who used a deep convolutional
neural network to automatically segment the vessels of the brain
in TOF MRA by extracting manually annotated bi-dimensional
image patches in the axial, coronal, and sagittal directions as an
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FIGURE 1 | An overview of the three main tasks tackled in this paper. For bifurcations, we predict a neighborhood cube around the indicated point.

input to the training process. Koziński et al. (2018) proposed
a loss function that accommodates ground truth annotations
of 2-D projections of the training volumes, for training deep
neural networks in tasks where obtaining full 3-D annotations
is a challenge.

Though deep learning has been applied in many medical
imaging tasks, there are no dedicated architectures so far
for vessel segmentation in 3-D volumetric datasets. Existing
architectures might be sub-optimal and not work directly out of
the box due to the unique nature of the vasculature as compared
to other imaging tasks. There is therefore the need to explore
other architectures and training strategies.

1.1.2. Centerline Prediction
Identifying the center of a vessel is relevant for calculating the
vessel diameter, but also for obtaining the “skeleton” of a vessel
when extracting the vascular tree or network (see Figure 1). The
vessels’ skeleton and center can be found by post-processing a
previously generated vessel segmentation. A method based on
morphological operations is developed by Shagufta et al. (2014)
which performs erosion using 2 × 2 neighborhoods of a pixel
to determine if a pixel is a centerline candidate. Active contour
models are applied in Maddah et al. (2003) as well as path
planning and distance transforms for extracting centerline in
vessels, and Chen and Cohen (2015) proposed a geodesic or

minimal path technique. A morphology-guided level set model
is used in Santamaría-Pang et al. (2007) to performed centerline
extraction by learning the structural patterns of a tubular-like
object, and estimating the centerline of a tubular object as the
path with minimal cost with respect to outward flux in gray
level images. Vesselness filters were adopted by Zheng et al.
(2012) to predict the location of the centerline, while Macedo
et al. (2010) used Hough transforms in handling a similar task.
A Hough random forest with local image filters is designed in
Schneider et al. (2015, 2012) to predict the centerline, and trained
on centerline data previously extracted using one of the level set
approaches.

The application of deep learning to the extraction of vessel
centerline has not been explored. One reason may be the lack of
annotated data necessary to train deep architectures that is hard
to obtain especially in 3-D datasets.

1.1.3. Bifurcation Detection
A vessel bifurcation refers to the point on a vessel centerline
where the vessel splits into two vessels (see Figure 1). Bifurcations
represent the nodes of the vascular tree or network and knowing
their locations is important both for network extraction and for
studying its properties (Rempfler et al., 2015). They represent
structures that can easily be used as landmarks in image
registration, but also indicate the locations of modified blood
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FIGURE 2 | Graphical representation of cross-hair filters for 3-D convolutional operation. (Left) A classical 3-D convolution with filter M. (Right) Cross-hair 3-D

convolutional with 2-D filter stack Mi ,Mj ,Mk .

flow velocity and pressure within the network itself (Chaichana
et al., 2017). Bifurcations are hard to detect in volumetric
data as they are rare point-like features that vary in size and
shape significantly. Similar to centerline extraction, the detection
of bifurcations often happens by post-processing a previously
generated vessel segmentation or by searching a previously
extracted vessel graph. A two staged deep learning architecture
is proposed in Zheng et al. (2015) for detecting carotid artery
bifurcations as a specific landmark in volumetric CT data by
first training a shallow network for predicting candidate regions
followed by a sparse deep network for final prediction. A
three stage algorithm for bifurcation detection is proposed in
Chaichana et al. (2017) for digital eye fundus images, a 2-D task,
and their approach included image enhancement, clustering, and
searching the graph for bifurcations.

The direct predicting of the location of centerlines and
bifurcations without a previous segmentation of vessels as an
intermediate step is a task which has not been attempted yet. We
foresee that having directly predicted centerlines and bifurcations
together with those from postprocessing vessel segmentations
will enhance the overall robustness and accuracy of the analysis
of angiographic volumes.

2. METHODOLOGY

In the design of our DeepVesselNet architecture, we offer three
methodological contributions: A. introducing fast cross-hair
filters, B. dealing with extreme class balancing by relying on a
loss function with stable weights, and C. generating synthetic 3D
vessel structures for training DeepVesselNet and other standard
segmentation architectures.

2.1. Cross-Hair Filters Formulation
In this section, we introduce the 3-D convolutional operator,
which utilizes cross-hair filters to improve speed and memory
usage while maintaining accuracy. For a graphical representation

of classical 3-D convolutional operator and the proposed cross-
hair filters is see Figure 2. Let I be a 3-D volume, M a
3-D convolutional kernel of shape (kx, ky, kz), and ∗ be a
convolutional operator. We define ∗ as:

I ∗M = A = {aijk}; aijk =
kx
∑

r=1

ky
∑

s=1

kz
∑

t=1

I(R,S,T)M(r,s,t); (1)

R = i+ r −
(

1+
[

kx

2

])

, (2)

S = j+ s−
(

1+
[

ky

2

])

, (3)

T = k+ t −
(

1+
[

kz

2

])

,

where {aijk} is a position element of matrix A, I(R,S,T) is the
intensity value of image I at voxel position (R, S,T),M(r,s,t) is the
value of kernelM at position (r, s, t), and [c] is the greatest integer
less or equal to c.

From Equation (1), we see that a classical 3-D convolution
involves kxkykz multiplications and kxkykz − 1 additions for
each voxel of the resulting image. For a 3 × 3 × 3 kernel, we
have 27 multiplications and 26 additions per voxel. Changing
the kernel size to 5 × 5 × 5 increases the complexity to 125
multiplications and 124 additions per voxel. This then scales up
with the dimension of the input image. For example, a volume
of size 128 × 128 × 128 and a 5 × 5 × 5 kernel results in about
262 × 106 multiplications and 260 × 106 additions. To handle
this increased computational complexity, we approximate the
standard 3-D convolution operation by

aijk =
ky
∑

s=1

kz
∑

t=1

I(i,S,T)M
i
(s,t) +

kx
∑

r=1

kz
∑

t=1

I(R,j,T)M
j

(r,t)

+
kx
∑

r=1

ky
∑

s=1

I(R,S,k)M
k
(r,s), (4)
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FIGURE 3 | Pictorial view of efficient implementation of cross-hair filters. Grayscaled stacks refer to input to the layer, red shaped squares refer to 2-D kernels used for

each plane. Brown colored slices refer to extracted features after convolution operations and + symbol refers to matrix addition.

whereMi,Mj,Mk are 2-D convolutional (cross-hair) kernels used
as an approximation to the 3-D kernelM in (1) along the ith, jth,
and kth axes, respectively. R, S, and T are as defined in (1). Using
cross-hair filters results in (kykz + kxkz + kxky) multiplications
and (kykz + kxkz + kxky − 1) additions. If we let km1, km2, km3

be the sizes of the kernel M such that km1 ≥ km2 ≥ km3, we can
show that

kykz + kxkz + kxky ≤ 3(km1km2) ≤ kxkykz , (5)

where strict inequality holds for all km3 > 3. Equation (5)
shows a better scaling in speed and also in memory since the
filters sizes in (1) and (4) are affected by the same inequality.
With the approximation in (4), and using the same example
as above (volume of size 128 × 128 × 128 and a 5 × 5 ×
5 kernel), we now need <158 × 106 multiplications and
156 × 106 additions to compute the convolution leading to a
reduction in computation bymore than 100×106 multiplications
and additions when compared to a classical 3-D convolution.
Increasing the volume or kernel size, further increases the
gap between the computational complexity of (1) and (4).
Moreover, we will see later from our experiments that (4)
still retains essential 3-D context information needed for the
classification task.

2.1.1. Efficient Implementation
In Equation (4), we presented our 2-D crosshair filters. However,
applying (4) independently for each voxel leads to a redundant
use of memory. More precisely, voxels close to each other share
some neighborhood information and making multiple copies of
it is not memory efficient. To this end we present an efficient

implementation below (depicted in Figure 3). Consider I as
defined in Equation (1) and let us extract the sagital, coronal,
and axial planes as Is, Ic, and Ia, respectively. By application of
Equations (1) and (4), we have a final implementation as follows:

I ⋄M = A = βcA
c + βsA

s + βaA
a, (6)

Ac = Ic ∗ ∗Mi, As = Is ∗ ∗Mj, Aa = Ia ∗ ∗Mk,

where ∗∗ refers to a 2-D convolution along the first and second
axes of the left matrix over all slices in the third axis. βc, βs, and
βa are weights to control the input of the planes toward the final
sum, for example, in the case of different spatial resolutions of
the planes (we use βc = βs = βa = 1 in our experiments) and
⋄ refers to our crosshair filter operation. This implementation
is efficient in the sense that it makes use of one volume at a
time instead of copies of the volume in memory where voxels
share the same neighborhood. In other words, we still have only
one volume in memory but rather rotate the kernels to match
the slices in the different orientations. This lowers the memory
requirements during training and inference, allowing to train on
more data with little memory.

2.1.2. 2.5-D Networks vs. 3-D Networks With

Cross-Hair Filters
Its important to discuss the difference between existing 2.5-
D networks and our proposed cross-hair filters. Given a 3-D
task (e.g., vessel segmentation in 3-D volume), a 2.5-D based
network handles the task by considering one 2-D slice at a time.
More precisely, the network takes a 2-D slice (sometimes with
few neighboring slices) as input and classifies all pixels in this
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slice. This is repeated for each slice in the volume and the final
results from the slices are fused again to form the 3-D result.
On the architecture level, 2.5-D networks are 2-D networks
with a preprocessing method for extracting 2-D slices and a
postprocessing method for fusing 2-D results into a 3-D volume.
We note that the predictions of 2.5-D networks are solely based
on 2-D context information. Examples of 2.5-D networks are the
implementation of UNet in Christ et al. (2016) used for liver
and lesion segmentation tasks in CT volumetric dataset, and the
network architecture of Sekuboyina et al. (2017) for annotation
of lumbar vertebrae. Extensions of this approach may include a
pre-processing stage where several 2-D planes are extracted and
used as input channels to the 2-D network (Roth et al., 2014; Liu
et al., 2017).

On the other hand, 3-D networks based on our proposed
cross-hair filters take the whole 3-D volume as input, and at
each layer in the network we apply the convolutional operator
discussed in section 2.1. Therefore, our filters make use of 3-
D context information at each convolutional layer and do not
require specific preprocessing or post processing. Our proposed
method differs from classical 3-D networks in the sense that
it uses less parameters and memory since it does not use full
3-D convolutions. However, it is worth noting that our filters
scale exactly the same as 2.5-D (i.e., in only two directions) with
respect to changes in filter and volume sizes. More precisely,
given a square or cubic filter of size k, we have k2 parameters
in a 2.5-D network and 3k2 in our cross-hair filter based
network. Increasing the filter size by a factor of r will scale
up as k + r quadratically in both situations [i.e., (k + r)2

for 2.5-D and 3(k + r)2 in cross-hair filter case] as compared
to full 3-D networks where the parameter size scales as a
cube of k+ r.

In summary, unlike the existing 2.5-D ideas where 2-D
planes are extracted at a pre-processing stage and used as input
channels to a 2-D network architecture, our cross-hair filters
are implemented on a layer level which help retain the 3-
D information throughout the network making it a preferred
option when detecting curvilinear objects in 3-D.

2.2. Extreme Class Balancing With Stable
Weights
We now discuss the problem of “extreme” class imbalance and
introduce a new cost function that is capable of dealing with this
problem. Often in medical image analysis, the object of interest
(e.g., vessel, tumor etc.) accounts for a minority of the total voxels
of the image. The objects of interest in the datasets used in this
work account for <2.5% of the voxels (the different datasets are
described in section 3.1). A standard cross entropy loss function
is given by

L(W) = −
1

N

N
∑

j=1

yj log P(yj = 1|X;W)+ (1− yj)

log[1− P(yj = 1|X;W)], (7)

L(W) = −
1

N

(

∑

j∈Y+

log P(yj = 1|X;W)

+
∑

j∈Y−

log P(yj = 0|X;W)

)

,

where N is the total number of examples, P is the probability of
obtaining the ground truth label given the data X and network
weights W, yj is the label for the jth example, X is the feature
set, W is the set of parameters of the network, Y+ is the set
of positive labels, and Y− is the set of negative (background)
labels. Using this cost function with extreme class imbalance
between Y− and Y+ could cause the training process to be
biased toward detecting background voxels at the expense of the
object of interest. This normally results in predictions with high
precision against low recall. To remedy this problem, Hwang
and Liu (2015) proposed a biased sampling loss function for
training multiscale convolutional neural networks for a contour
detection task. This loss function introduced additional trade-off
parameters and it samples twice more edge patches than non-
edge ones for positive cost-sensitive finetuning, and vice versa,
for negative cost-sensitive finetuning. Based on this, Xie and Tu
(2015) proposed a class-balancing cross entropy loss function of
the form

L(W) = −β
∑

j∈Y+

log P(yj = 1|X;W)

− (1− β)
∑

j∈Y−

log P(yj = 0|X;W), (8)

where W denotes the standard set of parameters of the network,
which are trained with backpropagation and β and 1− β are the

class weighting multipliers, which are calculated as β = |Y−|
|Y| ,

1 − β = |Y+|
|Y| . P(.) is the probability from the final layer of the

network, and Y+ and Y− are the set of positive and negative class
labels, respectively.

2.2.1. Challenges From Numerical Instability and High

False Positive Rate
The idea of giving more weight to the cost associated with the
class with the lowest count from Equation (8), has been used
in other recent works (Christ et al., 2016; Maninis et al., 2016;
Nogues et al., 2016; Roth et al., 2016). However, our experiments
(in section 3.4) show that the above loss function raises two
main challenges.

First, there is the problem of numerical instability. The
gradient computation is numerically unstable for very big
training sets due to the high values taken by the loss. More
precisely, there is a factor of 1

N , that scales the final sum to
the mean cost in the standard cross-entropy loss function in
Equation (7). This factor ensures that the gradients are stable
irrespective of the size of the training data N. However, in
Equation (8), the weights β and 1 − β do not scale the cost to
the mean value. For high number of data points |Y| (which is
usually the case of voxel-wise tasks), the sums explode leading

Frontiers in Neuroscience | www.frontiersin.org 6 December 2020 | Volume 14 | Article 592352

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Tetteh et al. DeepVesselNet

to numerical instability. For example, given a perfectly balanced
data, we have β = 1 − β = 0.5, irrespective of the number of
data points |Y|. Thus, increasing the size of the dataset (batch
size) has no effect on the weights (β) but increases the number
of elements in the summation, causing the computations to
be unstable.

Second, there are challenges from high false positive rate. A
high rate of false positives leading to high recall values is observed
during training and at test time. This is caused by the fact that in
most cases the object of interest accounts for <5% of the total
voxels (about 2.5% in our case). Therefore, we have a situation
where 1 − β < 0.05, which implies that wrongly predicting 95
background voxels as foreground is less penalized in the loss than
predicting 5 foreground voxels as background. This leads to high
false positive rate and, hence, high recall values.

2.2.2. A New “Extreme” Class Balancing Function
To address the challenges discussed above, we introduce different
weighting ratios and an additional factor to take care of the high
false positive rate; and define:

L(W) = L1(W)+ L2(W) (9)

L1(W) = −
1

|Y+|
∑

j∈Y+

log P(yj = 1|X;W)

−
1

|Y−|
∑

j∈Y−

log P(yj = 0|X;W)

L2(W) = −
γ1

|Y+|
∑

j∈Yf+

log P(yj = 0|X;W)

−
γ2

|Y−|
∑

j∈Yf−

log P(yj = 1|X;W)

γ1 = 0.5+
1

|Yf+|
∑

j∈Yf+

|P(yj = 0|X;W)− 0.5|

γ2 = 0.5+
1

|Yf−|
∑

j∈Yf−

|P(yj = 1|X;W)− 0.5|

where Yf+ and Yf− are the set of false positive and false
negative predictions respectively and |.| is the cardinality
operator which measures the number of elements in the set.
L1 is a more numerically stable version of Equation (8) since
it computes the voxel-wise, cost which scales well with the
size of the dataset or batch. But the ratio of β to 1 − β is
maintained as desired. L2 [false prediction (FP) Rate Correction]
is introduced to penalize the network for false predictions.
However, we do not want to give false positive (Yf+) and
false negatives (Yf−) the same weight as total predictions
(Y+,Y−), since we will end up with a loss function without
any class balancing because the weights will offset each other.
Therefore, we introduce γ1 and γ2, which depend on the
mean absolute distance of the wrong predicted probabilities
from 0.5 (the value can be changed to suit the task). This
allows us to penalize false predictions, which are very far
from the central point (0.5). The false predictions (Yf+,Yf−)
are obtained through a 0.5 probability threshold. Experimental

results from application of FP rate correction can be found
in section 3.3.2.

2.3. Synthetic Data for Transfer Learning
To generate synthetic data, we follow the method of Schneider
et al. (2012) which implements a simulator of a vascular tree
that follows a generative process inspired by the biology of
angiogenesis. This approach, described in Schneider et al. (2012),
has initially been developed to complement missing elements
of a vascular tree, a common problem in µCT imaging of the
vascular bed (Schneider et al., 2014). We now use this generator
to simulate physiologically plausible vascular trees that we can
use in training our CNN algorithms. The simulator considers
the mutual interplay of arterial oxygen (O2) supply and vascular
endothelial growth factor (VEGF) secreted by ischemic cells to
achieve physiologically plausible results. Each vessel segment is
modeled as a rigid cylindrical tube with radius r and length
l. It is represented by a single directed edge connecting two
nodes. Semantically, this gives rise to four different types of
nodes, namely root, leaf, bifurcation, and inter nodes. Each node

is uniquely identified by the 3-D coordinate
−→
P = (x, y, z)T .

Combining this with connectivity information, fully captures the
geometry of the approximated vasculature. The tree generation
model and the bifurcation configuration is shown in Figure 4.
The radius of parent bifurcation branch rp, and the radius
of left (rl) and right (rr) daughter branches are related by a
bifurcation law (also known as Murray’s law) given by r

γ
p =

r
γ

l
+ r

γ
r , where γ is the bifurcation exponent. Our simulator

enforces the Murray’s law during the tree generation process.

Further constraints, cos(φl) =
r4p+r4

l
−r4r

2r2pr
2
l

and cos(φr) =
r4p+r4r−r4

l

2r2pr2r
are placed on the bifurcation angles of the left (φl) and right
(φr) vessel extension elements respectively. This corresponds
corresponds to the optimal position of the branching point
−→
P b with respect to a minimum volume principle, another
constraint enforced in the simulator from Schneider et al. (2012,
2014).

2.3.1. Properties of the Simulated Data
The output of the generation process is a tree with information

on the 3-D position
−→
P of the nodes, their type (root, bifircation,

inter, leaf), and connectivity information, which includes the
edge Eij between two nodes Ni and Nj, and its radius Rij.
We reconstruct a 3-D volumetric data from this abstracted
network description by modeling each vessel segment as a
cylinder in 3-D space. We simulate different background
and foreground intensity patterns with different signal-to-
noise ratios. Detailed description of generated data is given in
section 3.1.

3. EXPERIMENTS, RESULTS, AND
DISCUSSION

3.1. Datasets
In this work, we use three different datasets to train and test the
networks. In all three data sets, the test cases are kept apart from
the training data and are used only for testing purposes. The
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FIGURE 4 | A representation of the constrained bifurcation configuration, as presented in Schneider et al. (2012), where lp, lr , and ll are the length of the parent, right

daughter, and left daughter segments, respectively. pr and pl are the right and left daughter nodes, respectively.

datasets can be downloaded for public research from the paper’s
GitHub page (Tetteh, 2019a).

3.1.1. Synthetic Dataset
Training convolutional networks from scratch typically requires
significant amounts of training data. However, assembling a
properly labeled dataset of 3-D curvilinear structures, such
as vessels and vessel features, takes a lot of human effort
and time, which turns out to be the bottleneck for most
medical applications. To overcome this problem, we generate
synthetic data based on the method proposed in Schneider et al.
(2012, 2014). A brief description of this process has already
been presented in section 2.3. In the arterial tree generation
experiment, the parameters in Table 1 of Schneider et al. (2012)
are used. We use the default (underlined) values for all model
parameters. We initialize the processes with different random
seeds and scale the resulting vessel sizes in voxels to match the
sizes of vessels in clinical datasets. Vessel intensities are randomly
chosen in the interval [128, 255] and non-vessel intensities are
chosen from the interval [0 − 100]. Gaussian noise is then
applied to the generated volume randomly changing the mean
(i.e., in the range [−5, 5]) and the standard deviation (i.e.,
in the range [−15, 30]) for each volume. We generate 136
volumes of size 325 × 304 × 600 with corresponding labels
for vessel segmentation, centerlines, and bifurcation detection.
Vessel, centerline and bifurcation labels occupy 2.1, 0.2, and
0.05% of total intensities, respectively, further highlighting the
problem of class imbalance. Twenty volumes out of the 136 is

used as a test set and the remaining volumes are used for pre-
training our networks in the various tasks at hand. An example
of the synthetic dataset can be found in Figure 5C. The synthetic
dataset including both training and test volumes with ground
truth labels for vessel, centerlines, and bifurcation are available
at Tetteh (2019b) for download and public use.

3.1.2. Clinical Magnetic Resonance Angiograph

(MRA) Dataset
To finetune and test our network architectures on real data,
we obtain 40 volumes of clinical TOF MRA of the human
brain, 20 of which are fully annotated, and the remaining 20
partially annotated using the method proposed by Forkert et al.
(2013). Each volume has a size of 580 × 640 × 136 and spacial
resolution of 0.3125 × 0.3125 × 0.6mm on the coronal, sagittal,
and axial axes, respectively. We select 15 out of the 20 fully
annotated volumes for testing and use the remaining five as a
validation set. We also correct the 20 partially annotated volumes
by manually verifying some of the background and foreground
voxels. This leads to three labels, which are true foreground
(verified foreground), true background (verified background),
and the third class, which represent the remaining voxels not
verified. In our later experiments, we use the true foreground and
background labels to finetune our networks. This approach helps
in avoiding any uncertainty with respect to using the partially
annotated data for finetuning of the network. Image intensity
ranges were scaled with a quadratic function to enhance bright
structures and normalized to a standard range after clipping high
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FIGURE 5 | Sample of datasets used in our experiments with the corresponding ground truth segmentations. (A) Clinical MRA, (B) µCTA, (C) Synthetic.

intensities. A sample volume of the TOF MRA dataset can be
found in Figure 5A.

3.1.3. Micro Computed Tomogaphy Angiography

(µCTA)
A 3-D volume of size 2, 048×2, 048×2, 740 and spacial resolution
0.7 × 0.7 × 0.7mm is obtained from synchrotron radiation X-
ray tomographic microscopy of a rat brain. From this large
volume, we extract a dataset of 20 non-overlaping volumes of
size 256 × 256 × 256, which were segmented using the method
proposed by Schneider et al. (2015), and use them in our later
experiments to finetune the networks. To create a test set, we
manually annotate 52 slices in 4 other volumes different from
the 20 volumes above (208 slices in total). As with the clinical
MRA data, image intensity ranges for the µCTA were also
scaled with a quadratic function to enhance bright structures and
normalized to a standard range after clipping high intensities.
Detailed description of the µCTA data can be found in Reichold
et al. (2009), and a sample volume is presented in Figure 5B.

3.2. Network Architecture and
Implementations
In this study we focus on the use of artificial neural networks
for the tasks of vessel segmentation, centerline prediction,
and bifurcation detection. Different variants of state-of-the-
art Fully Convolutional Neural Networks have been presented
for medical image segmentation (Christ et al., 2016; Maninis
et al., 2016; Milletari et al., 2016; Nogues et al., 2016; Roth
et al., 2016; Sekuboyina et al., 2017; Tetteh et al., 2017).

Most of these architectures were based on the popular idea
of convolutional-deconvolutional network which applies down-
sampling at the earlier layers of the network and then reconstruct
the volume at the later layers through up-sampling. This may
be a bad choice given that the vascular tree tasks, especially
centerline prediction and bifurcation detection, require fine
details at the voxel level which can easily be lost through down-
sampling. We therefore use a fully convolutional network (FCN)
without down-sampling and up-sampling layers as a preferred
architecture to test the performance of DeepVesselNet discussed
in sections 2.1, 2.2, and 2.3. Nonetheless we also implement
DeepVesselNet with popular convolutional-deconvolutional
architectures to systematically study the effect of cross-hair
kernel, as well as training behavior and generalization. Python
implementation of our cross-hair filters and all other codes used
in our experiments is available on GitHub (Tetteh, 2019a) for
public use.

3.2.1. DeepVesselNet-FCN
We construct a Fully Convolutional Network FCN with four
convolutional layers and a sigmoid classification layer. In this
implementation, we do not use down-sampling and up-sampling
layers and we carry out the convolutions in a way that the
output image is of the same size as the input image by
zero-padding. The removal of the down-sampling and up-
sampling layers is motivated by the fact that the tasks (vessel
segmentation, centerline prediction, and bifurcation detection)
involve fine detailed voxel sized objects and down-sampling
has an effect of averaging over voxels which causes these fine

Frontiers in Neuroscience | www.frontiersin.org 9 December 2020 | Volume 14 | Article 592352

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Tetteh et al. DeepVesselNet

FIGURE 6 | Our proposed DeepVesselNet-FCN architecture implementation with crosshair filters.

details to be lost. The alternative max-intensity pooling can easily
change the voxel position of the maximum intensity later in
the up-sampling stage of the network. With DeepVesselNet-
FCN implementation, we have a very simple 5-layer fully-
convolutional network, which takes a volume of arbitrary
size and outputs a segmentation map of the same size. For
the network structure and a description of the parameters
(see Figure 6).

3.2.2. DeepVesselNet-VNet and DeepVesselNet-Unet
To analyse the properties of our proposed cross-hair filters,
we implement two alternative convolutional-deconvolutional
architectures—VNet (Milletari et al., 2016) and 3D UNet
(Çiçek et al., 2016)—and replace all 3-D convolutions with our
proposed cross-hair filters discussed in section 2.1 to obtain
DeepVesselNet-VNet and DeepVesselNet-UNet, respectively.
By comparing the parameter size and execution time of
DeepVesselNet-VNet and DeepVesselNet-UNet to the original
VNet and 3D UNet implementations, we can evaluate the
improvement in memory usage as well as the gain in speed
that cross-hair filters offer. We also use these implementations
to test whether gain in speed and memory consumption
have a significant effect on prediction accuracy. Finally,
DeepVesselNet-VNet and DeepVessel-UNet architectures
include sub-sampling (down-sampling and up-sampling) layers.
By comparing these two architecture with DeepVesselNet-FCN
we can evaluate the relevance of sub-sampling when handling
segmentation of fine structures like vessels and their centerlines
and bifurcations.

3.2.3. Network Configuration, Initialization, and

Training
We use the above described architecture to implement three
binary networks for vessel segmentation, centerline prediction,
and bifurcation detection. Network parameters are randomly
initialized, according to the method proposed in Bengio and
Glorot (2010), by sampling from a uniform distribution in the
interval (− 1√

kxkykz
, 1√

kxkykz
) where (kx×ky×kz) is the size of the

given kernel in a particular layer. For each volume in our training
set, we extract non-overlapping boxes of size (64 × 64 × 64)
covering the whole volume and then feed them through the
network for the finetuning of parameters. The box extraction is
only done at training time to enable fast training and efficient
use of computation memory, this is however not needed after
our convolutional kernels are trained since full volumes can
be used at test time. We train the network using a stochastic
gradient descent optimizer without regularization. During pre-
training, we use a learning rate of 0.01 and decay of 0.99, which
is applied after every 200 iterations for all network architectures.
For finetuning, we use a learning rate of 0.001 and a decay of 0.99
applied after every 200 iterations. We implement our algorithm
using the THEANO (Theano Development Team, 2016) Python
framework and train on a machine with 64GB of RAM and
Nvidia TITAN X 12GB GPU.

3.3. Evaluating the DeepVesselNet
Components
Prior to evaluating the performance of DeepVesselNet, we
conducted a series of experiments to test the components of
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DeepVesselNet which includes fast cross-hair filters, the FP rate
correction, and pre-training on synthetic data. Results of this
ablation analysis are offered here.

3.3.1. Fast Cross-Hair Filters
To investigate the usefulness of cross-hair filters in
DeepVesselNet, we experiment with full 3-D versions of
DeepVesselNet and evaluate the effect on performance based
on three main criteria—memory footprint based on number
of parameters, computational speed based on execution
time, and prediction accuracy based on Dice score. Table 1

shows the number of parameters in the various architectures
and the execution times in the three datasets. Comparing
DeepVesselNet-VNet and DeepVesselNet-UNet with their 3-D
versions (VNet and UNet), we find more than 27% (16.56
vs. 22.89 m and 4.45 vs. 7.41 m, respectively) reduction in
memory footprint. Also, the execution time in Table 1 shows
that cross-hair filters improve the computational speed of
DeepVesselNet-VNet and DeepVesselNet-UNet by more than
23% over VNet and UNet respectively in both synthetic and
clinical MRA datasets. DeepVesselNet-FCN uses very low
(only 0.05 m) number of parameters as compared to the other
architectures due to the absence of sub-sampling layers. Scores in
Table 1 are obtained using kernels of size 3× 3× 3 and 5× 5× 5,
and the benefits of using sparse cross-hair filter will be even more
profound with larger kernel sizes and volume sizes. Evaluation of

cross-hair filters in terms of prediction accuracy is discussed in
section 3.4.

3.3.2. Extreme Class Balancing (L1 + L2)
To test the effect of FP rate correction loss function discussed in
section 2.2, we train the DeepVesselNet-FCN architecture on a
sub-sample of four clinical MRA volumes from scratch, with and
without FP rate correction described in Equation (9).We train for
5,000 iterations and record the ratio of precision to recall every
5 iterations using a threshold of 0.5 on the probability maps. A
plot of the precision-recall ratio during training without FP rate
correction (L1 Only) and with FP rate correction (L1 + L2) is

TABLE 1 | Number of convolutional parameters in the networks used in our

experiments.

Architecture Params Ex. time Ex. time Ex. time

(millions) Synthetic (s) TOF MRA (s) µCTA (s)

DeepVesselNet-FCN 0.05 13 13 4

DeepVesselNet-VNet 16.56 17 20 7

DeepVesselNet-UNet 4.45 13 14 4

VNet 22.89 23 26 11

UNet 7.41 17 19 6

For the purpose of comparison, the number of parameters stated here refers to only the

convolutional layers in the various architectures. Ex. Time refers to the average time in

seconds required to process one volume in the sythetic and MRA TOF datasets.

FIGURE 7 | Precision—recall ratio during training, with FP rate correction and without FP rate correction in the loss function, on four selected clinical MRA volumes. A

balanced precision-recall ratio (i.e., close to 1) implies that we obtain the FP rate correction we propose in the work and the training process is not bias toward the

background or the foreground.
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presented in Figure 7. The results of this experiments suggest that
training with both factors in the loss function, as proposed in
section 2.2, keeps a better balance between precision and recall
(i.e., a ratio closer to 1.0) than without the second factor. A
balanced precision-recall ratio implies that the training process
is not bias toward the background or the foreground. This helps
prevent over-segmentation, which normally occurs as a result of
the introduction of the class balancing.

3.3.3. Transfer Learning From Synthetic Data
We assess the usefulness of transfer learning with synthetic data
by comparing the training convergence speed, and various other
scores that we obtain when we pretrain DeepVesselNet-FCN
on synthetic data and finetune on the clinical MRA dataset,
compared to training DeepVesselNet-FCN from scratch on the
clinical MRA. For this experiment, we only consider the vessel
segmentation task, as no annotated clinical data is available for
centerline and bifurcation tasks. Results of this experiment are
reported in Table 2. We achieve a Dice score of 86.39% for
training from scratch without pre-training on synthetic data and
86.68% when pretraining on synthetic data. This shows that
training from scratch or pre-training on synthetic data does
not make much difference regarding the accuracy of the results.
However, training from scratch requires about 600 iterations
more than pre-training on synthetic data for the network to
converge (i.e., 50% more longer).

3.4. Evaluating DeepVesselNet
Performance
In this subsection, we retain the best training strategy from the
described experiments in section 3.3 and assess the performance
of our proposed network architecture with other available
methods mainly on the vessel segmentation task. As a further
validation of our methodology we handle centerline prediction
and bifurcation detection using the proposed architectures.
Given a good vessel segmentation, centerline prediction, and
bifurcation detection tasks is classically handled by applying
vessel skeletonization as a post processing step and a search of the
resulting graph. Our aim in applying our architecture to handle
these tasks is not to show superiority over the existing vessel
skeletonization methods but it is to serve as a further verification
of the effects of our described methodology and to offer a
complementary way of obtaining centerlines and bifurcations,
for example, to increase the robustness of the processing pipeline
when fusing results of complementary approaches. The details of
these experiments, results and discussion are given below.

3.4.1. Vessel Segmentation
We pretrain DeepVesselNet-(FCN, VNet, UNet) architectures
on synthetic volumes for vessel segmentation and evaluate its
performance on TOF MRA volumes through a transfer learning
approach. We later finetune the networks with additional clinical
MRA data, repeating the evaluation. Table 3 reports results of
these tests, together with performances of competing methods.
We obtain a Dice score of 81.48% for DeepVesselNet-FCN,
81.32% for DeepVessel-UNet, and 80.10% for DeepVesselNet-
VNet on TOF MRA test dataset with the transfer learning step,

TABLE 2 | Results from pretraining DeepVesselNet-FCN on synthetic data and

finetuning with the training set from the clinical MRA vs. training

DeepVesselNet-FCN from scratch on clinical MRA.

Method Precision Recall Dice Iterations

With pretraining 86.44 86.93 86.68 1200

Without pretraining 85.87 86.92 86.39 1800

Iterations refers to training iterations required for the network to converge. Although the

result in Dice score are not very different, it is clear that the pre-training on synthetic data

leads to an earlier convergence of the network.

TABLE 3 | Results for vessel segmentation.

Dataset Method Prec. Rec. Dice

Synthetic DeepVesselNet-FCN 99.84 99.87 99.86

DeepVesselNet-VNet 99.54 99.59 99.56

DeepVesselNet-UNet 99.48 99.42 99.45

VNet 99.48 99.50 99.49

UNet 99.57 99.52 99.55

Schneider et al. 99.47 99.56 99.52

TOF MRA

DeepVesselNet-FCN (finetuned) 86.44 86.93 86.68

DeepVesselNet-FCN (pretrained) 82.76 80.25 81.48

DeepVesselNet-VNet (finetuned) 85.00 83.51 84.25

DeepVesselNet-VNet (pretrained) 83.32 77.12 80.10

DeepVesselNet-UNet (finetuned) 83.56 85.18 84.36

DeepVesselNet-UNet (pretrained) 83.48 79.27 81.32

VNet (finetuned) 84.34 85.62 84.97

VNet (pretrained) 82.41 75.82 78.98

UNet (finetuned) 84.02 85.35 84.68

UNet (pretrained) 83.16 80.23 81.67

Schneider et al. 84.81 82.15 83.46

Forkert et al. 84.99 73.00 78.57

µCTA DeepVesselNet-FCN 96.72 95.82 96.27

DeepVesselNet-VNet 95.83 96.18 96.01

DeepVesselNet-UNet 95.85 96.06 95.95

VNet 95.25 95.84 95.55

UNet 95.27 95.71 95.49

Schneider et al. 95.15 91.51 93.30

TOF MRA are evaluated within the brain region only.

Pretrained results refers to the scores we obtained on the test set after pretraining, and

finetuned results are scores after finetuning with annotated data available for TOF-MRA.

Best performing method in each metric are show in bold.

and 86.68% (DeepVesselNet-FCN), 84.36% (DeepVesselNet-
UNet) as well as 84.25% (DeepVesselNet-VNet) after finetuning.
This results (also box plots in Figure 8) suggest that, with a
Cox-Wilcoxon significance test p < 0.001, DeepVesselNet-FCN
which does not use sub-sampling outperforms the versions
of networks that use sub-sampling layers (VNet and UNet).
Table 3 also reports results from the methods of Schneider et al.
(2015) and Forkert et al. (2013) all of which are outperformed
by DeepVesselNet-FCN in terms of Dice score. Comparing
DeepVesselNet-VNet and VNet (84.25 vs. 84.97% with a p-value
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FIGURE 8 | Box plots of Dice scores from vessel segmentation (A), centerline prediction (B), and bifurcation detection (C) tasks over our test set in the clinical MRA

dataset across the deep learning architectures. It is evident that DeepVesselNet-VNet and DeepVesselNet-UNet obtain comparable results as VNet and UNet,

respectively. However, DeepVesselNet-FCN achieves a significantly higher results in all three tasks as confirmed by a p < 0.001.

FIGURE 9 | Centerline prediction on MRA TOF (A) and Synthetic (B) test datasets using DeepVesselNet-FCN (centerline in green). There are more detections in

smaller vessels than in larger vessels which can be explained by the network seeing more smaller vessels than bigger vessels during training. Again, centerline

detection in MRA TOF covers all the vessels with missing points and can be improved by finetuning on annotated MRA data or by a post-processing strategy to fill in

the missing points.

of 0.04) as well as DeepVesselNet-Unet and UNet (84.36 vs.
84.68 with a p-value of 0.07) on the MRA data, we find an
advantage of up to 1% for the latter in terms of Dice scores.
However, DeepVesselNet-VNet and DeepVesselNet-Unet have
the advantage of being memory and computationally efficient as
seen in Table 1. These results show that cross-hair filters can be
used in DeepVesselNet at a little to no cost in terms of vessel
segmentation accuracy.

3.4.2. Centerline Prediction
For centerline prediction, we train DeepVesselNet on the
synthetic dataset, test it on synthetic dataset and present
visualizations on synthetic and clinical MRA datasets

(see Figure 9). The networks use the probabilistic segmentation
masks from the vessel segmentation step as an input. Qualitative
results are presented in Figure 9 together with quantitative
scores in Table 4. DeepVesselNet-VNet performs slightly worse
than VNet in terms of the Dice score (66.96 vs. 74.82% with a
p-value of 0.0001). Similar trend can be seen when we compare
Dice scores of DeepVesselNet-UNet and UNet (72.10 vs. 72.41%
with a p-value of 0.0001). We obtain a Dice score of 79.92% for
DeepVesselNet-FCN, which outperforms UNet and VNet and
their corresponding DeepVesselNet variants with a significance
test p < 0.0001. Here we note that the morphological operations
based method of Schneider et al., which represents a state
of the art method for centerline prediction, is able to obtain
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FIGURE 10 | Bifurcation detection on synthetic (A) and MRA TOF (B) test datasets using DeepVesselNet-FCN (bifurcations in green). Similar to centerline prediction,

bifurcation detections in smaller vessels are better than in bigger vessels which might be due to the network seeing more examples in smaller vessels than in bigger

vessels during training. At regions where a lot of vessels intersect, the network predicts it as a big bifurcation, this can be seen in the circled regions in zoomed

images (a–c).

a higher recall than DeepVesselNet-FCN method (86.03 vs.
82.35%). This means that it detects more of the centerline
points than DeepVesselNet-FCN. However, it suffers from lower
precision (48.07 vs. 77.63%) due to higher false positive rate
which causes the overall performance to fall (61.68 vs. 79.92%
Dice score) as compared to DeepVesselNet-FCN. From the
box plots in Figure 8 it is very evident DeepVesselNet-FCN
significantly outperforms all other architectures suggesting that
the performance of the other architectures suffers from the use
of sub-sampling layers.

3.4.3. Bifurcation Detection
For a quantitative evaluation of DeepVesselNet in bifurcation
detection, we use synthetically generated data, and adopt a two-
input-channels strategy. We use the vessel segmentations as one
input channel and the centerline predictions as a second input
channel relying on the same training and test splits as in the
previous experiments. In our predictions we aim at localizing a
cubic region of size (5 × 5 × 5) around the bifurcation points,
which are contained within the vessel segmentation. We evaluate
the results based on a hit-or-miss criterion: a bifurcation point
in the ground truth is counted as hit if a region of a cube of size
(5×5×5) centered on this point overlaps with the prediction, and
counted as a miss otherwise; a hit is considered as true positive
(TP) and a miss is considered as false negative (FN); a positive
label in the prediction is counted as false positive (FP) if a cube
of size (5× 5× 5) centered on this point contains no bifurcation
point in the ground truth. Qualitative results on synthetic and
clinical MRA TOF are shown in Figure 10, respectively. Results
for Schneider et al. are obtained by first extracting the vessel
tree and searching the graph for nodes. Then all nodes with
two or more splits are treated as bifurcations—this being one of
the standard methods for bifurcation extraction. In Figure 8, we

TABLE 4 | Results for centerline prediction tasks.

Method Prec. Rec. Dice

DeepVesselNet-FCN 77.63 82.35 79.92

DeepVesselNet-VNet 65.15 68.87 66.96

DeepVesselNet-UNet 71.28 72.95 72.10

VNet 76.41 73.30 74.82

UNet 71.25 73.61 72.41

Schneider et al. 48.07 86.03 61.68

Results suggest that architectures with sub-sampling layers suffer fall in performance due

to loss of fine details which is crucial in centerline prediction.

Best performing methods in each category in bold.

present the box plots of Dice score distributions obtained by the
different architectures over our test set. Results from Table 5 and
Figure 8 show that DeepVesselNet-FCN performs better than the
other architectures in 5 out of 6 metrics. In our experiments, it
became evident that VNet tends to over-fit, possibly due to its
high number of parameters. This may explain why results for
VNet are worse than all other methods, also suggesting that in
cases where little training data is available, the DeepVesselNet-
FCN architecture may be the preferable due to low number of
parameters and the absence of sub-sampling layers.

4. SUMMARY AND CONCLUSIONS

We present DeepVesselNet, an architecture tailored to the
challenges of extracting vessel networks and features using
deep learning. Our experiments in sections 3.3 and 3.4 show
that the cross-hair filters, which is one of the components of
DeepVesselNet, performs comparably well as 3-D filters and, at
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TABLE 5 | Results from bifurcation detection experiments.

Method Prec. Rec. Det. % Mean err Err std

DeepVesselNet-FCN 78.80 92.97 86.87 0.2090 0.6671

DeepVesselNet-VNet 46.80 56.70 84.21 1.6533 0.9645

DeepVesselNet-UNet 29.47 88.41 85.89 0.6227 0.9380

VNet 25.50 68.71 70.29 1.2434 1.3857

UNet 32.57 77.81 71.78 1.2966 1.4000

Schneider et al. 77.18 85.08 84.30 0.1529 0.7074

Precision and recall aremeasured on the basis of the 5×5×5 blocks around the bifurcation
points. Mean error and its corresponding standard deviation are measured in voxels away

from the bifurcation points (not the 5× 5× 5 blocks).

Best performing method in each metric are show in bold.

the same time, improves significantly both speed and memory
usage, easing an upscaling to larger data sets. Another component
of DeepVesselNet, the introduction of new weights and the FP
rate correction discussed in section 2.2, helps in maintaining
a good balance between precision and recall during training.
This turns out to be crucial for preventing over and under-
segmentation problems, which are common problems in vessel
segmentation. We also show from our results in section 3.4
that using sub-sampling layers in a network architecture in
tasks which includes voxel-sized objects can lead to a fall in
performance. Finally, we successfully demonstrated in sections
3.3 and 3.4 that transfer learning of DeepVesselNet through pre-
training on synthetically generated data improves segmentation
and detection results, especially in situations where obtaining
manually annotated data is a challenge.

As future work, we will generalize DeepVesselNet to
multiclass vessel tree task, handling vessel segmentation,

centerline prediction, and bifurcation detection simultaneously,

rather than in three subsequent binary tasks. We also expect that
network architectures tailored to our three hierarchically nested
classes will improve the performance of the DeepVesselNet. For
example by using a multi-level activation approach proposed in
Piraud et al. (2019) or through a single, but hierarchical approach
starting from a base network for vessel segmentation, additional
layers for centerline prediction, and a final set of layers for
bifurcation detection.

The current implementation of cross-hair filters, network
architectures and cost function are available on GitHub (Tetteh,
2019a). Datasets can also be downloaded from the wiki page of
the same GitHub page.
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