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Abstract

Motivation: Infectious diseases caused by novel viruses have become a major public health concern. Rapid identifi-
cation of virus–host interactions can reveal mechanistic insights into infectious diseases and shed light on potential
treatments. Current computational prediction methods for novel viruses are based mainly on protein sequences.
However, it is not clear to what extent other important features, such as the symptoms caused by the viruses, could
contribute to a predictor. Disease phenotypes (i.e. signs and symptoms) are readily accessible from clinical diagno-
sis and we hypothesize that they may act as a potential proxy and an additional source of information for the under-
lying molecular interactions between the pathogens and hosts.

Results: We developed DeepViral, a deep learning based method that predicts protein–protein interactions (PPI) be-
tween humans and viruses. Motivated by the potential utility of infectious disease phenotypes, we first embedded
human proteins and viruses in a shared space using their associated phenotypes and functions, supported by for-
malized background knowledge from biomedical ontologies. By jointly learning from protein sequences and pheno-
type features, DeepViral significantly improves over existing sequence-based methods for intra- and inter-species
PPI prediction.

Availability and implementation: Code and datasets for reproduction and customization are available at https://
github.com/bio-ontology-research-group/DeepViral. Prediction results for 14 virus families are available at https://
doi.org/10.5281/zenodo.4429824.

Contact: robert.hoehndorf@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Infectious diseases emerging unexpectedly from novel and reemerg-
ing pathogens have been a major enduring public health concern
around the globe (Jones et al., 2008). Pathogens disrupt host cell
functions (Finlay and Cossart, 1997) and target immune pathways
(Dyer et al., 2010) through complex inter-species interactions of
proteins (Dyer et al., 2008), RNA (Fajardo et al., 2015) and DNA
(Weitzman et al., 2004). The study of pathogen–host interactions
(PHI) can therefore provide insights into the molecular mechanisms

underlying infectious diseases and guide the discoveries of novel
therapeutics or provide a basis for the repurposing of available
drugs. For example, a previous study of many PHIs showed that
pathogens typically interact with the protein hubs (those with many
interaction partners) and bottlenecks (those of central locations to
important pathways) in human protein–protein interaction (PPI)
networks (Dyer et al., 2008). However, due to cost and time con-
straints, experimentally validated pairs of interacting pathogen–host
proteins are limited in number. Therefore, the computational
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prediction of PHIs is a useful complementary approach in suggesting
candidate interaction partners from the human proteome.

Existing PHI prediction methods for novel viruses typically util-
ize protein sequence features of the interacting proteins
(Alguwaizani et al., 2018 ; Eid et al., 2016; Yang et al., 2020; Zhou
et al., 2018). While protein functions have been shown to predict
intra-species (e.g. human) PPIs (Guzzi et al., 2012; Jain and Bader,
2010; Pesquita et al., 2009) and such protein specific features exist
for some extensively studied pathogens, such as Mycobacterium tu-
berculosis (Huo et al., 2015) and HIV (Mukhopadhyay et al.,
2014), for most pathogens, these features are rare and expensive to
obtain. As new virus species continue to be discovered (Woolhouse
et al., 2012), a method is needed to rapidly identify candidate inter-
actions from information that can be obtained quickly, such as the
signs and symptoms exhibited by the host, which may be utilized as
a proxy for the underlying molecular interactions between host and
pathogen proteins.

The phenotypes elicited by pathogens, i.e. the signs and symp-
toms observed in a patient, may provide information about molecu-
lar mechanisms (Gkoutos et al., 2018). The information that
phenotypes provide about molecular mechanisms is commonly
exploited in computational studies of Mendelian disease mecha-
nisms (Oellrich et al., 2016), for example, to suggest candidate genes
(Hoehndorf et al., 2011; Meehan et al., 2017) or diagnose patients
(Köhler et al., 2009), but the information can also be used to iden-
tify drug targets (Hoehndorf et al., 2013a) or gene functions
(Hoehndorf et al., 2013b). We hypothesize that the host phenotypes
elicited by an infection with a pathogen are, among others, the result
of molecular interactions, and that knowledge of the phenotypes
exhibited by the host can be used to suggest the protein perturba-
tions from which these phenotypes arise.

One major challenge of the novel PHI prediction problem is the
lack of ground truth negative data. A recent method, DeNovo (Eid
et al., 2016), adopted a ‘dissimilarity-based negative sampling’: for
each virus protein, the negatives are sampled from human proteins
that do not have known interactions with other similar virus pro-
teins (above a sequence similarity threshold T). Another method
based on protein sequences (Zhou et al., 2018), samples negatives
from only the set of host proteins that are less than 80% similar (in
terms of sequence similarity) to the host proteins in the positive
training data. However, the influence of sequence similarity on func-
tion is not uniform and while there is evidence for a number of gen-
eral evolutionary rules, we are unable to determine cutoffs for any
specific protein or function (Ponting, 2001; Whisstock and Lesk,
2003). By construction, these sampling schemes make the human
proteins in the negative set different from the positive set; when used
not only for training a model but also for evaluating its perform-
ance, this sampling scheme has the potential to over-estimate the ac-
tual performance for finding novel PHIs. In a more realistic
evaluation for a novel virus species, a model would be evaluated on
all the host proteins with which it could potentially interact, regard-
less of sequence similarity.

From these motivations, we developed a machine learning
method, DeepViral, to predict potential interactions between viruses
and all human proteins for which we can generate the relevant fea-
tures. Firstly, the features of phenotypes, functions and taxonomic
classifications are embedded in a shared space for human proteins
and viruses. We then extended a sequence model by incorporating
the phenotype features of viruses into the model. We show that the
joint model trained on both the sequences and phenotypes can sig-
nificantly outperform state-of-the-art methods and predict potential
PHIs in realistic experimental setups for novel viruses.

2 Materials and methods

DeepViral is a model that predicts potential protein interactions be-
tween viruses and human hosts from the protein sequences and fea-
ture embeddings of phenotypes, functions and taxonomies. To
enable predictions based on such different features we embedded
them in a shared representation space. We then combine these fea-
ture embeddings with a protein sequence model to predict potential

PHIs of novel viruses. The workflow of DeepViral is illustrated in
Figure 1.

2.1 Data sources
Interactions between hosts and pathogens were obtained from the
Host Pathogen Interaction Database (HPIDB; version 3) (Ammari
et al., 2016). The phenotypes associated with pathogens were col-
lected from the PathoPhenoDB (Kafkas et al., 2019), a database of
manually curated and text-mined associations of pathogens, infec-
tious diseases and phenotypes. We downloaded the PathoPhenoDB
database version 1.2.1 (http://patho.phenomebrowser.net/).

The phenotypes associated with human genes were collected
from the Human Phenotype Ontology (HPO) database (Köhler et al.,
2019), and the phenotypes associated with mouse genes and the
orthologous gene mappings from mouse genes to human genes origi-
nated from the Mouse Genome Informatics (MGI) database (Smith
et al., 2018). The Entrez gene IDs in HPO and MGI were mapped to
reviewed Uniprot protein IDs using the Uniprot Retrieve/ID mapping
tool (https://www.uniprot.org/uploadlists) on March 6, 2020. The
Gene Ontology annotations of human proteins (release date 2020-
02-22) were downloaded from the Gene Ontology Consortium
(Ashburner et al., 2000; The Gene Ontology Consortium, 2017).
Human PPI networks were downloaded from String (Szklarczyk
et al., 2019) and filtered to only include the interactions with experi-
mental evidence. The human protein sequences were obtained from
the Swiss-Prot database (UniProt Consortium, 2019).

To add background knowledge from biomedical ontologies of
phenotypes and GO classes, we downloaded the cross-species
PhenomeNET ontology (Hoehndorf et al., 2011; Rodrı́guez-Garcı́a
et al., 2017), from the AberOWL ontology repository (Hoehndorf
et al., 2015a) on September 13, 2018. We obtained the NCBI
Taxonomy classification (Sayers et al., 2009) as an ontology in
OWL format (version 2018-07-27) from EMBL-EBI ontology re-
pository (https://www.ebi.ac.uk/ols/ontologies/ncbitaxon).

The SARS-CoV-2 interactions are from a recently released data-
set of 332 PHIs from 27 viral proteins (Gordon et al., 2020). The
PHIs of other Coronaviruses are from a recently curated dataset of
Coronaviridae–host PPIs (Perrin-Cocon et al., 2020). The protein
sequences of the Coronaviruses in our study are retrieved from the
Swiss-Prot database (UniProt Consortium, 2019).

2.2 Learning feature embeddings
To generate feature embeddings, we used DL2Vec (Chen et al.,
2020), a recent method for learning features for entities (in our case,
the human proteins and viruses) from their associations to ontologic-
al classes. DL2Vec first converted the ontologies and entity associa-
tions into a graph, with the classes and entities as the nodes and the
associations and ontology axioms as the edges. Then a number of
random walks were performed, starting from the entities over to the
ontology graph and thereby generating a corpus of walks in the form
of sentences capturing the graph neighborhoods and thereby the
ontology axioms. After the construction of such sentences, a
Word2vec skipgram model (Mikolov et al., 2013) was used to learn
an embedding for each entity by learning from the corpus. Following
the recommendations of the authors of DL2Vec, we fixed the num-
ber of walks to 100, the walk length to 30, the embedding dimension
to 100 and the number of training epochs to 30. The embeddings
were trained with the Word2Vec library in Julia (version 1.0.4). The
resultant embedding was a vector representation of an entity captur-
ing its co-occurrence relations with other entities within the walks
generated by DL2Vec. As an example, the walks starting from a virus
node explored its graph neighborhood, i.e. its associated phenotypes
and its taxonomic relatives, and as an result, its feature embedding
captured this information according to the co-occurrence patterns.

2.3 Supervised prediction models and parameter tuning
The neural network model of DeepViral consists of two compo-
nents: a phenotype model based on the feature embeddings of
viruses and human proteins, and a sequence model based on the
amino acid sequences of the human and viral proteins. The
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maximum input length of protein sequences is set to 1000 amino
acids and all shorter sequences are repeated up to the maximum
length. The sequence length cut-off of 1000 is chosen to cover the
majority of proteins in the databases from which we constructed our
dataset, i.e. 88.2% and 83.7% of the human proteins in Swiss-Prot
and HPIDB, respectively, and 91.6% of the virus proteins in
HPIDB. The input protein sequences are encoded as a one-hot
encoding matrix of 22 rows that represents each amino acid type
and the original sequence length (before being repeated), and 1000
columns representing each position of the amino acid sequence.

To predict the likelihood of an interaction between a pair of pro-
teins, we trained the network as a binary classifier, to minimize the
binary cross-entropy loss defined below,

L ¼ � 1

N

XN

i¼1

yt � logðypÞ þ ð1� ytÞ � logð1� ypÞ

where N is the total number of predictions, yt and yp is the true label
and predicted likelihood of y.

We implemented our model using the Keras library and per-
formed training on Nvidia Tesla V100 GPUs. The phenotype model
consists of a fully connected layer with the feature embeddings as in-
put. The sequence model, adapted from DeepGOPlus (Kulmanov
and Hoehndorf, 2020), is a convolutional neural network (CNN)
with the sequences as input and consists of 1-dimensional convolu-
tion, max pooling and fully connected layers. We tuned the following
hyperparameters of the model through a grid search: the maximum
size of the convolution filters (i.e. 16, 32 and 64), the number of the
filters (i.e. 8 and 16), the size of the max pooling layers (i.e. 50 and
200) and the number of neurons in the fully connected layers (i.e. 8,
16 and 32). We then fixed these hyperparameters throughout all the
experiments: 16 convolutional layers for each filter of 8, 16,. . ., 64 in
length, a pool size of 200 and 8 neurons for the dense layers. We also
used dropouts (Srivastava et al., 2014) for the convolutional and
dense layers with a rate of 0.5 and LeakyReLU as the activation func-
tion for the dense layer with an alpha set to 0.1.

3 Results

3.1 Embedding features of viruses and human proteins

from phenotypes, functions and taxonomies
We started with the biological hypothesis that phenotypes (i.e.
symptoms) elicited by viruses in their hosts can act as a proxy for
the underlying molecular mechanisms of the infection, and therefore

may provide additional information to the prediction of potential
PHIs for novel viruses.

To generate feature embeddings for human proteins and virus
taxa, we applied a recent representation learning method DL2Vec
(Chen et al., 2020), which learned feature embeddings for entities
based on their annotations to ontology classes (see Section 2.2).
DL2Vec takes two types of inputs: the associations of the entities
with ontology classes (e.g. human proteins and their functions), and
the ontologies themselves.

For representing virus taxa through the phenotypes they elicit in
their hosts, we used the phenotype associations for viruses from
PathoPhenoDB (Kafkas et al., 2019), a database of pathogen to host
phenotype (signs and symptoms) associations. To increase the cover-
age of phenotypes beyond PathoPhenoDB, the taxonomic relations
of the viruses were added from the NCBI Taxonomy (Sayers et al.,
2009). By adding these taxonomic relations (as annotations of
viruses to DL2Vec), we propagated the known phenotypes along the
taxonomic hierarchies and learned a generalized embedding for
viruses that do not have any phenotype annotations in
PathoPhenoDB but have close relatives that do.

Similarly, for representing human proteins, we used the annota-
tions of their associated phenotypes from the Human Phenotype
Ontology (HPO) database (Köhler et al., 2019), the phenotypes
associated with their mouse orthologs from the Mouse Genome
Informatics (MGI) database (Smith et al., 2018), and their protein
functions from the Gene Ontology (GO) database (Ashburner et al.,
2000; The Gene Ontology Consortium, 2017). We propagated these
annotations through the human PPI network, which has been shown
to improve prediction for gene-disease associations (Alshahrani and
Hoehndorf, 2018).

To provide DL2Vec with structured background knowledge of
human and mouse phenotypes as well as protein functions, we used
the cross-species phenotype ontology PhenomeNET (Hoehndorf
et al., 2011; Rodrı́guez-Garcı́a et al., 2017), which is built upon and
includes the Gene Ontology (Ashburner et al., 2000; The Gene
Ontology Consortium, 2017). These ontologies contain formalized
biological background knowledge (Hoehndorf et al., 2015b), which
has the potential to significantly improve the performance of these
features in machine learning and predictive analyses (Kulmanov
et al., 2020; Smaili et al., 2020).

3.2 A joint model for PPI prediction from sequences and

phenotypes
DeepViral consists of a phenotype model trained on phenotypes
caused by a viral infection and a sequence model trained on protein

Fig. 1. The workflow of DeepViral. (a) Generation of an embedding: the arrows of human proteins and virus taxa represent their annotations to the ontology classes. The

dashed lines between viruses represent their taxonomic relations. The annotations, taxonomic relations and ontologies were fed into DL2Vec to generate feature embeddings

of dimension 100 for each human protein and virus taxa. (b) Joint prediction model: latent representations learned from feature embeddings and protein sequences are con-

catenated into a joint representation, for human protein and virus protein respectively, on which a dot product is performed to predict interactions
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sequences, as shown in Figure 1b. The two models take a pair of
virus and human proteins as input and predicts the probability score
of their interaction. The inputs for a human protein are its feature
embedding and its sequence, and the features for a viral protein are
its sequence and the feature embedding of the virus species to which
it belongs. The sequence model projects the protein sequence into a
low dimension vector representation, which is concatenated with
the vector projected from the embedding by the phenotype model to
form a joint representation of the proteins. A dot product was per-
formed over the two vector representations of the pair of proteins to
compute their similarity, which was then used as input to a sigmoid
activation function to compute their predicted probability of inter-
action. In an evaluation where the inputs were not symmetric, e.g.
only using the feature embeddings of human proteins but not viruses
(or vice versa), an additional dense layer was added to project the
longer representation to the same dimension as the other so that the
dot product could be performed.

Existing prediction methods for inter-species PPI (e.g. virus–
human interactions) have rarely been compared with methods
designed for intra-species (e.g. human) PPI prediction. To compare
with the existing sequence-based methods for both intra- and inter-
species PPI prediction, we evaluated DeepViral and RCNN (Chen
et al., 2019), a recent method designed for intra-species prediction,
on an existing dataset (Eid et al., 2016) that has been used to evalu-
ate a number of PHI prediction methods (Alguwaizani et al., 2018;
Yang et al., 2020; Zhou et al., 2018). The respective model perform-
ances and implementation details are shown in Supplementary
Section S1. DeepViral trained only on sequences achieves compar-
able performance with other sequence based methods, while the
joint model is able to achieve the best performances in most metrics.
However, the evaluation dataset suffers from several drawbacks: (i)
negative sampling (to create a balanced dataset) was based on se-
quence dissimilarity; (ii) the training and test sets only cover 39 viral
proteins from 26 virus strains and 11 families, which is highly lim-
ited relative to the current size and taxonomic diversity of the PHI
databases; (iii) there are overlapping virus proteins (i.e. data leak-
age) at species level between the training and test sets, which makes
it unsuitable for the problem of novel PHI prediction.

3.3 Experimental setup, negative sampling and

evaluation metrics for novel viruses
Motivated by the need for more representative datasets to evaluate
methods for novel PHI prediction, we constructed a larger dataset
from the curated virus–host interactions in HPIDB (Ammari et al.,
2016), a database of host–pathogen protein–protein interactions.
We constructed our positive set by filtering HPIDB to include all
virus–host interactions that (i) are provided with an MIscore, a con-
fidence score for molecular interactions (Villaveces et al., 2015); (ii)
are associated with an existing virus family in the NCBI taxonomy
(Sayers et al., 2009); (iii) are within 1000 amino acids in length (for
both human and viral proteins). After filtering, the dataset includes
24 678 positive interactions and 1066 viral proteins from 14 virus
families and 292 virus taxa.

To realistically evaluate the prediction performance, we per-
formed a leave-one-family-out (LOFO) cross validation: at each run,
one virus family in our positive set was left out for testing, 20% of
the remaining families for validation, and the rest 80% for training.
The objective of the LOFO cross-validation is to evaluate the model
under a scenario in which the novel virus emerges from a novel virus
family—in our study, ‘novel’ is defined as the situation in which we
have no or very little knowledge about its protein interactions and
the molecular functions of the viral proteins.

Instead of using ‘dissimilarity-based negative sampling’ to con-
struct a balanced dataset, we sampled our negatives from all the pos-
sible pairwise combinations of human and viral proteins, as long as
the pair did not occur in the positive set. Essentially, we treated all
‘unknown’ interactions as negatives. As the dataset was at this point
unbalanced with more negatives than positives, we evaluated the
model with the area under the receiver operating characteristic
(ROC) curve (Fawcett, 2006). A high ROCAUC indicates the ability

of the model to rank the true positive interacting proteins higher
than proteins for which no such interaction is known. We computed
a ROCAUC for each virus family, and also for each viral protein
and virus taxon in that family, for which we reported the mean
across them, i.e. macro averages. Each model was evaluated 5 times
independently to compute the 95% confidence interval of the
ROCAUC, which is bounded by mean61.96�rn, where n is the
sample size and r is the standard deviation. Additionally, the mean
ranks of the true positive proteins were provided as a more interpret-
able metric: for each viral protein, we ranked all of the 16 627
human proteins in Swiss-Prot (with a length limit of 1000) as its po-
tential interaction partner based on the prediction score and
obtained the mean ranks of the true positives.

3.4 Phenotypes improve prediction for novel viruses
With the newly constructed dataset, we further evaluated the exist-
ing methods as well as the variants of DeepViral, under the scenario
in which a novel virus (from a novel family) emerges and no previ-
ous knowledge (except about its protein sequences and the pheno-
types elicited in its hosts) is known.

We compared DeepViral with two existing state-of-the-art meth-
ods based on protein sequences: Doc2Vec þ RF (Yang et al., 2020),
a recent method predicting for virus–human interactions; and
RCNN (Chen et al., 2019), a recent deep learning based method for
intra-species (e.g. human) PPI prediction. To adapt Doc2Vec þ RF
on our dataset, we used the pretrained Doc2Vec model provided by
the authors and the same parameters for the random forest model
for training. Similarly, for RCNN, we used the pre-trained embed-
dings for amino acids and the same model parameters for training.
Since the stop criterion for Doc2Vec þ RF was to have at most 2
samples at each leaf node, we did not use validation data and trained
it with the entirety of the training data, while a validation set was
used for both RCNN and DeepViral as described in the experimen-
tal setup.

For each model, the summary statistics of the predictive perform-
ance are shown in Table 1. For models using only sequence features,
DeepViral and Doc2Vec þ RF perform on a similar level across the
metrics. As the current state-of-the-art method for intra-species PPI
prediction, RCNN consistently yields the lowest performances.
Adding human or virus embeddings individually shows a slight im-
provement in most metrics, compared to the sequence-only models,
while the joint model with both embeddings achieved the best per-
formances overall. The distributions of the ranks of true positives
(Fig. 2) are in general correspondence with the summary statistics,
with the joint model having lowest ranks overall.

4 Discussion

4.1 Species-level optimization of DeepViral for novel

viruses
The continued emergence of novel viruses is an issue of increasing
relevance to global public health (Woolhouse et al., 2012) and eco-
nomic stability (Chakraborty and Maity, 2020). Accurate prediction
of potential PHIs for novel viruses with rapidly obtainable features,
such as sequences and phenotypes, would be important for under-
standing infectious disease mechanisms and the repurposing of exist-
ing drugs. The LOFO cross-validation excludes the taxonomic
relatives from the same family of the test virus, simulating a chal-
lenging scenario where the virus is from an entirely novel family.
While this provides a stringent evaluation scheme for DeepViral, it
likely leads to an underestimate of performance when applied to real
world PHI data as most emerging viruses arise from existing virus
families (Woolhouse et al., 2012). To investigate whether the inclu-
sion of data from viruses in the same family can improve
DeepViral’s ability to predict interactions for viral species, we add-
itionally designed and implemented a leave-one-species-out (LOSO)
training and evaluation method. Due to the large number of species,
we only applied this method to three viral species from three differ-
ent RNA virus families, as well as the novel coronavirus SARS-CoV-
2 based on a recently released dataset (Gordon et al., 2020).
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LOSO is different from LOFO with respect to the training and
validation datasets: for each test species, one species from the same
family is chosen as the validation set and the rest of the family are
all included in the training set. To ensure there is no taxonomic leak-
age, i.e. identical virus protein sequences among the training, valid-
ation and testing datasets, we excluded virus taxa for which proteins
have 100% sequence identity.

The comparison between the LOFO and LOSO evaluation is
shown in Table 2 and the taxonomic information of the viruses is
shown in Supplementary Section S2. When including data from
taxonomic relatives (those of the same virus family) in the training
and validation sets, the predictive performance of DeepViral
improved in all four test cases. The improvements for different
viruses exhibited large variability (see Table 2). For example, the
Influenza A virus had the largest increase in performance among the
four viral species. A similar difference between the virus families can
also be observed from the LOFO experiments, as shown in Figure 3.
Both the sequence and joint models show similar family-wise vari-
ability, with some occasional differences, e.g. Retroviridae performs
better than Herpesviridae in the joint model but not in the sequence-
based model. The taxon-wise variabilities in both LOFO and LOSO
suggest that the features used to predict PHIs may have different
generalization and prediction powers across different virus taxa, or
PHIs may be characterized to different degrees of completeness. In
the future, explainable models (Ribeiro et al., 2016; Lundberg and
Lee, 2017) may provide more interpretable insight into this
variability.

A contemporary example of a novel virus is the coronavirus
SARS-CoV-2, which by the end of 2020 reached more than 83.4
million cases of infections and 1.8 million fatalities globally (Dong
et al., 2020) in a timespan of 13 months. In the short time since its
emergence, many experimental studies of PHIs between SARS-CoV-
2 and human proteins have been published at a historical speed,

which enabled biologists to speculate on the infection mechanisms
and suggest drug candidates for repurposing (Gordon et al., 2020).

The Coronaviridae M protein constitutes an integral part of the
SARS-CoV-2 viral envelope, involved in morphogenesis and assem-
bly via its composite interactions with other structural proteins
(Mousavizadeh and Ghasemi, 2020). DeepViral has predicted an
interaction between the M protein and the TANK-binding kinase
TBK1 (UniProt: Q13158, within top 0.1% of all human proteins).
TBK1 plays an important role in the activation of many genes
involved in the innate immune response (Fitzgerald et al., 2003; Ran
et al., 2016). The interaction between the SARS-CoV-2 M protein
and TBK1 was recently validated through affinity capture experi-
ments (Zheng et al., 2020) and proximity-dependent biotinylation
methods (Samavarchi-Tehrani et al., 2020). TBK1 has previously
been associated with phenotypes related to respiratory distress and
respiratory failure through its complex role in amyotrophic lateral
sclerosis (Oakes et al., 2017), matching the respiratory phenotypes
associated with COVID-19 infections. While the predictions made
by DeepViral do not yet allow for a complete understanding of
underlying causality, the interaction identified by DeepViral demon-
strates how sequence and phenotype information is combined for
predicting interactions.

4.2 Using phenotypes to reveal molecular mechanisms

of viral infections
DeepViral is, to our knowledge, the first machine learning method
that uses clinical phenotypes as a feature to predict PHIs between
viruses and human hosts. The use of phenotypes has resulted in a
significant improvement (P<0.05; see confidence intervals in
Table 1) over methods that rely on sequences alone. Our model
avoids the bottleneck of identifying the molecular functions of
pathogen proteins by instead introducing a novel and—in the con-
text of infectious diseases—rarely explored type of feature, the phe-
notypes elicited by pathogens in their hosts, as a ‘proxy’ for the
molecular mechanisms, which in turn eventually produce the
observed clinical phenotypes.

One challenge in using phenotypes associated with viral infec-
tions or proteins is that they have been derived under different con-
texts. While phenotypes associated with viral infections are the
result of the immune-mediated response and observed in a clinical
context (Kafkas et al., 2019), the phenotypes of human proteins are
usually associated with a loss or depletion of protein function
(Köhler et al., 2019; Smith et al., 2018). However, the phenotypes
associated with viral infections obtained from PathoPhenoDB focus
on hallmark phenotypes of viral infections that can be used to dis-
criminate between infections of different viruses and thereby de-
emphasize the phenotypes resulting from general immune response
(Kafkas et al., 2019). Furthermore, the application of neural net-
works with supervised training can account for differences between
observed phenotypes and may even exploit patterns in these differ-
ences that are not explicit in the phenotypic representations
(Kulmanov et al., 2020; Kulmanov and Hoehndorf, 2020b).

Utilizing phenotypic features observed in humans and mice may
have the crucial advantage that we can identify PHIs that may con-
tribute to particular signs and symptoms of infection (Durrant et al.,

Table 1. Comparison with the state-of-the-art methods on our dataset to evaluate the performances for novel viruses

Method Family-wise ROCAUC Taxon-wise ROCAUC Protein-wise ROCAUC Mean rank

RCNN (Chen et al., 2019) 0.726 [0.717–0.734] 0.759 [0.750–0.768] 0.737 [0.731–0.743] 4669

Doc2Vec þ RF (Yang et al., 2020) 0.764 [0.763–0.765] 0.768 [0.766–0.770] 0.751 [0.751–0.752] 3740

DeepViral (seq) 0.770 [0.763–0.777] 0.768 [0.759–0.777] 0.749 [0.742–0.756] 4064

DeepViral (seq þ human embedding) 0.778 [0.766–0.790] 0.789 [0.776–0.801] 0.757 [0.742–0.771] 4245

DeepViral (seq þ viral embedding) 0.788 [0.776–0.801] 0.782 [0.773–0.790] 0.757 [0.746–0.767] 3496

DeepViral (joint) 0.813 [0.808–0.817] 0.829 [0.822–0.836] 0.800 [0.797–0.804] 3156

Note: The brackets after DeepViral indicate the features used for the model: seq—protein sequences, joint—both sequences and embeddings of human proteins

and viruses. The square brackets behind ROCAUC scores indicate the 95% confidence interval. The bold numbers indicate the best performing method for the re-

spective metrics.

Fig. 2. Density plot of the predicted ranks of true positives for each PHI prediction

method. The last four methods correspond to the variants of DeepViral
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2011). For example, our model consistently ranks the RNA helicase
protein DDX3X (UniProt: O00571) within the top 0.37% of all
human proteins as a potential interaction partner of the non-

structural protein 4A (UniProt: A0A024B7W1-PRO_0000443029)
of Zika virus (NCBITaxon : 2043570). Infections with Zika virus
may result in abnormal embryogenesis and, in particular, micro-
cephaly (Wang et al., 2017). Phenotypes associated with DDX3X in
the mouse ortholog include abnormal embryogenesis, microcephaly
and abnormal neural tube closure (Chen et al., 2016). While
DDX3X has previously been linked to the infectivity of the Zika
virus (Do~nate-Macián et al., 2018) and can result in intellectual dis-

ability (Blok et al., 2015), our model further suggests a role of
DDX3X in the development of the embryogenesis phenotypes from
Zika virus infections.

4.3 Evaluating predictions for novel viruses
While we have demonstrated a quantitative improvement over exist-
ing methods on a previously published dataset (Eid et al. 2016; see
Supplementary Section S1), we argue that the performance of PHI
prediction methods may be over-estimated on datasets where nega-
tives are obtained using a ‘dissimilarity-based negative sampling’
strategy; when only human proteins that are sufficiently different
from known interaction partners of viruses are considered for an
evaluation, the prediction task is likely to become too simple to re-

flect performance in a realistic scenario. To address this challenge,
we establish an evaluation strategy in which all host proteins are
considered as potential interaction partners for novel viruses. Using
this evaluation, the predictive performance is considerably lower
than using a dissimilarity-based sampling strategy (see Table 1).
Another possible explanation for the decrease in performance is that
our negative set likely includes some positive interactions that are
(falsely) considered as negatives due to absent knowledge of the

interaction; this can potentially result in an underestimation of the
actual predictive performance.

We use the mean ranks to evaluate model predictions when chal-
lenged with a novel virus from a novel family (LOFO), or with
known interactions from its taxonomic relatives (LOSO). However,
even the best performing model, i.e. DeepViral jointly trained with
phenotypes and sequences, has only been able to rank the known
true positive proteins up to a mean rank of 3156 out of all 16 627
human proteins in the LOFO evaluation. While the mean rank is
sensitive to predictions at a low rank (see Fig. 2), future work is
required to further improve PHI prediction methods, especially in
regards to the feature selection and engineering, and evaluation
methodologies.

4.4 Limitations and future work
DeepViral has several limitations that can be addressed by future
work. One is the scarcity of training data for inter-species PPIs. This
challenge may be addressed by transfer learning on the much larger
intra-species PPI data available for humans and other model organ-
isms. We also did not utilize other types of PHIs outside virus–
human interactions in our current study, such as those of other
hosts, e.g. plants and fishes, and other types of pathogens, e.g. bac-
teria and fungi; both may provide further insights in PHIs and the
mechanisms underlying viral infections. In particular, in zoonotic
diseases, information from PHIs in animals (if available) may be
used to identify or suggest interactions that occur in human hosts
(Dimonaco et al., 2020; Li et al., 2020). Furthermore, predicting
tissue-specific PHIs would also provide additional insights as pro-
teins of both human hosts (Fagerberg et al., 2014) and viruses
(Jarosinski et al., 2012) often have tissue-specific expressions and
functions.
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